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Introduction

L-functions are an essential topic in modern number theory, playing a fundamental role in the
study of various arithmetic phenomena. There are ways to attach an L-function to almost
any mathematical object, and certainly to all the main objects of interest in number theory,
such as algebraic number fields, Dirichlet characters, and elliptic curves. L-functions encode
a wealth of information about these objects, allowing us to analyse their properties and make
deep connections between seemingly unrelated areas of mathematics. One of the most signif-
icant applications of L-functions, and historically the first, is their use in understanding the
distribution of prime numbers, both as a subset of all natural numbers (the Prime Number
Theorem of Hadamard and de la Vallée–Poussin) and in arithmetic progressions (Dirichlet’s
theorem).

These course notes focus on two main topics related to L-functions: their classical applica-
tions in number theory and their analytic properties. The first part of the course covers results
such as the prime number theorem and Dirichlet’s theorem on arithmetic progressions, as well
as the more sophisticated theorem of Chebotarev concerning the distribution of Frobenius auto-
morphisms in Galois groups. I focus on the derivation of the number-theoretic results from the
analytic properties of L-functions, that I mostly take for granted, postponing their discussion
to the last chapter of these notes (where they are eventually proved in full). I try to give a
unifying framework to understand many different constructions by discussing Artin’s general
definition of L-functions, but I focus mostly on the so-called abelian L-functions (namely, in the
language of Artin, those that correspond to abelian extensions of number fields). This already
covers a huge class of L-functions, including all zeta functions of number fields, as well as the
classical functions studied by Dirichlet to prove his theorem.

The second part of the course focuses on the proof of the main analytic properties of abelian
L-functions, such as functional equations, analytic continuation, and the analytic class number
formula. I follow closely the presentation of Tate’s doctoral thesis, providing additional details
with respect to the original material.

These notes are the result of a course for master’s and PhD students given at the University
of Pisa in the spring of 2023. They contain essentially no original material, with the possible
exception of Section 1.6.1, which gives a streamlined analytic proof of the Chebotarev density
theorem. In preparing these notes I have drawn heavily from various sources, most of which
are cited in the text, but which I repeat here.

• The proof of the Prime Number Theorem I give is taken from Zagier’s famous short note
[Zag97]. I also sketch a second proof, closer in spirit to the original point of view of
Riemann on his zeta function, that is heavily inspired by Tao’s blog post [Tao21].

• For the treatment of Artin’s L-functions I have borrowed mainly from Chapter V of
Neukirch’s book on algebraic number theory [Neu99].
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• I have written the proof of Dirichlet’s theorem on primes in arithmetic progressions with-
out referring to any particular book, but my understanding of the topic is certainly
influenced by Serre’s Cours d’arithmétique [Ser77]. For this proof in particular, I have
tried to stress how the deduction of the number-theoretic consequences from the analytic
properties of L-functions is comparatively easy, and can be placed in a general framework
that gives us the first hints of the abstract Fourier analysis which is used systematically
in Tate’s thesis.

• The two arguments for Chebotarev’s theorem, which I call the ‘analytic’ and ‘algebraic’
proofs (and which are secretly the same proof in disguise), come respectively from [LO77],
which I have tried to strip of as much of the heavy analytic machinery as possible, and
from chapter 15 of Schoof’s delightful book on Catalan’s conjecture [Sch08].

• The second chapter of these notes, which deals with some preliminaries necessary for
understanding Tate’s thesis, is mainly inspired by [RV99]. Since the emphasis of the course
was on number theory, I have decided to cover the construction of the Haar measure in
detail, but to leave out the proofs of the main theorems in the abstract theory of Fourier
inversion.

• Finally, Chapter 3 is simply my retelling of Tate’s thesis itself [Tat67]. Although the
original is an unsurpassed masterpiece, I still hope that my humble, low-brow version of
the story can be of help to someone.

Of course, many important topics are not even touched upon: I haven’t discussed Hasse-Weil
L-functions and, more generally, L-functions of geometric origin; I haven’t ventured into the
problem of modularity of L-functions; I haven’t described Weil’s reinterpretation of Tate’s thesis
in terms of distributions; and I haven’t even dared to hint at the whole Langlands programme,
of which, unfortunately, I know too little. Nevertheless, I hope that what is there can be useful
to people interested in number theory, providing a slightly different take on the very classical
and important topic of L-functions.
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an introductory course, e.g., ‘Teoria Algebrica dei Numeri 1’).
⋆ denotes a harder exercise.
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6 CHAPTER 1. CLASSICAL L-FUNCTIONS AND APPLICATIONS

1.1 What is an L-function, anyway?

To paraphrase the physicists’ definition of a vector 1, an L-function is anything that behaves
like an L-function. More seriously, while it is possible to conjecturally describe the class of
L-functions by means of the so-called axioms of the Selberg class (see below), I feel it is more
natural to form one’s idea of L-functions by looking at examples. We will later give a (still
partial) definition of L-function that at the very least encompasses all the main examples we
will meet in this course.

We start by introducing the notion of Dirichlet series :

Definition 1.1.1 (Dirichlet series). Let (an)n≥1 be a sequence of complex numbers. The
associated Dirichlet series is ∑

n≥1

an
ns
,

seen as a function of the complex variable s (if the sum converges). The abscissa of absolute
convergence is

σ0 := inf

{
σ ∈ R : ℜs > σ ⇒

∑
n≥1

an
ns

converges absolutely

}
.

The function s 7→
∑

n≥1
an
ns is holomorphic for s ∈ {ℜs > σ0}.

1.1.1 The Riemann ζ function

The single most important example of L-function is given by Riemann’s ζ function.

Definition 1.1.2 (Riemann ζ function). The Riemann ζ function is given by

ζ(s) =
∑
n≥1

1

ns

for all s ∈ C with ℜs > 1.

By standard results, ζ(s) is well-defined (since
∑

n≥1 n
−s converges for all real numbers

s > 1) and defines a holomorphic function on {ℜs > 1}. We will later show:

Theorem 1.1.3. The function ζ(s) extends to a meromorphic function on the whole of C, with
a single simple pole at s = 1 with residue 1. In particular, ζ(s) = 1

s−1
+O(1) as s→ 1.

This is a consequence of the famous functional equation for ζ(s). In order to discuss it, we
need to recall Euler’s Γ function:

Definition 1.1.4. We define

Γ(s) =

∫ ∞

0

tse−t dt

t

for ℜs > 0.

1our definition of a vector is that a vector is anything that transforms like a vector, see
https://phys.libretexts.org/Bookshelves/Relativity/Book%3A_Special_Relativity_(Crowell)

/07%3A_Coordinates/7.02%3A_Transformation_of_Vectors

https://phys.libretexts.org/Bookshelves/Relativity/Book%3A_Special_Relativity_(Crowell)/07%3A_Coordinates/7.02%3A_Transformation_of_Vectors
https://phys.libretexts.org/Bookshelves/Relativity/Book%3A_Special_Relativity_(Crowell)/07%3A_Coordinates/7.02%3A_Transformation_of_Vectors
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Remark 1.1.5. One way to remember the definition of Γ(s) (and the reason I write it in
this way, instead of the more usual

∫∞
0
ts−1e−t dt) is to notice that it is the Mellin transform

(=abstract Fourier transform for the group (R>0, ·)) of the function e−t, see Remark 3.1.38.

Exercise 1.1.6. Check the following properties of Γ(s):

1. Γ(s) is a holomorphic function of s in the right half-plane {ℜs > 0};

2. Γ(s+ 1) = sΓ(s) for all s ∈ C with ℜs > 0;

3. Γ(s) extends to a meromorphic function on C, with poles only at the non-positive integers;

4. Γ(1
2
) =

√
π;

5. (⋆) Legendre’s duplication formula:

Γ(s)Γ(s+ 1
2
)

Γ(2s)
=

Γ(1
2
)

22s−1
=

√
π

22s−1
.

Hint. This is much harder than the other parts of the exercise. Here is a possible strategy.

a) Introduce the Beta function

B(m,n) =

∫ 1

0

um−1(1− u)n−1 du

and prove that B(m,n) = Γ(m)Γ(n)
Γ(m+n)

.

b) Replacing m = n = z and then u = 1+x
2
, obtain

Γ(z)2

Γ(2z)
= 21−2z

(
2

∫ 1

0

(1− x2)z−1 dx

)
.

c) Prove the following identity for the Beta function:

B(m,n) = 2

∫ 1

0

x2m−1(1− x2)n−1 dx.

d) Obtain the equality

Γ(z)2

Γ(2z)
= 21−2zB(1/2, z) = 21−2zΓ(1/2)Γ(z)

Γ(z + 1/2)

and conclude.

6. (⋆⋆) It is useful to also mention Euler’s reflection formula,

Γ(z)Γ(1− z) =
π

sin(πz)
,

which you don’t need to prove unless you really want to.
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7. Γ(s) has no zeroes in C (even though it is not necessary, you might want to use Euler’s
formula to prove this).

Having introduced the Γ function, we can define a further auxiliary function (which will
eventually turn out to be somewhat more natural than ζ(s)):

Definition 1.1.7 (Landau’s ξ function). We set ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s).

In terms of ξ(s), one has:

Theorem 1.1.8 (Functional equation for ξ(s)). The ξ function is holomorphic on the whole
complex plane and satisfies

ξ(s) = ξ(1− s).

Exercise 1.1.9. Assuming the functional equation ξ(s) = ξ(1 − s) in Theorem 1.1.8, prove
that ξ(s) is everywhere holomorphic.

Remark 1.1.10. The factor s(s − 1) in the definition of ξ(s) is invariant under the transfor-
mation s 7→ 1 − s. It follows from the functional equation that the simple function f(s) =
π−s/2Γ

(
s
2

)
ζ(s) satisfies the functional equation f(s) = f(1−s). From the point of view we will

later take, this function f is probably the ‘most natural version’ of the Riemann ζ function.

The last basic property of ζ(s) we want to recall is its representation as an Euler product.
More generally, we recall the following result:

Theorem 1.1.11 (Euler product). Let f : N → C be a multiplicative2 function and let F (s) =∑
n≥1

f(n)
ns be the associated Dirichlet series. Denote by σ0 the abscissa of absolute convergence.

There is an equality of holomorphic functions

F (s) :=
∑
n≥1

f(n)

ns
=

∏
p prime

(∑
n≥0

f(pn)

pns

)
,

valid over {ℜs > σ0}. If furthermore f is completely multiplicative3, one has
∑

n≥0
f(pn)
pns =∑

n≥0

(
f(p)
ps

)n
= 1

1−f(p)p−s , and hence

∑
n≥1

f(n)

ns
=

∏
p prime

(
1− f(p)p−s

)−1
.

In particular, taking f(n) = 1 for all n ≥ 1 we get

ζ(s) =
∏

p prime

(1− p−s)−1.

Remark 1.1.12. One of the objectives of this course will be to give an interpretation of the
function π−s/2Γ

(
s
2

)
ζ(s) = π−s/2Γ

(
s
2

)∏
p prime(1− p−s)−1 from Remark 1.1.10 as an ‘extended

Euler product’, where the additional factor π−s/2Γ
(
s
2

)
‘comes from the infinite place of Q’

(cf. Definition 2.3.1 for the notion of place).

2that is, (m,n) = 1 implies f(mn) = f(m)f(n)
3that is, f(mn) = f(m)f(n) for all positive integers m,n
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1.1.2 The Selberg class

This section is taken almost verbatim from Wikipedia [Wik23b]. The idea is to define ax-
iomatically a class of functions that (conjecturally) consists precisely of those we want to call
‘L-functions’. However, at present, we are unable to prove that many functions we do want to
call L-functions actually belong to this class. For this reason, we will make no use of the notion
of the Selberg class.

The formal definition of the class S is the set of all Dirichlet series

F (s) =
∞∑
n=1

an
ns

absolutely convergent for ℜs > 1 that satisfy the following four conditions:

1. Analyticity: F (s) has a meromorphic continuation to the entire complex plane, with the
only possible pole (if any) when s equals 1. More precisely, there exists an integer m ≥ 0
such that (s− 1)mF (s) has analytic continuation to an entire function of finite order 4;

2. Ramanujan conjecture: a1 = 1 and an ≪ε n
ε for any ε > 0;

3. Functional equation: there is a gamma factor of the form

γ(s) = Qs

k∏
i=1

Γ(ωis+ µi)

where Q is real and positive, the ωi are real and positive, and the µi are complex with
non-negative real part, as well as a so-called root number α ∈ C, |α| = 1, such that the
function

Φ(s) = γ(s)F (s)

satisfies
Φ(s) = αΦ(1− s);

4. Euler product: for ℜs > 1, F (s) can be written as a product over primes,

F (s) =
∏
p

Fp(s)

with Fp(s) = exp

(
∞∑
n=1

bpn

pns

)
and, for some ϑ < 1

2
, bpn = O(pnθ).

1.1.3 Dedekind ζ functions

Our next family of L-functions is given by the so-called (Dedekind) ζ functions of number fields.
Before defining them, we quickly recall the notion of ring of integers of a number field:

4I am grateful to Alberto Perelli for pointing out the importance of this condition, which plays a fundamental
role in the proof of many results concerning the Selberg class. At the present state of knowledge it is not clear
whether it can be removed, nor whether it follows from the other axioms.
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Definition 1.1.13 (Ring of integers). Let K be a number field, that is, a finite extension of
Q. The ring of integers of K, denoted by OK , is the subring

{α ∈ K : µα(x) ∈ Q[x] has integeral coefficients}

of K. Here µα(x) is the unique monic minimal polynomial of α over Q.

We will also need the notion of norm of an ideal:

Definition 1.1.14. The norm of an ideal I ◁OK is the cardinality of the quotient OK/I. We
will denote it by N(I).

Exercise 1.1.15 (♠).

