COMPITO DI ALGEBRA 1

22 gennaio 2019

- **1.** Un sottogruppo K di S_n è detto *transitivo* se per ogni coppia i, j di interi in $\{1, \ldots, n\}$ esiste $\sigma \in K$ tale che $\sigma(i) = j$.
 - (a) Sia p un numero primo e G un sottogruppo di S_p . Dimostrare che G è transitivo se e solo se $p \mid \#G$.
 - (b) Sia G un sottogruppo transitivo di S_p (con p primo) e H un sottogruppo normale di G diverso dalla sola identità. Dimostrare che H è un sottogruppo transitivo di S_p .
- **2.** Sia G un gruppo finito, sia P un suo sottogruppo di Sylow, e siano $a, b \in Z(P)$ e $g \in G$ elementi che soddisfano la relazione $b = gag^{-1}$.

Dimostrare che:

- (a) $P \in gPg^{-1}$ sono contenuti in Z(b);
- (b) esiste un elemento $u \in N(P)$ tale che $uau^{-1} = b$.

Nota: Per ogni sottoinsieme S di G indichiamo con Z(S) il suo centralizzatore, ossia $Z(S) = \{x \in G \mid xs = sx \ \forall s \in S\}$ e con N(S) il suo normalizzatore, ossia $N(S) = \{x \in G \mid xsx^{-1} \in S \ \forall s \in S\}$.

3. Sia p > 2 un numero primo e sia

$$A = \left\{ \frac{a + b\sqrt{-p}}{2^m} \mid a, b \in \mathbb{Z}, \ m \in \mathbb{N} \right\}.$$

- (a) Dimostrare che A^* è l'insieme degli elementi $\frac{a+b\sqrt{-p}}{2^m} \in A$ per cui $a^2+b^2p=2^k$ per qualche $k \in \mathbb{N}$.
- (b) Dimostrare che, se $\alpha = a + b\sqrt{-p}$ è un elemento di A tale che $a^2 + b^2p$ è un numero primo di \mathbb{Z} , allora α è un elemento primo di A.
- **4.** Sia $p(x) \in \mathbb{Q}[x]$ un polinomio irriducibile di grado $n \geq 3$ e sia K il suo campo di spezzamento su \mathbb{Q} . Supponiamo che $Gal(K/\mathbb{Q})$ sia isomorfo a S_n . Sia poi $m \geq 3$ un intero ed $L = K \cap \mathbb{Q}(\zeta_m)$.
 - (a) Dimostrare che $[L:\mathbb{Q}] \leq 2$.
 - (b) Dimostrare che p(x) è irriducibile in L[x].
 - (c) Dimostrare che p(x) è irriducibile in $\mathbb{Q}(\zeta_m)[x]$.