2° COMPITINO DI ALGEBRA 1

21 dicembre 2018 Soluzioni

- 1. Sia A un anello booleano, ovvero un anello (commutativo unitario) con la proprietà per ogni $x \in A$ si abbia $x^2 = x$. Dimostrare che
 - (a) x + x = 0 per ogni $x \in A$.
 - (b) Ogni ideale finitamente generato di A è principale.

SOLUZIONE:

(a) Osserviamo che

$$x + x = (x + x)^2 = (x + x)(x + x) = x^2 + x^2 + x^2 + x^2 = x + x + x + x + x,$$

da cui, sommando ad entrambi i lati l'opposto di x+x, si ottiene come voluto 0=x+x.

(b) Per induzione sul numero di generatori è sufficiente mostrare che ogni ideale generato da 2 elementi è principale. Cerchiamo allora di trovare un generatore per l'ideale (x, y). Ci si può aspettare che il generatore sia del tipo $g = a_0 + a_1 x + a_2 y + a_3 x y$, con $a_0, \ldots, a_3 \in \mathbb{F}_2$ (in effetti ogni polinomio in x, y è equivalente ad un'espressione di questo tipo, visto che $x^2 = x$ e $y^2 = y$ e che abbiamo dimostrato che A è di caratteristica 2). Osserviamo ora che

$$gx = a_0x + a_1x^2 + a_2xy + a_3x^2y = (a_0 + a_1)x + (a_2 + a_3)xy$$

е

$$gy = a_0y + a_1xy + a_2y^2 + a_3xy^2 = (a_0 + a_2)y + (a_1 + a_3)xy;$$

per avere gx = x è quindi sufficiente che $a_0 + a_1 = 1$ e $a_2 + a_3 = 0$, e similmente per avere gy = y basta che $a_0 + a_2 = 1$ e $a_1 + a_3 = 0$. Risolvendo il sistema

$$\begin{cases} a_0 + a_1 = 1 \\ a_2 + a_3 = 0 \\ a_0 + a_2 = 1 \\ a_1 + a_3 = 0 \end{cases}$$

si trova $a_1 = a_2 = a_3$ e $a_0 = 1 - a_1$, il che lascia due possibilità: o g = 1 (ma allora (g) = A, da escludere) o g = x + y + xy. In questo secondo caso quanto visto sopra mostra $x \in (g)$ e $y \in (g)$, e d'altro canto è chiaro che $g \in (x, y)$, dunque (x, y) = (g).

2. Consideriamo l'anello $A = \mathbb{Q}[x,y]$ e il suo ideale $I = (x-y, x^3+y^3-x)$. Descrivere due campi K_1, K_2 ed un isomorfismo $A/I \cong K_1 \times K_2$.

SOLUZIONE: Mostriamo innanzitutto che l'ideale I coincide con l'ideale $J=(x-y,2x^3-x)$. In effetti si ha $2x^3-x=(x^3+y^3-x)+(x^3-y^3)=(x^3+y^3-x)+(x-y)(x^2+xy+y^2)$, quindi $2x^3-x$ appartiene ad I, e viceversa $x^3+y^3-x=2x^3-x-(x-y)(x^2+xy+y^2)$, quindi x^3+y^3-x appartiene a J. Siccome x-y appartiene sia ad I che a J, ne segue come voluto che I=J. Il terzo teorema di isomorfismo per anelli fornisce

$$\frac{A}{I} \cong \frac{A/(x-y)}{I/(x-y)} \cong \frac{\mathbb{Q}[x]}{(2x^3-x)},$$

dove l'isomorfismo $A/(x-y) \to \mathbb{Q}[x]$ è dato da $p(x,y) \mapsto p(x,x)$ (si osservi che valutando il polinomio $x^3 + y^3 - x$ in y = x si ottiene proprio $2x^3 - x$). Siccome la fattorizzazione in irriducibili di $2x^3 - x$ in $\mathbb{Q}[x]$ è $x(2x^2 - 1)$ (e in particolare x e $2x^2 - 1$ sono coprimi), il teorema cinese dei resti mostra che