1. Show that N(I) is finite if and only if I ̸= (0).

2. (⋆) Show that for every positive integer m the set {I ◁OK : N(I) = m} is finite.

Exercise 1.1.15 shows that the following definition makes sense:

Definition 1.1.16 (Dedekind ζ function). Let K be a number field. The Dedekind ζ func-
tion of K is

ζK(s) =
∑
I◁OK
I ̸=(0)

1

N(I)s
:=
∑
n≥1

#{I ◁OK : N(I) = n}
ns

.

Exercise 1.1.17 (♠).

1. Prove the second equality appearing in Definition 1.1.16.

2. Show that there is an ‘Euler product’ representation of the form

ζK(s) =
∏

P non-zero prime ideal of OK

(
1−N(P )−s

)−1
.

3. (⋆) Show that ζK(s) converges for ℜs > 1.

These functions satisfy properties similar to those of the Riemann ζ function. In particular,
we will later establish the following:

Theorem 1.1.18 (Analytic continuation of ζK(s)). The function ζK(s) extends to a meromor-
phic function on the entire complex plane, with a single simple pole at s = 1.

1.1.4 Dirichlet L-functions

The very name ‘L-function’ comes from a class of functions introduced by Dirichlet in his study
of primes in arithmetic progressions. In order to define them, we need to first introduce the
notion of Dirichlet character.
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Definition 1.1.19 (Dirichlet characters). Let m be a positive integer. The group of charac-
ters modulo m, denoted by Dm, is the group Hom((Z/mZ)×, S1), where S1 is the multiplicative
group of complex numbers of norm 1. Given an element χ ∈ Dm, we extend χ to a function
(again denoted by χ)

χ : Z → C

by setting

χ(n) =

{
χ(n mod m), if (m,n) = 1;

0, if (m,n) > 1.

This extended function is called a Dirichlet character modulo m.

Remark 1.1.20. Let m ≥ 2 be an integer and let χ ∈ Dm be the trivial element (that is, the
homomorphism sending every element of (Z/mZ)× to 1. The corresponding Dirichlet character
χ : Z → C depends on m, because

χ(n) =

{
1, if (m,n) = 1

0, if (m,n) > 1.

All such characters are called the trivial (or principal) character (or more precisely, the
trivial character mod m), and one should be aware that there are infinitely many of them!

Exercise 1.1.21. Check the following statements:

1. Dm is isomorphic to (Z/mZ)×;

2. any Dirichlet character χ : Z → C is a completely multiplicative function.

Remark 1.1.22. The isomorphism of the previous exercise is not canonical, and as such, it is
better to distinguish the groups (Z/mZ)× and Dm. We will later call these two groups ‘dual to
each other in the sense of Pontryagin’, see Proposition 1.5.8, Remark 1.5.5 and Theorem 2.2.2.

To each Dirichlet character we now attach a corresponding L-function:

Definition 1.1.23 (Dirichlet L-functions). Let χ be a Dirichlet character modulo m. We set

L(s, χ) :=
∑
n≥1

χ(n)

ns
.

Exercise 1.1.24. Show that the abscissa of absolute convergence for these Dirichlet series is
σ0 = 1.

From Exercises 1.1.24 and 1.1.21 and Theorem 1.1.11 it follows that for s ∈ {ℜs > 1} one
has

L(s, χ) =
∏

p prime

(
1− χ(p)p−s

)−1
. (1.1)

Exercise 1.1.25. Let χ be the trivial character modulo m. Is L(s, χ) the same as the Riemann
ζ function? Express L(s, χ) in terms of ζ(s) and simple holomorphic functions.

Exercise 1.1.25 and the properties of the Riemann ζ function take care of the principal
character. For all other characters, we will later show the following:
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Theorem 1.1.26 (Analyticity of Dirichlet L-functions of non-trivial characters). Let χ be a
non-principal character modulo m. The function L(s, χ) extends to an entire function (that is,
a holomorphic function on the whole complex plane).

For later use, we also quickly review the notion of primitivity for Dirichlet characters.

Definition 1.1.27 (Primitive character, conductor). Let m be a positive integer. A character
χ : (Z/mZ)× → S1 is said to be imprimitive if there exist a divisor d of m, with d < m, and
a character χ̃ : (Z/dZ)× → S1 such that χ = χ̃ ◦ π, where π : (Z/mZ)× → (Z/dZ)× is the
canonical projection. A character is primitive if it is not imprimitive.

Any d such that χ factors as above is called a modulus for the character χ, while the
minimal such d is called the conductor. The character χ̃ : (Z/dZ)× → S1 which induces χ
(where d is the conductor) is called the primitive character inducing χ.

Finally, a Dirichlet character is called primitive if its modulus coincides with the conductor
of the multiplicative character that induces it.

Example 1.1.28. Let χ : Z → {0,±1} be the function given by

χ(n) =


0, if (6, n) > 1

1, if (6, n) = 1 and n ≡ ±1 (mod 8)

−1, if (6, n) = 1 and n ≡ ±3 (mod 8)

We also identify χ to the character χ : (Z/24Z)× → {±1} given essentially by the same rule. It
is clear that χ is not primitive, since it is induced by the homomorphism χ̃ : (Z/8Z)× → {±1}
given by

χ̃(n) =

{
1, if n ≡ ±1 (mod 8)

−1, if n ≡ ±3 (mod 8).

One can check easily that χ̃ is primitive, so that the conductor of χ is 8. Finally, letting
K = Q(

√
2), it is not hard to show that ζK(s) = ζ(s)L(s, χ̃).

Exercise 1.1.29. Prove the last statement in the previous example: ζQ(
√
2)(s) = ζ(s)L(s, χ̃).

Hint. You can (and should) do this in at least two ways, which are equivalent but offer slightly
different points of view:

1. using the development of ζ(s), ζQ(
√
2)(s) as Euler products;

2. writing Q(
√
2) = Q ⊕ Q ·

√
2 as a sum of irreducible representations of Gal(Q(

√
2)/Q)

and using Theorem 1.4.12.

Exercise 1.1.30 (Characters vs Dirichlet characters). There are some subtleties concerning the
distinction between characters considered as homomorphisms (Z/mZ)× → S1 or as Dirichlet
characters Z → C. The best you can do is think about this yourself; if you want a specific
exercise, here is a (hopefully) instructive one.

Let χ̃ : (Z/dZ)× → S1 be a primitive character modulo d, let m be a multiple of d, and let
χ = χ̃◦π be the character modulo m that is induced by χ̃. Finally, let χDirichlet be the Dirichlet
character corresponding to χ.

1. Show that the non-zero values of χDirichlet are periodic of minimal period d.
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2. Show that χDirichlet is periodic of period m.

3. Show that the minimal period of χDirichlet can be equal to m > d.

4. Show that the minimal period of χDirichlet can be equal to d even when m > d.

We have now met the main characters of this course. We will later introduce the Hecke L-
functions, which generalise Dirichlet L-functions to arbitrary number fields, but the examples
we have seen so are already enough to discuss two important theorems in analytic number
theory: the prime number theorem and Dirichlet’s theorem on arithmetic progressions.

1.2 The prime number theorem

The purpose of this essentially self-contained section is to prove the Prime Number Theorem,
namely, to show the following:

Theorem 1.2.1 (Prime Number Theorem). Let π(x) = #{p prime : p ≤ x} be the prime-
counting function. As x→ ∞, we have the asymptotic relation

π(x) ∼ x

log x
.

We will follow the strategy of Newman [New80], as streamlined by Zagier [Zag97]. We
introduce the auxiliary functions

Φ(s) =
∑
p

log p

ps
, ϑ(x) =

∑
p≤x

log p,

where every sum indexed by p (here and below) ranges over the prime numbers.

Proposition 1.2.2. ϑ(x) = O(x).

Proof. Let N be a positive integer. Notice that every prime p with N < p ≤ 2N divides
(
2N
N

)
,

so

ϑ(2N)− ϑ(N) =
∑

N<p≤2N

log p ≤ log

(
2N

N

)
≤ log 22N = 2N log 2.

In particular, ϑ(2k+1)− ϑ(2k) ≤ 2k+1 log 2. Summing over k = 0, . . . , n we get

ϑ(2n+1) = ϑ(2n+1)− ϑ(1) ≤ log 2
(
2 + 22 + 23 + · · ·+ 2n+1)

)
< 2n+2 log 2.

For generic x ≥ 1, we have 2n ≤ x < 2n+1 for some n ∈ N, hence

ϑ(x) ≤ ϑ(2n+1) ≤ 2n+2 log 2 ≤ (4 log 2)x.

The key point in the proof of the Prime Number Theorem is the following non-vanishing
result:
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Theorem 1.2.3 (Non-vanishing of ζ along ℜs = 1). The function ζ(s) does not have any
zeroes along the line ℜs = 1, and the function Φ(s) − 1

s−1
extends to a holomorphic function

on the closed5 right half-plane {ℜs ≥ 1}.

Proof. We start by noticing the following formal identity, valid for ℜs > 1:

log ζ(s) = log
∏
p

(1− p−s)−1 = −
∑
p

log(1− p−s).

Taking the derivative of both sides,

ζ ′(s)

ζ(s)
= −

∑
p

log p · p−s

1− p−s
= −

∑
p

log p

ps(1− p−s)

= −
∑
p

log p

ps

∑
k≥0

p−ks = −
∑
p

∑
k≥1

log p

pks

= −
∑
n≥1

Λ(n)

ns
,

(1.2)

where Λ(n) is the von Mangoldt function,

Λ(n) =

{
log p, if n = pk for a prime p

0, otherwise.

Essentially the same calculation shows

−ζ
′(s)

ζ(s)
=
∑
p

log p

ps(1− p−s)
=
∑
p

log p(1− p−s + p−s)

ps(1− p−s)

=
∑
p

log p

ps
+
∑
p

log p

ps(ps − 1)
= Φ(s) +

∑
p

log p

ps(ps − 1)
,

(1.3)

where the sum
∑

p
log p

ps(ps−1)
converges (to a holomorphic function) for ℜs > 1

2
. Hence, Φ(s) =

− ζ′(s)
ζ(s)

−
∑

p
log p

ps(ps−1)
is holomorphic over {ℜs > 1

2
}, except for the poles of ζ′(s)

ζ(s)
, which are s = 1

and the zeros of ζ(s). Indeed, recall that the logarithmic derivative f ′(s)/f(s) of an analytic
function f(s) is analytic except at the zeroes and poles of f . At each zero (of multiplicity
m > 0) or pole (of multiplicity −m > 0) of f(s), the logarithmic derivative has a simple pole
with residue m. Finally, we already know (Theorem 1.1.8) that ζ(s) doesn’t have any poles

apart from s = 1, hence that − ζ′(s)
ζ(s)

= 1
s−1

+O(1) for s near 1. We then obtain that Φ(s)− 1
s−1

extends holomorphically to {ℜs ≥ 1} if and only if ζ(s) does not have any zeroes on the line
{ℜs = 1}. We now prove this crucial statement.

Using again the properties of the logarithmic derivative, we obtain that the order of van-
ishing of ζ(s) at 1 + it is given by

ord1+it ζ = lim
ε→0+

ε
ζ ′(1 + it+ ε)

ζ(1 + it+ ε)
. (1.4)

5this means that every point in this set has an open neighbourhood on which the function in question is
holomorphic. These open neighbourhoods will necessarily contain complex numbers with real part strictly less
than 1
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Notice furthermore that ζ(s) = ζ(s) since the coefficients of the Dirichlet series defining ζ are
real. Let α be a positive real number and denote by µ ≥ 0, ν ≥ 0 the orders of vanishing of ζ
at 1 + iα and 1 + 2iα. Combining Equations (1.4) and (1.3), and recalling that

∑
p

log p
ps(ps−1)

is

holomorphic along {ℜs = 1}, we obtain

lim
ε→0+

εΦ(1 + ε) = 1, lim
ε→0+

εΦ(1 + ε± iα) = −µ, lim
ε→0+

εΦ(1 + ε± 2iα) = −ν. (1.5)

On the other hand, we have the following inequality,

2∑
r=−2

(
4

r + 2

)
Φ(1 + ε+ riα) =

∑
p

log p

p1+ε

(
piα/2 + p−iα/2

)4 ≥ 0

which follows directly from the definitions, the binomial expansion, and the positivity of squares.
Multiplying by ε > 0, passing to the limit ε → 0+ and replacing the values given by (1.5) we
finally get

−2ν − 8µ+ 6 ≥ 0,

which clearly gives µ < 1, hence µ = 0. By definition of µ, this means ζ(1 + iα) ̸= 0, as
desired.

Theorem 1.2.4 (Tauberian theorem). Let f(t) : R≥0 → C be a bounded, locally integrable
function. Suppose that the function g(z) =

∫∞
0
f(t)e−zt dt, which is defined and holomorphic

for ℜz > 0, extends holomorphically to ℜz ≥ 0. The integral
∫∞
0
f(t) dt exists and equals g(0).

Proof. For T > 0 set gT (z) =
∫ T

0
f(t)e−zt dt. This function is holomorphic on the whole complex

plane. We will show that limT→∞ gT (0) = g(0). Let R be large and let C be the boundary of
the region D = {z ∈ C : |z| ≤ R,ℜz ≥ −δ} (see Figure 1.1). Here δ > 0 is chosen as a function
of R in such a way that gT − g is holomorphic inside and on C.

To show that such a δ exists, notice that gT is everywhere holomorphic, whereas, by as-
sumption, the function g(z) is holomorphic along the segment I = {it : −R ≤ t ≤ R}. Since
being holomorphic is an open property, for every point z of I there is a small disc centred at z
in which g(z) is holomorphic. By compactness of I, a finite union of such discs covers it. We
can then take δ to be the minimum of the radii of these finitely many discs.

Let hT (z) = (g(z)− gT (z))e
zT
(
1 + z2

R2

)
. Cauchy’s integral formula gives

hT (0) = g(0)− gT (0) =
1

2πi

∫
C

(g(z)− gT (z)) e
zT

(
1 +

z2

R2

)
dz

z
.

Our aim is to show that limT→∞ hT (0) = 0. We study Cauchy’s integral separately along the
arcs

C+ := C ∩ {ℜz > 0} and C− := C ∩ {ℜz < 0}.

Along C+ we have

|g(z)− gT (z)| =
∣∣∣∣∫ ∞

T

f(t)e−zt dt

∣∣∣∣ ≤ ∫ ∞

T

|f(t)||e−zt| dt =

≤ ∥f∥∞
∫ ∞

T

|e−zt|dt = ∥f∥∞e−ℜzT

ℜz
.

(1.6)
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C

iR

−iR

−δ
ℜz

ℑz

Figure 1.1: The contour C

Note also that (by essentially the same calculation as in Equation (1.6)) when ℜz is negative

we have |gT (z)| ≤ ∥f∥∞e−ℜ(z)T

|ℜz| . Furthermore, all along the circle |z| = R we can estimate∣∣∣∣ezT (1 + z2

R2

)
1

z

∣∣∣∣ = eℜ(z)T

∣∣∣∣( |z|2

z
+ z

)
1

R2

∣∣∣∣
=
eℜ(z)T

R2
|z + z| = 2|ℜz|

R2
eℜ(z)T .

(1.7)

Hence, the integral of hT (z) along C+ is bounded in absolute value by

∥f∥∞ · 2

R2
· (πR) = 2π∥f∥∞

R
.

In particular, we see that the contribution from the integral along C+ vanishes in the limit
R → ∞.

We now consider the integral along C−, separating the contributions from g(z) and gT (z).
As for gT (z), which is entire, we can deform the integration contour to the semi-circle D− :=

{|z| = R,ℜz < 0}. Along this semi-circle we can use the estimates |gT (z)| ≤ ∥f∥∞e−ℜ(z)T

|ℜz| and

(1.7) to obtain as above ∣∣∣∣∫
D−

gT (z)e
zT

(
1 +

z2

R2

)
1

z
dz

∣∣∣∣ ≤ 2π∥f∥∞
R

.

This quantity also vanishes in the limit R → ∞, so we are left with considering the integral∫
C−
g(z)ezT

(
1 + z2

R2

)
dz
z
. We will show that this integral vanishes in the limit T → ∞ (note



1.2. THE PRIME NUMBER THEOREM 17

that here we take the limit in T , not in R: this contribution vanishes also for fixed, finite
values of R, provided that T is taken large enough). To handle this integral, note that the

function T 7→ |g(z)ezT
(
1 + z2

R2

)
1
z
| is decreasing (since |ezT | = e−|ℜ(z)|T ), and it is integrable

(even holomorphic) for any fixed value of T . By the dominated convergence theorem, we obtain

lim
T→∞

∫
C−

g(z)ezT
(
1 +

z2

R2

)
dz

z
=

∫
C−

lim
T→∞

g(z)ezT
(
1 +

z2

R2

)
dz

z
=

∫
C−

0 dz = 0,

where we have used the pointwise convergence of g(z)ezT
(
1 + z2

R2

)
1
z
to 0 (which again follows

from ℜz < 0 along C−). We have thus proved that limT→∞ |hT (0)| ≤ 4π
R
∥f∥∞. As R is arbitrary,

this shows limT→∞ hT (0) = 0, as desired.

To prove our next result we will need Abel’s summation by parts formula:

Theorem 1.2.5 (Abel’s summation by parts). Let (an)n≥1 be a sequence of complex numbers
and let φ : [1,∞) → R be a C1 function. For all x > 1 we have

∑
n≤x

anφ(n) =

(∑
n≤x

an

)
φ(x)−

∫ x

1

(∑
n≤t

an

)
φ′(t) dt.

Proof. This is elementary, but we give an unforgettable (!) proof using distributions, which
shows that this is exactly (and not just philosophically) the integration-by-parts formula. Con-
sider the function A(x) =

∑
n≤x an. This function is constant on all intervals of the form

[n, n + 1). Its derivative (in the distributional sense) is concentrated on the integers, and it is
easy to see that it is

∑
n anδ(x− n), where δ is Dirac’s delta. Since integration by parts works

for distributions, we get (for any ε ∈ (0, 1))∑
n≤x

anφ(n) =
∑
n

an

∫ x

1−ε

δ(t− n)φ(t) dt =

∫ x

1−ε

∑
n

anδ(t− n)φ(t) dt

=

∫ x

1−ε

A′(t)φ(t) dt = [A(t)φ(t)]x1−ε −
∫ x

1−ε

A(t)φ′(t) dt

=

(∑
n≤x

an

)
φ(x)−

∫ x

1

A(t)φ′(t) dt,

where we have used A(1 − ε) = 0 for any ε > 0. Passing to the limit ε → 0+ yields the
result.

Proposition 1.2.6. The integral ∫ ∞

1

ϑ(t)− t

t2
dt

converges.

Proof. We fix s > 1 and apply Theorem 1.2.5 to the sequence

an =

{
log n, if n is a prime number;

0, otherwise
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and to the function φ(x) = x−s. By definition, the function
∑

n≤x an coincides with ϑ(x).
Abel’s formula yields ∑

p≤x

log p

ps
=

1

xs

∑
p≤x

log p+ s

∫ x

1

ϑ(t)

ts+1
dt.

Letting x→ ∞ we obtain

Φ(s) = lim
x→∞

1

xs
ϑ(x) + s

∫ ∞

1

ϑ(t)

ts+1
dt,

and by Proposition 1.2.2 we have limx→∞
1
xsϑ(x) = 0 since s > 1. Thus, we have

Φ(s) = s

∫ ∞

1

ϑ(t)

ts+1
dt.

The exponential change of variables t = eu allows us to rewrite this as

Φ(s) = s

∫ ∞

0

ϑ(eu)e−us du. (1.8)

Note that we have proved this for s ∈ R>1, but by analytic continuation the two sides of this
equation coincide wherever both are defined and analytic.

We now apply Theorem 1.2.4 to the functions

f(t) = ϑ(et)e−t − 1, g(z) =
Φ(z + 1)

z + 1
− 1

z
.

We check the assumptions:

1. f(t) is bounded and locally integrable: we know that ϑ(et) = O(et) by Proposition 1.2.2,
which shows that f(t) is bounded, and ϑ(et), e−t are certainly locally integrable.

2. Next we need to check that
∫∞
0
f(t)e−zt dt = g(z) in {ℜz > 0}, and that g(z) extends

holomorphically to {ℜz ≥ 0}. We have∫ ∞

0

f(t)e−ztdt =

∫ ∞

0

(
ϑ(et)e−t − 1

)
e−ztdt =

∫ ∞

0

ϑ(et)e−(z+1)tdt−
∫ ∞

0

e−zt dt.

From Equation (1.8) we know that
∫∞
0
ϑ(et)e−(z+1)tdt = Φ(z+1)

z+1
whenever ℜ(z + 1) > 1,

that is, ℜz > 0. The integral
∫∞
0
e−zt dt is immediate to compute, and evaluates to[

e−zt

−z

]∞
0

= 1
z
. Thus, the functions

∫∞
0
f(t)e−ztdt and g(z) coincide for all z with ℜz > 0.

On the other hand, the crucial Theorem 1.2.3 implies that g(z) has analytic continuation
to {ℜz ≥ 0}: indeed, we know that Φ(z)− 1

z−1
is analytic in {ℜz ≥ 1}, hence Φ(z+1)− 1

z

is analytic in {ℜz ≥ 0}. Multiplying by 1
z+1

, which is analytic in {ℜz ≥ 0}, we obtain
that

Φ(z + 1)

z + 1
− 1

z(z + 1)

is also analytic on the same set. The difference between this function and Φ(z+1)
z+1

− 1
z
is

1

z
− 1

z(z + 1)
=

1

z + 1
,

which is also analytic in {ℜz ≥ 0}.
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The conclusion of the theorem is that
∫∞
0
f(t) dt exists, that is, the integral∫ ∞

0

(ϑ(et)e−t − 1) dt

is convergent. Substituting back t = log u, we obtain that∫ ∞

1

(
ϑ(u)

u
− 1

)
du

u

converges, which (up to renaming u to t) is exactly the statement of the proposition.

Proposition 1.2.7. The function ϑ(x) is asymptotic to x as x→ ∞.

Proof. This follows from Proposition 1.2.6. More precisely, suppose by contradiction that there
exists λ > 1 such that ϑ(xn)

xn
> λ for a sequence xn going to infinity. Since ϑ(x) is clearly

monotonically increasing, we obtain∫ λxn

xn

ϑ(t)− t

t2
dt ≥

∫ λxn

xn

ϑ(xn)− t

t2
dt ≥

∫ λxn

xn

λxn − t

t2
dt

t=yxn
=

∫ λ

1

λxn − yxn
(yxn)2

xndy =

∫ λ

1

λ− y

y2
dy.

This is a contradiction: convergence of the integral
∫∞
1

ϑ(t)−t
t2

dt implies that the ‘partial tail’∫ λx

x
ϑ(t)−t

t2
dx can be made arbitrarily small by choosing x large enough.

Conversely, suppose that for some λ < 1 there is an unbounded sequence xn such that
ϑ(xn)
xn

< λ. Reasoning as above, we obtain∫ λxn

xn

ϑ(t)− t

t2
dt ≤

∫ λ

1

λ− y

y2
dy < 0,

which is again a contradiction.

Proof of Theorem 1.2.1. On the one hand, we have

ϑ(x) =
∑
p≤x

log p ≤
∑
p≤x

log x = π(x) log(x),

while on the other we also have

ϑ(x) ≥
∑

x1−ε≤p≤x

log p ≥
∑

x1−ε≤p≤x

(1− ε) log x

= (1− ε) log x

 ∑
x1−ε≤p≤x

1

 = (1− ε) log x
(
π(x)− π(x1−ε)

)
.

Since clearly π(x1−ε) ≤ x1−ε = O(x1−ε), we have obtained

(1− ε) log(x)
(
π(x) +O(x1−ε)

)
≤ ϑ(x) ≤ π(x) log(x).

Dividing through by x and using Proposition 1.2.7 we get

(1− ε)

(
π(x)

x/ log x
+ o(1)

)
≤ 1 + o(1) ≤ π(x)

x/ log x
as x→ ∞,

which (since ε is arbitrary) implies the theorem.



20 CHAPTER 1. CLASSICAL L-FUNCTIONS AND APPLICATIONS

1.2.1 The Riemann–von Mangoldt exact formula

Even though this is not strictly speaking a course in analytic number theory, I would be remiss
if I did not (try to) explain more carefully the role of the zeros of the ζ function in controlling
the distribution of primes. We will not give full proofs, but hopefully the content of this section
will be enough to convince you that information on the distribution of the zeros of ζ translates
fairly directly into information on the distribution of the prime numbers. To make this concrete,
we state and sketch a proof of an exact formula for a close relative of the function ϑ:

Theorem 1.2.8 (Riemann–von Mangoldt exact formula). For every non-integer x we have∑
n≤x

Λ(n) = x− lim
T→∞

∑
ρ:| Imm(ρ)|≤T

xρ

ρ
− log(2π)− 1

2
log(1− x−2),

where the sum ranges over the zeroes of ζ in the critical strip ℜs ∈ [0, 1].

Remark 1.2.9. Let Θ(x) :=
∑

n≤x Λ(n). The difference Θ(x)− ϑ(x) is given by

∑
p≤x

∑
n≥2 such
that pn≤x

log(p) =

log2(x)∑
n=2

∑
p≤x1/n

log p =

log2(x)∑
n=2

ϑ(x1/n) ≪ x1/2 log(x),

where we have used Proposition 1.2.2. Thus, precise estimates on Θ(x) lead to precise estimates
on the function ϑ(x), which – as we have seen – is intimately tied to the actual distribution of
prime numbers.

The following sketch is very rough (we ignore a number of problems related to the conver-
gence and well-posedness of integrals and sums), but I hope it gives an idea of the inextricably
close connection between the distribution of prime numbers (in the form of Λ(n)) and ζ(s).

Sketch of proof of Theorem 1.2.8. Setting aside the analytic difficulties, the key point lies in
an application of Perron’s formula (see Exercise 1.2.10 below). In particular, we start from the
equality ∑

n≥1

Λ(n)

ns
= −ζ

′(s)

ζ(s)

that we obtained in Equation (1.2). Setting g(s) = − ζ′(s)
ζ(s)

in Perron’s formula, we get

Θ(x) =
∑
n≤x

Λ(n) = −
∫ c+i∞

c−i∞

ζ ′(z)

ζ(z)

xz

z
dz.

Now, using the residue theorem, shift the integration contour from c+ iR (where c, in order to
use Perron’s formula, is taken to be > 1) to −R + iR (and then take the limit R → ∞). In so
doing, by the residue theorem, we pick up a correction term every time we cross a pole ρ of ζ′

ζ
;

these corrections are of the form −2πiResz=ρ

(
ζ′(z)
ζ(z)

xz

z

)
, contribution which then gets divided

by the factor 2πi in Perron’s formula.
The poles of ζ ′/ζ are precisely the poles of ζ (of which there is one, at z = 1) and its zeroes

(of which there are many...). The term corresponding to the pole gives a residue of 1 for −ζ ′/ζ,
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which – multiplied by xz/z at z = 1 – gives a contribution of x. Each zero ρ, on the other hand,
gives a residue of −1 for ζ ′/ζ, which – when multiplied by xz

z
|z=ρ =

xρ

ρ
– gives the contribution

xρ/ρ in the Riemann-von Mangoldt exact formula.
If you want to understand the (bounded) terms log(2π) and 1

2
log(1− x−2) you should read

a complete proof of the theorem, for example at Terence Tao’s blog [Tao21]. I will simply point
out that these additional contributions come from working with the completed ζ function of
Definition 1.1.7 instead of ζ itself.