$$A/I \cong \frac{\mathbb{Q}[x]}{(x)} \times \frac{\mathbb{Q}[x]}{(2x^2 - 1)} \cong \mathbb{Q} \times \mathbb{Q}(\sqrt{2}),$$

dove il secondo isomorfismo segue dal fatto che $2x^2-1=2(x^2-\frac{1}{2})$, dove $x^2-\frac{1}{2}$ è il polinomio minimo di $1/\sqrt{2}$, e dall'ovvio isomorfismo $\mathbb{Q}(\sqrt{2})\cong\mathbb{Q}(1/\sqrt{2})$.

- 3. Siano α, β due elementi algebrici su \mathbb{Q} di grado 3; siano poi, rispettivamente, f(X) e g(X) i polinomi minimi di α e β su \mathbb{Q} e F, K i loro campi di spezzamento. Supponiamo che $[F:\mathbb{Q}]=6$.
 - (a) Dimostrare che, se $\beta \notin F$, allora $[F(\beta):F]=3$.
 - (b) Determinare i possibili gradi di FK su \mathbb{Q} .
 - (c) Determinare quante possono essere le sottoestensioni di FK di grado 2 su \mathbb{Q} .

SOLUZIONE:

(a) Si ha $[F(\beta):F] \leq [\mathbb{Q}(\beta):\mathbb{Q}] = 3$ e $[F(\beta):F] \geq 2$ dal momento che $\beta \notin F$. Ne segue che $[F(\beta):F]$ è uguale a 2 o 3, e dobbiamo escludere il primo caso. Supponiamo che $[F(\beta):F] = 2$: allora il polinomio g(x), che è irriducibile in \mathbb{Q} , avrebbe una radice in F; ma siccome F/\mathbb{Q} è un'estensione normale, questo implicherebbe che g(x) avrebbe tutte le radici in F, e in particolare β apparterrebbe ad F, assurdo.

Osserviamo che la medesima dimostrazione prova anche che se $\alpha \notin K$, allora $[K(\alpha):K]=3$.