Exercise 1.2.10 (Perron’s formula). Let

g(s) =
∞∑
n=1

an
ns

be a Dirichlet series. Assume that it converges uniformly for ℜ(s) > σ, and let x > 0 be a real
number which is not an integer. Also fix c > max{0, σ}. We have

∑
n≤x

an =
1

2πi

∫ c+i∞

c−i∞
g(z)

xz

z
dz.

Remark 1.2.11 (Prime Number Theorem under the Riemann Hypothesis). This remark is
even less precise than the proof sketch given above, but my conscience doesn’t let me not
mention the Riemann hypothesis. As just about everyone knows, this is the statement that all
the zeroes of ζ(s) in the ‘critical strip’ {0 < ℜ(s) < 1} have real part equal to 1

2
. In particular,

for every zero ρ of ζ in this strip we have |xρ| = x1/2. Assuming that the Riemann hypothesis
holds, and ignoring again all sorts of analytic difficulties, we then see from Theorem 1.2.8 that

∑
n≤x

Λ(n) = x+O

(∑
ρ

x1/2

|ρ|

)
.

Since one can show that there aren’t too many zeroes of ζ in the critical strip, this leads to∑
n≤x

Λ(n) = x+O(x1/2+ε).

Recalling Remark 1.2.9 we then get ϑ(x) = x+O(x1/2+ε), which in turn leads to a strong form
of Theorem 1.2.1, namely, π(x) = x

log x
+Oε

(
x1/2+ε

)
for every ε > 0.

1.3 Review of algebraic number theory

Our next main objective is to prove Dirichlet’s theorem on primes in arithmetic progressions.
Before doing this, however, we want to give a unified interpretation of all the L-functions we
have seen this far in terms of Galois representations. This requires a fair amount of basic
algebraic number theory, which we now review. All results in this section are standard, so we
will not provide proofs (for which the reader can refer to [Mar18]). The reader familiar with
the basics of algebraic number theory can safely skip to Section 1.4.
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1.3.1 Structure of the ring of integers

We have already met the notion of ring of integers of a number field, see Definition 1.1.13. It
is useful to recall that, if K is a number field of degree n = [K : Q], the ring OK is isomorphic
as an additive group to the free group Zn. Thus, one can fix a Z-basis α1, . . . , αn of OK ;
any two Z-basis are related by a base-change matrix in GLn(Z). We denote by σ1, . . . , σn the
embeddings of K into C.

Definition 1.3.1 (Discriminant). The discriminant of K is

dK := det (σi(αj))
2 .

It is an integer independent of the choice of the basis α1, . . . , αn.

Example 1.3.2. For K = Q(
√
2) one has OK = Z[

√
2], hence we can take α1 = 1 and

α2 =
√
2. The discriminant is therefore

dK = det

(
1

√
2

1 −
√
2

)2

= (−2
√
2)2 = 8.

1.3.2 Unique factorisation of ideals

The ring OK enjoys the following properties:

Theorem 1.3.3.

1. If I is any non-zero ideal of OK, the quotient OK/I is finite. The cardinality of OK/I is
called the norm of I, see Definition 1.1.14. The ideal norm is multiplicative: if I = I1I2,
then N(I) = N(I1)N(I2).

2. Non-zero prime ideals of OK are maximal. Every primary ideal of OK is the power of a
prime ideal. The norm of a prime ideal is of the form pf , where p ∈ Z is prime and f is
a positive integer.

3. Every non-zero ideal I of OK factors uniquely (up to reordering the factors) as a product
I = pe11 · · · perr of prime ideals p1, . . . , pr.

4. In particular, if I =
∏

i p
ei
i and N(pi) = pfii for every i, then

N (I) = N

(∏
i

peii

)
=
∏
i

peifii .

1.3.3 Splitting of primes

Let p be a non-zero prime ideal of OK . The contraction p ∩ Z is a non-zero prime ideal of
Z, so it is of the form (p). We say that p lies over p, or equivalently, that p lies under p (the
terminology is justified, at least a posteriori, by the scheme-theoretic interpretation: there is a
natural map SpecOK → SpecZ, which we can think of as a ramified cover, and the point (p)
is the image of the point p for this topological map, which is usually drawn with SpecOK lying
above SpecZ).
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Conversely, starting from a non-zero prime (p) of Z, one can factor the ideal (p)OK using
Theorem 1.3.3 to obtain an expression of the form

(p)OK = pe11 · · · perr .

We say that p1, . . . , pr are the primes of OK lying over (p), that ei is the ramification
index of pi over p, and that the exponent fi defined by N(pi) = pfi is the inertia degree of
pi over p. One can easily show that fi is also the degree of the field extension OK

pi

/
Fp. The field

OK

pi
is called the residue field of (or at) pi. Borrowing the standard notation from scheme

theory, we will denote it by κ(pi).
There is also a fundamental formula, which is ultimately a consequence of the flatness6 of

OK over Z, relating the invariants ei, fi with the degree [K : Q].

Theorem 1.3.4. Let p be a prime of Z and write p =
∏r

i=1 p
ei
i for the factorisation of p in

OK. Letting fi be the inertia degree of pi over p, we have

r∑
i=1

eifi = [K : Q].

Consider now the relative setting of an extension L/K, and let p be a prime of OK . As
above, one may factor pOL as

∏r
i=1P

ei
i , and we say that the Pi are the primes of OL (or, more

informally, of L) lying over p. We call ei the ramification index of Pi over p, and define fi as

fi = [κ(Pi) : κ(p)] , (1.9)

that is, the degree of the extension between the residue fields at Pi and at p. The analogue of
Theorem 1.3.4 in this setting is as follows.

Theorem 1.3.5. With the above notation we have

r∑
i=1

eifi = [L : K].

We say that a prime ideal p of OK ramifies in L if in the factorisation pOL =
∏

iP
ei
i at

least one exponent ei is strictly greater than 1. When this is the case, we say more precisely
that the prime Pi is ramified in the extension L/K.

Remark 1.3.6. It would be more precise to always speak of the extension OL/OK . However,
it is both traditional and quite practical to talk about the extension L/K (secretly meaning
the corresponding extension of rings of integers), just like it is common use to write primes of
L instead of primes of OL.

Finally, a fundamental fact is that only finitely many primes ramify in any given (finite)
extension L/K:

Theorem 1.3.7. Let L/K be an extension of number fields7. The set of primes p of OL that
are ramified in L/K is finite.

6since the local rings of Z are all PIDs, flatness is equivalent to torsion-freeness, which is obvious
7by definition, a number field is a finite extension of Q. As a consequence, any extension of number fields

is automatically finite.
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The following theorem is also often useful:

Theorem 1.3.8 (Minkowski). The only number field K such that no prime of Q ramifies in
K is K = Q itself.

1.3.4 Galois action on the primes

We now specialise to the case of L/K being Galois, with group G. In this case, there is an
obvious action of G on OL: indeed, it is clear from the definition that if α ∈ L is an algebraic
integer and σ is any element of G, then σ(α) is still an algebraic integer.

Let p be a prime of OK and let P be a prime of OL lying over p. For every σ ∈ G we have

σ(P) ∩ OK = σ (P ∩ OK) = σ(p) = p,

so σ(P) is another prime ideal of OL lying over p: the Galois action permutes the primes of L
over p. This action has many nice properties:

Theorem 1.3.9 (Galois action on the primes). Let p be a prime of OK and denote by X =
{P1, . . . ,Pr} the set of primes of OL lying over p.

1. G acts transitively on X.

2. Let Di = D(Pi | p) be the stabiliser of Pi for this action. The groups Di are all conjugate
to each other, and r = [G : Di] for every i. We call Di the decomposition group of Pi

over p.

3. Let Ii = {σ ∈ G : σ(x) ≡ x (mod Pi) ∀x ∈ OL}. The group Ii, called the inertia group
of Pi, is normal in Di, and there is a canonical isomorphism

Di

Ii
∼= Gal

(
κ(Pi)

/
κ(p)

)
.

We will denote Ii by I(Pi | p).

4. The group Ii is trivial whenever Pi is unramified over p.

Remark 1.3.10. Even though we will not prove this, note that part (2) is an obvious conse-
quence of (1) and standard facts about group actions.

It is not hard to see that the transitivity of the action (Theorem 1.3.9 (1)) implies that
all the ramification indices ei are equal to each other and all the inertia degrees fi are equal
to each other. Writing e, f for their common values, the formula of Theorem 1.3.5 takes the
simple form

[L : K] = r · e · f. (1.10)
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1.3.5 Frobenius elements

We now come to the real protagonists of this section, namely, Frobenius elements in Galois
groups. We keep the setup of the previous section, namely, we let L/K be a Galois extension
with group G. Let p be a prime of K that is unramified in L and let P be a prime of L lying
over it. Let f be the inertia degree of P over p (note that e = 1 since P is unramified).

The group Gal(κ(P)/κ(p)) is cyclic of order f , generated by the Frobenius automorphism
Frob : x 7→ xN(p). Using the assumption e = 1 and Theorem 1.3.9 (4), we see that the
inertia group I := I(P | p) is trivial. The isomorphism of Theorem 1.3.9 (3) then shows
that Gal(κ(P)/κ(p)) is canonically isomorphic to the decomposition group D := D(P | p). In
particular, Frob ∈ Gal(κ(P)/κ(p)) corresponds to a unique element FrobP ∈ D ⊆ G. The
following all-important definition will be crucial for us.

Definition 1.3.11 (Artin symbol). Let p be a prime of OK and let P be a prime of OL lying
over it. Suppose that P is unramified over p. We let(

L/K

P

)

denote the element FrobP ∈ G constructed above. The element
(

L/K
P

)
is called the Artin

symbol of P in the extension L/K, and is often also called the Frobenius (element) at
P. More generally, when p is ramified and P is a prime lying over p, we say that g ∈ G
is a Frobenius element at P if it lies in D and its image in D/I ∼= Gal(κ(P)/κ(p)) is the

Frobenius automorphism of the residue field. We will also denote by
(

L/K
P

)
any such Frobenius

element.

Remark 1.3.12. Unwinding the definitions, we see that
(

L/K
P

)
is the unique element σ ∈ G

that satisfies

σ(x) ≡ xN(p) (mod P) (1.11)

for all x ∈ OL.

Remark 1.3.13. When P is ramified over p, there are several choices for a Frobenius element
at P. However, by definition, they all lie in D and they all have the same image in D/I, and
therefore, given any two choices g, g′ of elements of G that are Frobenii at P there exists an
h ∈ I such that g = g′h.

Remark 1.3.14. Suppose P′ is a different prime of OL lying over p. By Theorem 1.3.9 (1),
there is an element σ ∈ G such that P′ = σP. It is then easy to check that(

L/K

P′

)
= σ

(
L/K

P

)
σ−1 :

indeed, this follows easily from the characterisation given in Equation (1.11).

Remark 1.3.14 allows us to define an ‘Artin symbol’ that only depends on p and not on P:
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Definition 1.3.15 (Conjugacy class of Frobenius). Let L/K be a Galois extension of number
fields with group G. Let p be a prime of OK unramified in L. We define(

L/K

p

)
as the conjugacy class in G of the Artin symbol

(
L/K
P

)
, where P is any prime of L lying over

p. We will often write Frobp for this conjugacy class, or for any element of it if the choice of
the element does not make any difference.

Remark 1.3.16. The following special case is particularly interesting: if L/K is an abelian
extension, that is, it is a Galois extension whose group is commutative, then conjugacy classes
consist of a single element. In this special case, the Artin symbol of Definition 1.3.15 can be
identified to a specific element of the Galois group.

Example 1.3.17 (Frobenius elements for the cyclotomic extensions). Consider the Galois
extension Q(ζn)/Q, with group G ∼= (Z/nZ)×. Recall that, under this isomorphism, the residue
class a ∈ (Z/nZ)× corresponds to the unique automorphism σa of Q(ζn) that sends ζn to ζan.

The primes that ramify in Q(ζn) are precisely those that divide n. Let p be any other prime,

and let p be a prime of Q(ζn) lying over p. By Equation (1.11), the Artin symbol
(

Q(ζn)/Q
p

)
is

the unique σ ∈ G such that

σ(x) ≡ xp (mod p)

for all x ∈ OQ(ζn). It is well-known that OQ(ζn) = Z[ζn], so we require

σ
(∑

ciζ
i
n

)
≡
(∑

ciζ
i
n

)p
≡
∑

cpi ζ
pi
n ≡

∑
ciζ

pi
n (mod p),

where we have used the fact that in the residue field κ(p) (of characteristic p) we have (x+y)p =
xp + yp (freshman’s dream) and cpi = ci since ci ∈ Z. Now, the σ we are looking for must be of
the form σa for some a ∈ (Z/nZ)×, and it is clear that taking a = p mod n works. Since there
exists at most one element in the Galois group that satisfies (1.11) (this follows from Theorem
1.3.9 (3)), we conclude that (

Q(ζn)/Q
p

)
= σp,

and that, moreover, the conjugacy class
(

Q(ζn)/Q
p

)
consists of the single element σp.

We conclude this section by mentioning a fundamental theorem (which we will prove in a
few lectures’ time!) that gives some motivation as to why Frobenius elements/Artin symbols
are so important:

Theorem 1.3.18 (Chebotarev, first approximate form). Let L/K be a Galois extension of
number fields with group G. For every element σ of G, there exist infinitely many primes P of

OL such that
(

L/K
P

)
= σ and N(P) is a prime number.

While this may not look like much, we point out right away that Theorem 1.3.18 contains
Dirichlet’s theorem on primes in arithmetic progressions as a(n extremely) special case.
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Theorem 1.3.19 (Dirichlet’s theorem on primes in arithmetic progresions). Let a,m be integers
with (a,m) = 1. There exist infinitely many primes p that satisfy p ≡ a (mod m).

Proof of Theorem 1.3.19 assuming Theorem 1.3.18. Apply Theorem 1.3.18 to the Galois ex-
tension Q(ζm)/Q and to the element σa of the Galois group (Z/mZ)×. It yields infinitely many

primes p of Q(ζm) such that
(

Q(ζm)/Q
p

)
= σa and N(p) is a prime number p. We have shown

in Example 1.3.17 that
(

Q(ζm)/Q
p

)
= σN(p) = σp, so we obtain σp = σa, that is, p ≡ a (mod m).

Since Chebotarev’s theorem guarantees the existence of infinitely many such p, we are done.

1.3.6 Dirichlet’s unit theorem and the regulator

Before returning to our main topic of L-functions we review two more facts from algebraic
number theory: the structure of the group of units of a number ring and the finiteness of the
class group.

Definition 1.3.20. The signature of a number field K of degree n is the pair (r1, r2), where
r1 is the number of distinct embeddings of K into R, and r2 is the number of pairs of complex
conjugate embeddings of K into C whose image is not contained in R. One has r1 + 2r2 = n.

Theorem 1.3.21 (Dirichlet’s unit theorem). Let K be a number field of signature (r1, r2). The
group O×

K is isomorphic to T ×Zr1+r2−1, where T – the torsion subgroup – is precisely given by
the set of roots of unity in K×.

The ‘standard’ proof of Theorem 1.3.21 uses in a fundamental way the so-called logarithmic
embedding. We now recall this map.

Let σ1, . . . , σr1 , τ1, τ1, . . . , τr2 , τr2 be the set of embeddings K ↪→ C, where σ1, . . . , σr1 are the
embeddings with image in R and τ1, τ1, . . . , τr2 , τr2 are the r2 pairs of complex embeddings.

It is also useful to set

ρ1 = σ1, . . . , ρr1 = σr1 , ρr1+1 = τ1, . . . , ρr1+r2 = τr2

and
N1 = . . . = Nr1 = 1, Nr1+1 = . . . = Nr1+r2 = 2.

This will allow for more uniform formulas below.

Definition 1.3.22 (Logarithmic embedding). The map

L : OK \ {0} → Rr1 × Rr2 = Rr1+r2

x 7→ (log(|σi(x)|))i=1,...,r1
, (log |τj(x)|2)j=1,...,r2

is called the logarithmic embedding. It can equivalently be defined as

L : OK \ {0} → Rr1+r2

x 7→ (Ni log(|ρi(x)|))i=1,...,r1+r2
.

Now recall that every element α in O×
K satisfies

±1 = NK/Q(α) =

r1∏
i=1

σi(α) ·
r2∏
j=1

τj(α)τj(α),
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which implies

0 = log | ± 1| =
r1∑
i=1

log |σi(α)|+
r2∑
j=1

log(|τj(α)|2).

This shows that L(O×
K) is contained in the hyperplane Π of Rr1+r2 given by the condition that

the sum of the coordinates vanishes. A more precise version of Dirichlet’s unit theorem shows
that L(O×

K) is a lattice in Π, that is, it is a discrete subgroup such that Π/L(O×
K) is a compact

topological space. (Equivalently, L(O×
K) is discrete in Π and spans it).

Definition 1.3.23 (Regulator of a number field). The regulator of K is by definition

RegK =
1√

r1 + r2
vol
(
Π/L(O×

K)
)
.

Equivalently, and more practically, it can be obtained as follows. Let u1, . . . , ur1+r2−1 ∈ O×
K

generate a subgroup U such that O×
K/U is a finite group (in other words, u1, . . . , ur1+r2−1 is a

lift of a basis of the free group O×
K/ torsion). Consider the matrix

M := (Ni log |ρi(uj)|) i=1,...,r1+r2
j=1,...,r1+r2−1

.

The matrix M has size (r1 + r2)× (r1 + r2 − 1), and every line sums to zero. This implies that
any minor of size (r1 + r2 − 1) × (r1 + r2 − 1) gives the same determinant, up to sign. This
common value is the regulator of K.

Example 1.3.24. We compute the regulator of K = Q(
√
2). Notice that K has 2 real embed-

dings, so r1 = 2, r2 = 0, and Dirichlet’s unit theorem gives O×
K
∼= ⟨−1⟩ × Z.

One has OK = Z[
√
2]. Units of OK are numbers of the form x + y

√
2 ∈ OK with x, y ∈ Z

and x2 − 2y2 = ±1. The theory of Pell equations shows that all solutions to this equation are
given by x+ y

√
2 = ±(1 +

√
2)n for n ∈ Z. Hence, a generator of the free part of the group of

units can be taken to be 1 +
√
2. Now consider the matrix M from Definition 1.3.23. The two

embeddings of K into C send
√
2 to ±

√
2, and we have N1 = N2 = 1, so the matrix M is given

by(
log |1 +

√
2| log |1−

√
2|
)
=
(
log(1 +

√
2) log

∣∣∣ −1
1+

√
2

∣∣∣) =
(
log(1 +

√
2) − log(1 +

√
2)
)
.

As already observed, every line of M sums to zero. The regulator is simply the absolute value
of any of the two coefficients of M :

RegQ(
√
2) = log(1 +

√
2).

Finally, we discuss more generally the structure of the so-called group of S-units.

Theorem 1.3.25. Let K be a number field and let S be a finite set of primes of OK. The
group

O×
K,S = {x ∈ K× : p does not appear in the factorisation of the principal ideal (x) ∀p ̸∈ S}

is a finitely generated abelian group of rank |S|+ (r1 + r2 − 1). Its torsion part is given by the
set of roots of unity in K.
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Remark 1.3.26. This can be stated more elegantly in the following form, by using the notion
of place (see Definition 2.3.1). Let S be a finite set of places of K, containing all the infinite
ones. Then the ring of S-integers is

OK,S = {x ∈ K : ∥x∥v ≤ 1 ∀v ̸∈ S},

and the group of S-units O×
K,S is simply the multiplicative subgroup of this ring. The previous

theorem can then be restated simply as: O×
K,S is a finitely generated abelian group of rank

|S| − 1.

1.3.7 The class group

To conclude this review of basic algebraic number theory, we recall the definition of the class
group of a number field. This group can be considered as a measure of the failure of unique
factorisation in OK , but we will not use this interpretation much. In order to define the class
group, we begin by introducing the notion of fractional ideal:

Definition 1.3.27 (Fractional ideal). A fractional ideal I of K is a finitely generated OK-
submodule of K. Equivalently, it is a subset of K of the form I = 1

d
I =

{
i
d
: i ∈ I

}
, where I

is a (usual8) ideal of OK and d ∈ K×.

Fractional ideals can be multiplied, as in the next definition:

Definition 1.3.28 (Product of fractional ideals). Let I1, I2 be two fractional ideals. The
product I1I2 is the set {

∑
xiyi

∣∣ xi ∈ I1, yi ∈ I2}. Equivalently, if I1 = 1
d1
I1 and I2 = 1

d2
I2

with I1, I2 integral ideals, then

I1I2 =
1

d1d2
I1I2.

The product makes the set of non-zero fractional ideals into a group.

Theorem 1.3.29 (Group of fractional ideals). The set F(K) of non-zero fractional ideals of
K forms an abelian group with respect to the multiplication of Definition 1.3.28. In particular,
let I be a non-zero fractional ideal. There exists a fractional ideal J such that IJ = OK.

We are almost ready to define the class group, but we need one more definition:

Definition 1.3.30 (Principal fractional ideal). A fractional ideal I = 1
d
I is principal if the

integral ideal I is principal in the usual sense. Equivalently, I is principal if and only if it is of
the form OK · α for some α ∈ K.

It is clear that the (non-zero) principal fractional ideals Princ(K) form a subgroup of F(K),
so we can consider the quotient:

Definition 1.3.31 (Class group). The quotient
F(K)

Princ(K)
is the class group of K, usually

denoted by Cl(K). The order of Cl(K) is called the class number and is denoted by hK .

The next theorem gives two very important properties of Cl(K).

Theorem 1.3.32 (Finiteness of the class group). The group Cl(K) is finite for every number
field K. It is trivial if and only if OK is a unique factorisation domain.

8in this context, an ideal of OK is sometimes called an integral ideal
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1.3.8 Completed ζ functions: the local factors at infinity

The following is a generalisation of Theorem 1.1.8:

Theorem 1.3.33 (Functional equation for the Dedekind ζ function). Let K be a number field
of signature (r1, r2) and discriminant dK. The completed ζ function

ΛK(s) =

(
|dK |
4r2πn

)s/2

Γ
(s
2

)r1
Γ(s)r2ζK(s)

satisfies the functional equation ΛK(1 − s) = ΛK(s). The function ζK(s) has meromorphic
continuation to C, with a simple pole at s = 1.

As is the case for the ξ function (see Theorem 1.1.8), one should consider that(
|dK |
4r2πn

)s/2

Γ
(s
2

)r1
Γ(s)r2

plays the role of a ‘local factor at infinity’. Notice that K has r1 places at which the completion
is R, and r2 places at which the completion is C (see Definition 2.3.1 for the notion of place
of a number field). Thus, it is very tempting to think that this ‘local factor at infinity’ factors
even further, as an actual product over the infinite places of K. Tate’s approach will make it
clear that this is indeed the case.

1.4 The L-function of a (complex) Galois

representation

We are finally ready to define a large class of L-functions, that contains all those we have
already met. Recall that a (linear) representation of a group G is simply a homomorphism
from G to a group of the form GL(V ), where V is a vector space (in our applications, we will
always take V to be of finite dimension).

Definition 1.4.1 (Artin L-function). Let L/K be a Galois extension of number fields with
group G. Let ρ : G→ GL(V ) be a finite-dimensional complex representation of ρ (that is, V is
a finite-dimensional complex vector space). For every (non-zero) prime p of OK , fix a prime P
of OL and let IP < G be the corresponding inertia subgroup. We define the Artin L-function
of ρ to be

L(s, ρ) :=
∏

p nonzero prime of OK

det

(
Id−ρ

((
L/K

P

))
N(p)−s

∣∣ V IP

)−1

, (1.12)

where V IP is the subspace of V on which IP acts trivially via ρ. Notice that, when P is ramified

over p, the Artin symbol
(

L/K
P

)
is not a well-defined element of G (see Remark 1.3.13). In

this case, we simply take an arbitrary choice of Frobenius element at P to represent the Artin
symbol: Remark 1.4.2 below shows that the definition is independent of this choice.

The factor det
(
Id−ρ

((
L/K
P

))
N(p)−s

∣∣ V IP

)
appearing in the above product is often

called the local factor at p of the Artin L-function.
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Remark 1.4.2. With the notation of the previous definition, we show that

1. V IP is stable under the action of ρ
((

L/K
P

))
;

2. ρ
((

L/K
P

))
is a well-defined endomorphism of V IP even when IP is non-trivial (recall that

in this case we have made an arbitrary choice in the definition of
(

L/K
P

)
, see Definition

1.3.11).

Write for simplicity g ∈ G for a fixed choice of Frobenius element at P. Any other choice
of Frobenius element at P is of the form g · h for some h ∈ IP, see also Remark 1.3.13.
Let furthermore x ∈ V be a vector fixed by ρ(IP). Since IP is a normal subgroup of the
decomposition group of P, for every h′ ∈ IP we have h′g = gh′′ for some h′′ ∈ IP, and therefore

ρ(h′) · (ρ(gh) · v) = ρ(h′gh) · v = ρ(gh′′h) · v = ρ(g) · (ρ(h′′h) · v) = ρ(g) · v,

where we used that v is left fixed by ρ(IP). The above equality shows that ρ(gh)v is again
in V IP , for any v ∈ IP and any choice gh of Frobenius element at P. In particular, it makes

sense to consider Id−ρ
((

L/K
P

))
N(p)−s as an endomorphism of V IP . The same calculation

also shows that Id−ρ
((

L/K
P

))
N(p)−s is independent of the choice of the Frobenius element(

L/K
P

)
at P.

In the rest of the section, we will discuss the following:

1. the definition does not depend on the choice of the prime P of OL lying over p, and the
dimension of the subspace V IP itself does not depend on the choice of P;

2. the Euler product defining L(ρ, s) converges for all s with ℜs > 1;

3. every L-function we have met so far is in fact an Artin L-function;

4. Artin’s conjecture on analytic continuation.

1.4.1 Independence of the choice of P

Proposition 1.4.3. Let L/K be a Galois extension of number fields with group G and let p be
a prime of OK. Let P,P

′ be two primes of OL lying over p, and let IP, IP′ be the corresponding
inertia groups. Finally, let ρ : G → GL(V ) be a finite-dimensional complex representation of
G. The following hold:

1. the subspaces V IP and V IP′ have the same dimension;

2. the complex numbers

det

(
Id−ρ

((
L/K

P

))
N(p)−s

∣∣ V IP

)
and det

(
Id−ρ

((
L/K

P′

))
N(p)−s

∣∣ V IP′

)
are equal.
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Proof. By Theorem 1.3.9 (1) we know that there exists σ ∈ G such that σ(P) = P′. One
checks immediately that IP′ = σIPσ

−1.

1. By definition, v ∈ V IP′ means

ρ(i) · v = v ∀i ∈ IP′ = σIPσ
−1,

which is equivalent to
ρ(σiσ−1) · v = v ∀i ∈ IP,

and therefore also to
ρ(i)ρ(σ)−1 · v = ρ(σ)−1 · v ∀i ∈ IP.

Thus, v is in V IP′ if and only if ρ(σ)−1 · v is in V IP . It follows that V IP′ = ρ(σ)V IP , and
in particular, since ρ(σ) is an invertible linear transformation, these two spaces have the
same dimension.