- (b) In quanto composto di due estensioni normali, FK è un'estensione normale di \mathbb{Q} , con gruppo di Galois isomorfo a un sottogruppo di $\operatorname{Gal}(F/\mathbb{Q}) \times \operatorname{Gal}(K/\mathbb{Q})$. Dal momento che i due fattori separatamente sono sottogruppi di S_3 , si ottiene che $\operatorname{Gal}(FK/\mathbb{Q})$ ha cardinalità che divide $(\#S_3)^2 = 36$. D'altro canto FK contiene F, che ha grado 6 su \mathbb{Q} , quindi 6 | $[FK : \mathbb{Q}] = \#\operatorname{Gal}(FK/\mathbb{Q})$. Le possibilità per $[FK : \mathbb{Q}]$ sono dunque a priori 6, 12, 18, 36. Mostriamo che 6, 18, 36 sono possibili, ma 12 no.
 - Grado 6: sappiamo che esistono polinomi irriducibili a coefficienti razionali di grado 3 con campo di spezzamento di grado 6 (per esempio $x^3 2$). Basta prendere come $\alpha = \beta$ una radice di tali polinomi irriducibili per avere FK = F = K di grado 6 su \mathbb{Q} .
 - Grado 12. Supponiamo per assurdo che $[FK : \mathbb{Q}] = 12$. Se si avesse $\beta \in F$, allora il polinomio irriducibile g(x) avrebbe una radice in F, e siccome F/\mathbb{Q} è normale g(x) si spezzerebbe completamente in K. Ma allora K sarebbe contenuto in F, quindi FK sarebbe uguale a F, e quindi sarebbe di grado al più 6, contraddizione. Ne segue che g(x) non può avere radici in F, e quindi la parte (a) implica $[F(\beta) : F] = 3$, da cui $[FK : \mathbb{Q}]$ sarebbe divisibile per $[F(\beta) : \mathbb{Q}] = [F(\beta) : F][F : \mathbb{Q}] = 18$, assurdo.
 - Grado 18. Consideriamo $\alpha = \sqrt[3]{2} \cdot \zeta_3$ e $\beta = \zeta_7 + \zeta_7^{-1}$. Allora il campo di spezzamento di f(x) è di grado 6, mentre quello di g(x) è di grado 3. Mostriamo che $[FK:\mathbb{Q}]=18$. Certamente 6 | $[FK:\mathbb{Q}]$, perché $[F:\mathbb{Q}]=6$, quindi $[FK:\mathbb{Q}]$ può essere solo 6 o 18. Osserviamo poi che FK contiene $K(\alpha)$, e in virtù della parte (a) il grado $[K(\alpha):\mathbb{Q}]=[K(\alpha):K][K:\mathbb{Q}]=3[K(\alpha):K]$ è uguale a 9 se $\alpha \notin K$. D'altro canto K è contenuto in \mathbb{R} , mentre α per definizione non lo è, quindi α non può appartenere a K, e dalla discussione precedente si ha che $[K(\alpha):\mathbb{Q}]=9$. Ma questo grado divide $[FK:\mathbb{Q}]$, e quindi $[FK:\mathbb{Q}]=18$.
 - Grado 36. Consideriamo i polinomi $f(x) = x^3 2$ e $g(x) = x^3 2x 2$, entrambi irriducibili per il criterio di Eisenstein, e siano α una radice del primo e β una radice del secondo. I discriminanti dei due polinomi sono $-27(-2)^2 = -2^23^3$ e $-4(-2)^3 27(-2)^2 = -2^2 \cdot 19$, quindi K contiene $\mathbb{Q}(\sqrt{-3})$ e F contiene $\mathbb{Q}(\sqrt{-19})$. Dal momento che il rapporto fra -19 e -3 non è un quadrato in \mathbb{Q} , le estensioni $\mathbb{Q}(\sqrt{-19})$ e $\mathbb{Q}(\sqrt{-3})$ sono distinte, e quindi FK contiene l'estensione di grado quattro $\mathbb{Q}(\sqrt{-19}, \sqrt{-3})$. Si ottiene allora che il grado di FK su \mathbb{Q} è divisibile per 4, quindi $[FK:\mathbb{Q}]$ è o 12 o 36. La prima possibilità è già stata esclusa, quindi $[FK:\mathbb{Q}]=36$ come voluto.
- (c) Siano L_1, \ldots, L_r le sottoestensioni quadratiche di FK. Osserviamo che F (e quindi a maggior ragione FK) contiene la sottoestensione quadratica che corrisponde per teoria di Galois al sottogruppo A_3 di $S_3 \cong \operatorname{Gal}(F/\mathbb{Q})$, ovvero

la sottoestensione $\mathbb{Q}(\sqrt{\Delta})$, dove Δ è il discriminante di f(x). Ne segue che r è almeno 1. Ricordiamo che il composito $L:=L_1\cdots L_r$ è un'estensione normale di \mathbb{Q} di grado una potenza di 2, e più precisamente il suo gruppo di Galois è $(\mathbb{Z}/2\mathbb{Z})^t$ per qualche t (maggiore o uguale a 1 per quanto visto prima). Inoltre L è contenuto in FK, quindi $[L:\mathbb{Q}]$ divide $[FK:\mathbb{Q}]$, che a sua volta divide 36, quindi $[L:\mathbb{Q}]=2^t$ può valere solo 2 o 4, quindi il gruppo di Galois $\mathrm{Gal}(L/\mathbb{Q})$ è isomorfo a $\mathbb{Z}/2\mathbb{Z}$ o a $(\mathbb{Z}/2\mathbb{Z})^2$. Nei due casi rispettivamente, FK contiene esattamente una sottoestensione quadratica (L stesso) o ne contiene 3 (corrispondenti ai tre sottogruppi di indice 2 di $(\mathbb{Z}/2\mathbb{Z})^2$). Come visto al punto precedente, entrambe le possibilità possono essere realizzate.