2. It is useful to interpret the factor det
(
Id−ρ

((
L/K
P

))
N(p)−s

∣∣ V IP

)
as the evaluation

at t = N(p)−s of the (inverse) characteristic polynomial

fP(t) := det

(
Id−tρ

((
L/K

P

)) ∣∣ V IP

)
of
(

L/K
P

)
acting on V IP , and similarly for the factor corresponding to P′. The claim

now follows from the fact that ρ(σ) acts as a change of basis between ρ
((

L/K
P

))
and

ρ
((

L/K
P′

))
.

Remark 1.4.4 (Local factors at the unramified places). Suppose that p is unramified in L.
In this case, V IP is simply V , and the interpretation of the local factor at p as a characteristic
polynomial shows that it is independent of the choice of the Frobenius element in the conjugacy

class
(

L/K
p

)
. We may therefore write the local factor without any reference to the choice of P

as
det(Id−tρ(Frobp));

see Definition 1.3.15 for the notation Frobp (any element in the conjugacy class
(

L/K
p

)
).

Finally, we introduce what is probably a more common notation for the local factors of
Artin L-functions: for a prime p of OK , choose a prime P of OL lying over it and define

Lp(t) := det

(
Id−tρ

((
L/K

P

)) ∣∣ V IP

)
.

We then have

L(s, ρ) =
∏
p

1

Lp(N(p)−s)
,

which, in my experience, is the way Artin L-functions are most commonly written.



1.4. THE L-FUNCTION OF A (COMPLEX) GALOIS REPRESENTATION 33

1.4.2 Convergence of the Euler product

Proposition 1.4.5. The Euler product in Equation (1.12) converges absolutely for all s with
ℜs > 1.

Proof. Notice that, since G := Gal(L/K) is a finite group, for every g ∈ G (hence in particular

for every Artin symbol
(

L/K
P

)
∈ G), the element ρ(g) has finite order, hence all its eigenvalues

are roots of unity. Hence, for each prime P of OL lying over the prime p of OK , we have

det

(
Id−tρ

((
L/K

P

)) ∣∣ V IP

)
=

dimV
IP∏

j=1

(1− tζj),

where the ζj, for j = 1, . . . , dimV IP , are the eigenvalues of ρ
((

L/K
P

))
acting on V IP . Thus,

in particular,

∏
p

∣∣∣det( Id−N(p)−s ρ

((
L/K

P

)) ∣∣ V IP
)∣∣∣∣−1

=
∏
p

dimV
IP∏

j=1

∣∣1−N(p)−sζp,j
∣∣−1

≤
∏
p

dimV
IP∏

j=1

(1− |p−s|)−1 ≤
dimV∏
j=1

∏
p

(1− p−ℜ(s))−1

=
dimV∏
j=1

∏
p

∏
p|p

(1− p−ℜ(s))−1 ≤ ζ(ℜ(s))dimV ·[K:Q],

which converges for all s with ℜs > 1 as claimed. (In the last step we used that there are dimV
factors in the product over j, and at most [K : Q] in the product over p, since each rational
prime factors into at most [K : Q] primes in OK .)

1.4.3 The Riemann and Dedekind ζ functions, and Dirichlet’s
L-functions, are Artin L-functions

Proposition 1.4.6.

1. The Riemann ζ function is an Artin L-function.

2. Let K be a number field. The Dedekind ζ function of K is an Artin L-function.

3. Let χ be a primitive Dirichlet character modulo m. The Dirichlet L-function L(s, χ) is
an Artin L-function.

4. Let χ be an arbitrary Dirichlet character modulo m. There exists an Artin L-function
LArtin(s, ρ) such that LDirichlet(s, χ) = f(s)LArtin(s, ρ), where the factor f(s) is a holomor-
phic function of s which is nonvanishing on {ℜs > 0}.

Proof. 1. Clearly, Riemann’s ζ function is the Dedekind ζ function of Q, so it suffices to
prove 2.
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2. In Definition 1.4.1 we take L = K and ρ to be the unique 1-dimensional trivial represen-
tation of G = Gal(L/K). With reference to Equation (1.12), the inertia groups IP are all

trivial, so V IP = V for all p, while ρ
((

L/K
P

))
= 1. Thus, Equation (1.12) reads simply

L(ρ, s) =
∏
p

det(1−N(p)−s)−1 =
∏
p

(1−N(p)−s)−1 = ζK(s),

where the last equality follows from Exercise 1.1.17.

3. In Definition 1.4.1 we take K = Q, L = Q(ζm) and define a Galois representation of
G = Gal(L/K) ∼= (Z/mZ)× by setting

ρ(σa) = χ(a) Id ∈ GL(V ),

where V = C and σa ∈ G is the automorphism ζm 7→ ζam, corresponding to a ∈ (Z/mZ)×.
On the one hand, since χ is a completely multiplicative function, by Theorem 1.1.11 we
have

L(s, χ) =
∏
p

(1− χ(p)p−s)−1.

On the other hand, the definition of L(s, ρ) gives

L(s, ρ) =
∏
p

det

(
1− ρ

((
Q(ζm)/Q

P

))
N(p)−s

∣∣ V IP
)−1

.

We now prove equality by matching up the local factors. Let p be a rational prime and
let P be a prime of Q(ζm) lying over p.

a) Suppose that p ∤ m. Then p is unramified inQ(ζm), so IP is trivial, while
(

Q(ζm)/Q
P

)
∈

G is given by σp, see Example 1.3.17. It follows that the local factor of L(s, ρ) at

p is det
(
1− ρ(σp)p

−s
∣∣ C)−1

= (1− χ(p)p−s)
−1
, which precisely matches the local

factor of L(s, χ) at p.

b) Suppose now that p | m. The local factor at p of L(s, χ) is trivially 1. To conclude
the proof, it suffices to show that V IP is trivial, that is, that ρ(IP) is not the trivial
group. If this were the case, χ would be trivial on the (nontrivial) subgroup Jp
of (Z/mZ)× corresponding to IP under the canonical isomorphism G ∼= (Z/mZ)×.
Writing m = psm′ with (p,m′) = 1, we claim that Jp is precisely the kernel of the
canonical projection (Z/mZ)× → (Z/m′Z)×. Assuming the claim, we obtain that if
ρ(IP) is trivial, then χ factors via (Z/mZ)× /Jp ∼= (Z/m′Z)×, contradicting the fact
that χ is primitive. The claim is an exercise in algebraic number theory, and is left
to the reader (see Exercise 1.4.8 below).

4. Construct LArtin(s, ρ) as in part 3. For all primes p ∤ m, the local factors at p of
LDirichlet(s, χ) and LArtin(s, ρ) match, so their ratio

f(s) =
LDirichlet(s, χ)

LArtin(s, ρ)
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is a finite product of factors of the form 1−χ(p)p−s for (certain) primes dividingm. These
functions are clearly holomorphic on all of C, and their zeroes arise for 1 − χ(p)p−s =
0. Taking absolute values we get |p−s| = 1, that is, ℜs = 0. It follows that f(s) is
nonvanishing in {ℜs > 0}.

Remark 1.4.7. Let χ be a Dirichlet character modulo m, induced from the primitive Dirich-
let character χ̃ modulo the conductor d of χ. The proof of Proposition 1.4.6 shows that
LDirichlet(s, χ̃) is the Artin L-function attached to the representation

Gal(Q(ζd)/Q) ∼= (Z/dZ)× χ̃−→ C×.

By Theorem 1.4.12 (2) below, this implies that LDirichlet(s, χ̃) is also the Artin L-function of
the representation

Gal(Q(ζm)/Q) ↠ Gal(Q(ζd)/Q) ∼= (Z/dZ)× χ̃−→ C×.

Exercise 1.4.8 (♠). Let p be a prime number, s be a positive integer, and m′ be a positive
integer prime to p. Set m = psm′. Let G = Gal(Q(ζm)/Q), let p be a prime of Q(ζm) lying
over p, and let Ip be the corresponding inertia subgroup.

1. Show that Ip depends only on p and not on the choice of the prime p lying over it. We
will therefore denote the group Ip simply by Ip.

2. Prove (or recall) that Q(ζm′)/Q is unramified at p.

3. Deduce that Ip is contained in the kernel of the canonical map

Gal (Q(ζm)/Q) → Gal (Q(ζm′)/Q) .

4. Conclude that Ip is in fact equal to the kernel of Gal (Q(ζm)/Q) → Gal (Q(ζm′)/Q) (one
way to do this is to argue by cardinality, showing that #Ip = φ(ps)).

This is also a good time to informally introduce our last family of (abelian) L-functions,
namely, Hecke L-functions:

Definition 1.4.9 (Hecke L-functions, wrong definition). Let K be a number field, let L/K
be a finite Galois extension with group G, and let χ : G → S1 be a character (equivalently, a
representation of dimension 1) of G. The Hecke L-function attached to this data is the Artin
L-function L(s, χ).

Remark 1.4.10. Hecke did not introduce his L-functions in this way at all. His definition was

L(s, χ) =
∑
I◁OK

χ(I)

N(I)s
,

where χ is a map from the ideals of OK to C satisfying a complicated set of properties that gen-
eralise those of Dirichlet characters. The fact that (many) Hecke L-functions can be expressed
as Artin L-functions as in Definition 1.4.9 is related to the fact that the abelian extensions of a
number field are well-understood in terms of class field theory. We will come back to this point
towards the end of this document, in Section 3.3.
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At this point, the reader will not be surprised by the following result:

Theorem 1.4.11 (Analytic continuation for the Hecke L-functions). Let L/K be a finite abelian
extension with group G and let χ : G → S1 be a nontrivial character. The Hecke L-function
L(s, χ) admits analytic continuation to the full complex plane.

Artin L-functions also satisfy a (fairly complicated) functional equation relating s to 1− s
and ρ to its dual representation, but we will not need its precise form, so we omit the exact
statement. The interested reader can refer to [Neu99, Theorem 12.6 in Chapter VII].

1.4.4 The formalism of Artin L-functions

The following result collects some formal properties of Artin L-functions that are not too hard
to prove.

Theorem 1.4.12 (Functoriality of Artin L-functions). Let L/F/K be a tower of extensions
of number fields, with L/K Galois. Let G = Gal(L/K), N = Gal(L/F ), and (when F/K is
Galois) H = Gal(F/K). Let ρ1, ρ2 be representations of G, let σ be a representation of H, and
let τ be a representation of N . The following hold:

1. L(s, ρ1 ⊕ ρ2) = L(s, ρ1)L(s, ρ2).

2. If F/K is Galois, then L(s, InfGH(σ)) = L(s, σ), where the inflation of σ from H to G,
denoted by InfGH(σ), is the composition of the natural map G↠ H with the representation
σ : H → GL(V ).

3. L(s, IndG
N(τ)) = L(s, τ), where IndG

N(τ) is the representation of G induced by the repre-
sentation τ of N . Notice that if τ takes values in GLd(C), then IndG

N(τ) takes values in
GLd[G:N ](C).

Proof. 1. Recall the following elementary fact from linear algebra: if M1,M2 are matrices in
GLd1(C),GLd2(C) respectively, and if M1 ⊕M2 denotes their block-sum in GLd1+d2(C),
then the characteristic polynomial of M1 ⊕M2 is the product of the characteristic poly-
nomials of M1,M2. This allows one to identify the local factors of L(s, ρ1 ⊕ ρ2) with the
product of the corresponding local factors of L(s, ρ1), L(s, ρ2).

2. It suffices to prove that L(s, InfGH(σ)) and L(s, σ) have the same local factors at each
prime. Fix a place P of F lying over p and a place Q of L lying over P.

We denote by D, I (respectively D′, I ′) the decomposition and inertia group of P over p
(respectively, of Q over p). Let π : G → H be the canonical projection. It is a standard
(but surprisingly tricky) fact in algebraic number theory that I = π(I ′), see Exercise
1.4.13. We now compare (representatives of) the Artin symbols(

F/K

p

)
and

(
L/K

p

)
.

Fix an element φ ∈ D′ ⊆ G that represents a Frobenius at Q. This means that the
congruence

φ(x) ≡ xNp mod Q ⇐⇒ φ(x)− xNp ∈ Q
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holds for all x ∈ OL, hence, in particular, for every x ∈ OF we have

φ(x)− xNp ∈ Q ∩ OF

since F/K is Galois (and therefore φ(F ) = F, φ(OF ) = OF ). The previous equation can
be rewritten as

φ|F (x)− xNp ∈ P ∀x ∈ OF ⇐⇒ φ|F (x) ≡ xNp mod P ∀x ∈ OF ,

which shows that φ|F = π(φ) is a representative for the Frobenius at P.

We are finally ready to prove the statement. Since π(φ) gives a Frobenius at P, the local
factor at p of the L-function L(s, σ) is given by

det
(
1−N(p)−sσ (π(φ))

∣∣ V σ(I)
σ

)−1
,

where Vσ is the underlying vector space of the representation σ.

On the other hand, the local factor of L(s, InfGH(σ)) at the same place p is given by

det
(
1−N(p)−s InfGH(σ) (φ)

∣∣ V InfGH(σ)(I′)
σ

)−1

.

Since InfGH(σ) (φ) = σ(π(φ)) and InfGH(σ)(I
′) = σ(π(I ′)) = σ(I), the claim follows.

3. Again we try to match local factors, but more complications arise in this case. Let p be
a place of K, let P1, . . . ,Pr be the primes of F lying over p, and let for each i = 1, . . . , r
let Qi be a prime of L lying over Pi (see Figure 1.2). Further denote by

Di = D(Qi | p), Ii = I(Qi | p)

the decomposition and inertia groups of the Qi over p. From the definitions one easily
obtains that

D′
i := D(Qi | Pi) = N ∩Di, I ′i := I(Qi | Pi) = N ∩ Ii.

The inertia degree fi of Pi over p is

f(Pi | p) = #Gal(κ(Pi) | κ(p)) = #
Di/Ii
D′

i/I
′
i

= #
Di

D′
iIi
.

Note that by definition we have N(Pi) = N(p)fi . We now set some further notation for
Frobenius elements. For simplicity, we choose elements τi ∈ G such that τ−1

i (Q1) = Qi,
and choose φ1 ∈ D1 that represents the Frobenius of Q1 over p. We then have the
relations

Di = τ−1
i D1τi, Ii = τ−1

i I1τi,

and the element

φi := τ−1
i φ1τi

represents a Frobenius of Qi over p. Moreover, φfi
i represents a Frobenius of Qi over Pi.
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L Q1 · · · Qr

F P1 · · · Pr

K p

Figure 1.2: Fields and primes in the proof of Theorem 1.4.12 (3)

Let W be the underlying vector space of the representation τ , and let

V = IndG
N(W ) = {f : G→ W

∣∣ f(τg) = τf(g) ∀τ ∈ N}

the vector space underlying IndG
N(τ). For ease of notation, denote by ψ : G → GL(V )

the map giving the induced representation of G. In order to establish the theorem, it is
enough to prove that

det
(
1−N(p)−sψ(φ1)

∣∣ V I1
)
=

r∏
i=1

det
(
1−N(Pi)

−sτ(φfi
i )
∣∣ W I′i

)
.

In fact, since N(Pi) = N(p)fi , it suffices to prove the polynomial identity

det
(
1− tψ(φ1)

∣∣ V I1
)
=

r∏
i=1

det
(
1− tfiτ(φfi

i )
∣∣ W I′i

)
.

We now observe that, under the action of N , the induced representation V splits as the
direct sum of copies ofW , and we may regard τ as a subrepresentation of V . In particular,
in V it makes sense to conjugate using ψ(τi), and we obtain (omitting ψ for simplicity)

det
(
1− tfiτ(φfi

i )
∣∣ W I′i

)
= det

(
1− tfiτiτ(φ

fi
i )τ

−1
i

∣∣ τi (W I′i

))
= det

(
1− tfiτ(τiφ

fi
i τ

−1
i )

∣∣ τi (W I′i

))
= det

(
1− tfiτ(φfi

1 )
∣∣ (τiW )τiI

′
iτ

−1
i

)
= det

(
1− tfiτ(φfi

1 )
∣∣ (τiW )τi(N∩Ii)τ−1

i

)
= det

(
1− tfiτ(φfi

1 )
∣∣ (τiW )τiNτ−1

i ∩I1
)
.

Similarly,

fi = [Di : D
′
iIi] = [τ−1

i D1τi : (N ∩ τ−1
i D1τi)τ

−1
i I1τi] = [D1 : (τiNτ

−1
i ∩D1)I1].

For every i we now choose a system of representatives σi,j for the left
9 cosets of τiNτ

−1
i ∩D1

inD1. Since the τi are representatives for the cosets ofD1 inG, we obtain (Exercise 1.4.15)
that {σi,jτi} represent the left cosets of N in G. Hence,

V =
⊕
i,j

σi,jτiW,

9the left cosets of a subgroup B of a group A are those of the form aB.
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and each Vi =
⊕

j σi,jτiW is a D1-submodule of V , with V ∼= ⊕r
i=1Vi as D1-modules.

Thus, since φ1 is in D1, we obtain

det(1− tψ(φ1) | V I1) =
r∏

i=1

det(1− tψ(φ1) | V I1
i ),

and it suffices to show that

det(1− tψ(φ1) | V I1
i ) = det

(
1− tfiτ(φfi

1 )
∣∣ (τiW )τiNτ−1

i ∩I1
)
.

Notice that Vi is the induced representation of W from D1 ∩ τiNτ−1
i to D1 (indeed, Vi is

obtained by summing over representatives for the cosets of D1 ∩ τiNτ
−1
i in D1). Thus,

renaming

G := D1, I := I1, N := D1 ∩ τiNτ−1
i , f := fi, V := Vi,W := τiW,φ := φ1,

the desired equality can be rewritten as

det(1− tψ(φ) | V I) = det
(
1− tfτ(φf )

∣∣ WN∩I) ,
so that we are essentially reduced to the case r = 1 and D1 = G. The next and final
reduction is to the case I = {1}. We claim that

V I = Ind
G/I
N/I∩H(W

N∩I).

We show this from the definition. An element of V I is by definition a function f : G→ W
that satisfies

a) f(g) = f(gi) for every g ∈ G, i ∈ I (this is the condition i · f = f that ensures
f ∈ V I). Notice that, since I is normal in G, right-invariance and left-invariance are
equivalent, and therefore we also have f(ig) = f(g) for all g ∈ G, i ∈ I

b) h · f(g) = f(hg) for every g ∈ G, h ∈ N (this is the condition that ensures that f is
in IndG

N(W )).

Now, the first condition is equivalent to f factoring via G/I. Moreover, any such function
takes values in WN∩I , because

i · f(g) = f(ig) = f(g)

for all i ∈ N ∩ I. The claim follows. So, replacing G by G/I, I by {1}, and W by WN∩I ,
we are reduced10 to proving

det(1− tψ(φ) | IndG
1 (W )) = det

(
1− tfτ(φf )

∣∣ W) .
In this case G is cyclic, generated by φ, and V =

⊕f−1
i=0 φ

iW . If A is the matrix of τ(φ)
(with respect to any basis w1, . . . , wd of W ), then the matrix of ψ(φ) with respect to the

10this essentially amounts to replacing L by LI , which is normal over F since we are now assuming G = D.
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basis {φiwj} is

M :=


A

Idd

Idd

. . .

Idd

 ,

a block matrix with f blocks on each row/column. An easy exercise in linear algebra
(Exercise 1.4.14) now shows that

det(1− tM) = det(1− tf detAf ), (1.13)

which finishes the proof.

Exercise 1.4.13. Let L/F/K be extensions of number fields, with L/K and F/K both Galois.
Let Q be a place of L, and let P, p be the places of F and K lying under Q. Let G = Gal(L/K),
H = Gal(F/K), and π : G→ H be the projection map. Show that π (I(Q | p)) = I(P | p).

Hint. It is easy to show that π sends I(Q | p) into I(P | p). For the surjectivity, take a
pre-image in G, then try to modify it using elements in ker(G→ H).

Exercise 1.4.14. Prove the formula in Equation (1.13).

Exercise 1.4.15. With notation as in the proof of Theorem 1.4.12(3), prove that {σi,jτi} is a
set of representatives for the left cosets of N in G.

Hint. To show that they are the correct number, observe that

∑
i

∣∣∣∣ D1

τiNτ
−1
i ∩D1

∣∣∣∣ =∑
i

∣∣∣∣ τ−1
i D1τi

N ∩ τ−1
i D1τi

∣∣∣∣ =∑
i

∣∣∣∣ Di

N ∩Di

∣∣∣∣
=
∑
i

∣∣∣∣Di

D′
i

∣∣∣∣ =∑
i

e(Qi | p)f(Qi | p)
e(Qi | Pi)f(Qi | Pi)

=
∑
i

e(Pi | p)f(Pi | p) = [F : K] = [G : N ].

To show that they represent distinct cosets, assume

σi,jτiN = σi′,j′τi′N.

Prove that τ−1
i′ σ

−1
i′,j′σi,jτi sends Qi to Qi′ and Pi to Pi. Conclude that i = i′ and then that

j = j′.

Exercise 1.4.16. Let L/K be a Galois extension of number fields with group G and let ρ be a
finite-dimensional Galois representation of G. Set χ(g) = tr ρ(g). Prove the following formula
for the logarithm of L(s, ρ):

logL(s, ρ) =
∑
p

∑
m≥1

χ(pm)

m(Np)ms
,
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where χ(pm) is defined as follows: let P be a prime of L lying over p and let e = e(P | p). Fix
a representative σ ∈ G for the Artin symbol

(
L/K
p

)
. We set

χ(pm) :=
1

e

∑
τ∈I(P|p)

χ(σmτ).

Hint. It can be useful to write the determinant of a linear map as the product of its
eigenvalues. This leads to the identity

log det(1− tA) = log
∏
i

(1− λit) =
∑
i

log(1− λit)

= −
∑
i

∑
m≥1

(λit)
m

m
= −

∑
m≥1

tm

m

(∑
i

λmi

)

= −
∑
m≥1

tr(Am)
tm

m
.

Up to some fiddling at the ramified places, this gives the required formula.

1.4.5 Artin’s conjecture on analytic continuation

The following is one of the most important conjectures related to Artin’s L-functions:

Conjecture 1.4.17 (Artin). Let L/K be a Galois extension of number fields with group G. If
ρ is a non-trivial irreducible representation of G, then L(s, ρ) has analytic continuation to the
whole complex plane.

While Conjecture 1.4.17 is wide open, we sketch a proof of the fact that L(s, ρ) admits
meromorphic continuation to the full complex plane.

Theorem 1.4.18 (Meromorphic continuation for Artin L-functions). For any Galois exten-
sion L/K with group G and every complex representation ρ of G, the L-function L(s, ρ) has
meromorphic extension to the complex plane.

For the proof, we will assume the following result in representation theory:

Theorem 1.4.19 (Brauer’s induction theorem). Let G be a finite group and let ρ : G→ GLn(C)
be a finite-dimensional complex representation. There exists finitely many subgroups H1, . . . , Hr

of G, characters λi : Hi → S1 for i = 1, . . . , r, and integers n1, . . . , nr such that

tr(ρ(g)) =
r∑

i=1

ni tr
(
IndG

Hi
(λi)

)
(g).

Sketch of proof of Theorem 1.4.18. Let χ = tr(ρ) be the character of the representation ρ.
Write χ =

∑
ni tr Ind

G
Hi
(λi) as in Brauer’s theorem. Rearranging this equation, we get an

equality of the form

χ+
∑

ni tr Ind
G
Hi
(λi) =

∑
n′
j tr Ind

G
H′

j
(λ′j),
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where the integers ni, n
′
j are now all strictly positive. Since the character of a complex repre-

sentation of a finite group determines the representation itself, we obtain

ρ⊕
⊕(

IndG
Hi
(λi)

)⊕ni ∼=
⊕(

IndG
H′

j
(λ′j)

)⊕n′
j

.

In particular, we have

L
(
s, ρ⊕

⊕(
IndG

Hi
(λi)

)⊕ni
)
= L

(
s,
⊕(

IndG
H′

j
(λ′j)

)⊕n′
j

)
The general formalism of Artin L-functions (Theorem 1.4.12) implies first

L(s, ρ) ·
∏
i

L
(
s, IndG

Hi
(λi)

)ni
=
∏
j

L
(
s, IndG

H′
j
(λ′j)

)n′
j

and then

L(s, ρ) ·
∏
i

L (s, λi)
ni =

∏
j

L
(
s, λ′j

)n′
j .

Since the λi, λ
′
j are characters with values in S1, they factor via some abelian (Galois) group,

hence they are Hecke L-functions. Thus, each L (s, λi) and L
(
s, λ′j

)
admits meromorphic con-

tinuation by Theorem 1.4.11. Since the above formula expresses L(s, ρ) as a ratio of (products
of) such Hecke L-functions, L(s, ρ) also has meromorphic continuation to the complex plane.

Remark 1.4.20. This theorem is perhaps part of the motivation for Artin’s conviction that
abelian L-functions should be sufficient to understand arbitrary extensions of number fields.
In other words, class field theory (the description of abelian extensions of a number field)
should contain in itself all the necessary ingredients to describe arbitrary (Galois) extensions
of number fields. No one has (yet) been able to fully realise Artin’s dream (and extending class
field theory to arbitrary non-abelian extensions remains a central problem in number theory),
but since Artin had enormous insight in the theory of L-functions, I wouldn’t be too quick to
dismiss his intuition!

1.4.6 Factorisation of the Dedekind ζ-function

Theorem 1.4.21 (Factorisation of the Dedekind ζ function in terms of Artin L-functions).
Let L/K be a Galois extension of number fields with group G. The function ζL(s) factors as

ζL(s) = ζK(s)
∏
ρ ̸=1

L(s, ρ)dim ρ,

where the product runs over the non-trivial irreducible complex representations11 of G.

Proof. This is a special case of Theorem 1.4.12. Specifically, in the setting of that theorem,
take F = L (so that N = {1}) and σ to be the trivial representation of the trivial group.

11let me take another page from the physicists’ books and write irrep for irreducible complex representation.
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Then IndG
N(σ) is the regular representation of G, which – as it is well-known – decomposes as⊕

ρ irrep of G ρ
⊕ dim ρ. Hence, applying properties (3) and (1) in Theorem 1.4.12 we get

L(s, 1) = L(s, IndG
N(1)) = L

(
s,

⊕
ρ irrep of G

ρ⊕ dim ρ

)
=

∏
ρ irrep of G

L(s, ρ)dim ρ.

Finally, the trivial representation 1 of N gives the Dedekind ζ function of L, while the trivial
representation 1 of G gives ζK . Thus, the previous equation can be rewritten as

ζL(s) = ζK(s)
∏

ρ irrep of G
ρ ̸=1

L(s, ρ)dim ρ,

as desired.

Corollary 1.4.22. For every integer n ≥ 2 we have the factorisation

ζQ(ζn) = ζ(s)
∏

χ non-trivial Dirichlet
character modulo n

L(s, χ̃),

where χ̃ is the primitive character corresponding to χ.

Proof. Follows from Theorem 1.4.21 together with our identification of Dirichlet’s L-functions
as special Artin L-functions (see Proposition 1.4.6 and Remark 1.4.7). Also note that every
complex representation of the abelian group G = Gal (Q(ζn)/Q) is 1-dimensional, hence a
character.

In the interest of keeping these notes more accessible, we will give below in Proposition
1.5.30 an independent proof of (a slightly weaker version of) Corollary 1.4.22 that avoids all
the machinery of representation theory and Artin L-functions. This weaker version will be
sufficient for the proof of Dirichlet’s theorem on arithmetic progressions.

1.5 Dirichlet’s theorem on arithmetic progressions

In this section we will assume Theorems 1.1.18 and 1.1.26 and show that these analytic results
have deep arithmetic consequences. In particular, we will show that they imply rather easily
Dirichlet’s famous theorem on primes in arithmetic progressions, namely, Theorem 1.3.19. We
start by discussing a notion of duality for (finite) abelian groups.

1.5.1 Pontryagin duality: finite case

The central notion in this section is that of dual group.

Definition 1.5.1 (Dual group, finite case). Let G be a finite abelian group. The dual group
(or group of characters) of G is the set

Ĝ := Hom
(
G,C×) ,

equipped with the operation of pointwise product (that is, (χ1χ2)(g) = χ1(g)χ2(g)). The
elements of Ĝ are called the characters of G.
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Remark 1.5.2 (Connection to representation theory). Recall that every irreducible complex
representation of an abelian group G is 1-dimensional. The elements of Ĝ are in bijection with
the 1-dimensional complex representations of G: a 1-dimensional representation coincides with
its character, which justifies the name.

As G is finite, the image of any character χ : G→ C× has order dividing |G|, which implies
that χ(G) ⊆ µ|G|, where µ|G| is the set of roots of unity of order dividing |G|. Hence, we can

identify Ĝ with Hom(G, µ|G|). With this observation in hand, and using the structure theorem
for finite abelian groups, the following result becomes an easy exercise:

Exercise 1.5.3. The groups G and Ĝ are isomorphic.

Remark 1.5.4. Let χ ∈ Ĝ be a character. We have already observed that χ(g) is a root of
unity for every g ∈ G. The inverse and the complex conjugate of any root of unity coincide,
hence we obtain

χ(g) = χ(g)−1 = χ(g−1).

Remark 1.5.5. The group Ĝ should be compared with the dual of a vector space. As in the
linear-algebraic setting, Ĝ and G are isomorphic, but only non-canonically. On the other hand,

we will prove below that
ˆ̂
G ∼= G canonically, see Proposition 1.5.8

Remark 1.5.6. There is a pairing ⟨·, ·⟩ : G × Ĝ → C given by ⟨g, χ⟩ = χ(g). This pairing is
perfect: the only element g ∈ G such that ⟨g, χ⟩ = 1 for all χ ∈ Ĝ is the identity of G, and the
only character χ such that ⟨g, χ⟩ = 1 for all g ∈ G is the trivial character (the identity element
of Ĝ, that is, the homomorphism that sends every element of G to 1).

Exercise 1.5.7. Prove the claims made in Remark 1.5.6.

Proposition 1.5.8 (Canonical isomorphism of G with
ˆ̂
G). The map

Ψ : G → ˆ̂
G

g 7→ ψg,

where the homomorphism ψg : Ĝ→ C× (which is an element of
ˆ̂
G) is defined by

ψg : Ĝ → C×

χ 7→ χ(g),

gives an isomorphism G ∼= ˆ̂
G.

Proof. The homomorphism Ψ is injective by Remark 1.5.6. By Exercise 1.5.3, one has |G| =
|Ĝ| =

∣∣∣ ˆ̂G∣∣∣, so Ψ is also surjective, hence an isomorphism.

Remark 1.5.9. Proposition 1.5.8, which is almost trivial when G is finite, can be generalised
to a suitable class of infinite abelian groups G. This more general statement often goes under
the name of Pontryagin duality, see Theorem 2.2.2.

To finish our introduction to the dual group, we remark on its functorial properties.
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Proposition 1.5.10 (Functoriality of G 7→ Ĝ). The following hold:

1. The association G 7→ Ĝ can be extended to a contravariant functor from the category of
finite abelian groups to itself by letting it act on arrows as follows: if f : G → H is a
group homomorphism, we define

f̂ : Ĥ → Ĝ
χ 7→ χ ◦ f.

2. This functor is exact: for every short exact sequence

0 → H
ι−→ G

π−→ G/H → 0,

the dual sequence

0 → Ĝ/H
π̂−→ Ĝ

ι̂−→ Ĥ → 0

is also exact. Note that ι̂ is simply the restriction map: given an element χ ∈ Ĝ, that is,
a homomorphism χ : G→ C×, the character ι̂(χ) ∈ Ĥ is simply χ|H .

Exercise 1.5.11. Prove Proposition 1.5.10.

After these formal preliminaries, we are ready to state and prove the orthogonality relations,
which we will then use to prove a Fourier inversion theorem for functions on abelian groups.

Proposition 1.5.12 (Orthogonality relations I). Fix g0 ∈ G and χ0 ∈ Ĝ. We have

∑
χ∈Ĝ

χ(g0) =

{
0, if g0 ̸= idG

|G|, otherwise

and ∑
g∈G

χ0(g) =

{
0, if χ0 ̸= idĜ

|G|, otherwise.

Proof. We begin with the second statement. If χ0 is the identity of Ĝ, the statement is trivial.
Otherwise, let a ∈ G be an element such that χ0(a) ̸= 1. Setting S :=

∑
g∈G χ0(g), we obtain

χ0(a)S =
∑
g∈G

χ0(a)χ0(g) =
∑
g∈G

χ0(ag) =
∑
g∈G

χ0(g) = S,

hence (χ0(a)− 1)S = 0. Since χ0(a) ̸= 1, this implies S = 0.

The first statement follows upon applying the first to Ĝ and using the identification
ˆ̂
G ∼= G

provided by Proposition 1.5.8.

Corollary 1.5.13 (Orthogonality relations II).

1. Let χ1, χ2 be elements of Ĝ. We have

∑
g∈G

χ1(g)χ2(g) =

{
0, if χ1 ̸= χ2

|G|, otherwise.
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2. Let g, h be elements of G. We have

∑
χ∈Ĝ

χ(g)χ(h) =

{
0, if g ̸= h

|G|, otherwise.

Proof. For the first statement, observe that χ1(g)χ2(g) = χ1(g)χ2(g)
−1 = (χ1χ

−1
2 )(g) by Re-

mark 1.5.4 and apply Proposition 1.5.12 to the character χ1χ
−1
2 .

Similarly, for the second statement observe that χ(g)χ(h) = χ(gh−1) and apply Proposition
1.5.12 to the element gh−1.

For later use, we introduce the following handy notation:

Definition 1.5.14. Let G be a group. The function δ : G2 → {0, 1} is defined by

δ(g, h) =

{
1, if g = h

0, otherwise.

We will usually write δg,h instead of δ(g, h).

Definition 1.5.15 (Abstract Fourier transform, finite case). Let f be any function G → C.
The Fourier transform of f , denoted by f̂ , is the function

f̂ : Ĝ → C
χ 7→ 1

|G|
∑

g∈G f(g)χ(g).

Remark 1.5.16. Exactly as in the real case, there are several natural normalisations for the
Fourier transform. The abstract theory we will discuss in Section 2.2 helps clarify the nature
of these normalisations.

Theorem 1.5.17 (Fourier inversion, finite case). Let f : G → C be any function and let
f̂ : Ĝ→ C be its Fourier transform. We have

f(g) =
∑
χ∈Ĝ

f̂(χ)χ(g).

Proof. Replacing the definition of f̂ we obtain

∑
χ∈Ĝ

f̂(χ)χ(g) =
∑
χ∈Ĝ

(
1

|G|
∑
h∈G

f(h)χ(h)

)
χ(g)

=
1

|G|
∑
h∈G

f(h)

∑
χ∈Ĝ

χ(h)χ(g)


We can now use Corollary 1.5.13 to rewrite the inner sum as |G|δg,h, obtaining∑

χ∈Ĝ

f̂(χ)χ(g) =
1

|G|
∑
h∈G

f(h)|G|δg,h =
∑
h∈G

f(h)δg,h = f(g).
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Example 1.5.18 (Fourier transform of the characteristic function of a singleton). Let G be a
finite abelian group, let a ∈ G be a fixed element, and let f := 1a be the function 1a(g) = δa,g.
Its Fourier transform is given by

f̂(χ) =
1

|G|
∑
g∈G

1a(g)χ(g) =
1

|G|
χ(a) =

1

|G|
χ(a)−1.

Applying Theorem 1.5.17 we obtain the following representation for the function 1a:

1a(g) =
1

|G|
∑
χ∈Ĝ

χ(a)−1χ(g),

which recovers part of Corollary 1.5.13.

Exercise 1.5.19 (Squaring the Fourier transform). Let G be a finite abelian group and let
f : G → C be a function. The Fourier transform f̂ is a function Ĝ → C, so we can take

its Fourier transform, obtaining
ˆ̂
f :

ˆ̂
G → C. Using Proposition 1.5.8 we may identify

ˆ̂
f to a

function
ˆ̂
f : G→ C. Prove that

ˆ̂
f(g) = 1

|G|f(g
−1) for all g ∈ G.

1.5.2 Densities

We now define two notions of density for sets of prime numbers (or, more generally, prime
ideals in a number field): the natural density and Dirichlet density. Even though the natural
density is (as the name suggests) more ‘natural’, we will mostly focus on the notion of Dirichlet
density, which is easier to treat from an analytic point of view.

Definition 1.5.20. Let K be a number field and let S be a set of (non-zero) prime ideals of
OK . We define the natural density of S as

lim
T→∞

#{p ∈ S : N(p) ≤ T}
#{p non-zero prime of OK : N(p) ≤ T}

,

provided that the limit exists.

Definition 1.5.21 (Dirichlet density). Let K be a number field and let S be a subset of the
set of nonzero prime ideals of OK . We define the Dirichlet density of S as

DensK(S) = lim
s→1+

∑
p∈S N(p)−s∑

p nonzero prime of OK
N(p)−s

, (1.14)

provided that the limit exists. We will omit the subscript K if it is clear from context.

Remark 1.5.22. There is at least another variant of the definition of Dirichlet density in the
literature. For the sake of simplicity, we define it only in the case of the number field K being
Q: if S is a set of prime numbers, the logarithmic density of S is

lim
x→∞

∑
p∈S,p≤x

1
p∑

p≤x
1
p

,

if the limit exists.
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The following exercise shows that the notion of Dirichlet density is a genuine extension of
the notion of natural density:

Exercise 1.5.23. Let K be a number field and let S be a set of non-zero prime ideals. Prove
that, if S admits natural density, then it also admits Dirichlet density, and the two coincide.

On the other hand, it is a non-trivial exercise in analytic number theory to show that the
Dirichlet and logarithmic densities of any set of primes coincide:

Exercise 1.5.24 (⋆). Show that, for K = Q, a set of primes admits Dirichlet density if and
only if it admits logarithmic density, and the two coincide.

Hint. Here is a possible strategy.

1. Define

an =

{
1/n, if n ∈ S

0, otherwise

and A(u) =
∑

n≤u an, φ(u) = u1−s. Show that S admits logarithmic density δS if and
only if A(u) = (δS + o(1)) log log u.

2. Assume that S does admit logarithmic density. By a suitable summation by parts, show
that ∑

p∈S

1

ps
= (s− 1)

∫ ∞

1

A(u)u−s du.

3. Prove that

(s− 1)

∫ ∞

1

u−s log log u du ∼ log

(
1

s− 1

)
as s→ 1+.

Deduce that, if S admits logarithmic density, then it admits Dirichlet density and the
two coincide.

4. Show the following general estimate on primes: one has
∑

p≤t

(
1
p
− 1

p1+1/ log t

)
= O(1), and

in particular the sum is o(log log t).

5. Show that
∑

p>t p
−1−1/ log t = O(1) = o(log log t). (You may need some weak version of

the prime number theorem.)

6. Suppose now that S admits Dirichlet density δ. Introduce N(s) =
∑

p∈S p−s∑
p p−s and observe

that N(s) ∼ (δ+o(1)) log(1/(s−1)) for s→ 1+. Prove that
∑

p∈S,p≤t
1
p
= N(1+1/ log t)+

o(log log t) and deduce that S admits logarithmic density equal to δ.

Remark 1.5.25. Exercise 1.5.24 is certainly very well-known, but I’ve never been able to find
this statement in the literature. Andrea Tedesco gave a detailed solution in his bachelor’s
dissertation (Università di Pisa, 2021-2022).

Remark 1.5.26. The Dirichlet density satisfies the following basic properties:

1. Dens(S) ∈ [0, 1] for every set S of primes admitting Dirichlet density.

2. Let S be the set of all prime numbers: then it follows immediately from the definition
that Dens(S) = 1.
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3. Let S be a finite set: again, it follows immediately from the definition that Dens(S) = 0.
In particular, if Dens(S) exists and is positive, then S is infinite.

4. Let S1, S2 be sets of primes, each admitting Dirichlet density, and suppose that S1 ∪ S2

admits density. Then,

Dens(S1 ∪ S2) ≤ Dens(S1) + Dens(S2).

A sufficient condition for equality to hold is S1 ∩ S2 = ∅.

Furthermore, we will show below that
∑

p nonzero prime of OK
N(p)−s is asymptotic to log

(
1

s−1

)
as s → 1+ (see Proposition 1.5.34 and Exercise 1.5.28), so that the denominator in Equation
(1.14) can be replaced by log

(
1

s−1

)
.

Even though the density doesn’t necessarily exist for an arbitrary set of primes, the following
variants certainly do:

Definition 1.5.27 (Upper and lower density). Let K be a number field and let S be a subset
of the set of prime ideals of OK . We define the upper and lower density of S as

Dens+K(S) = lim sup
s→1+

∑
p∈S N(p)−s∑

p nonzero prime of OK
N(p)−s

and

Dens−K(S) = lim inf
s→1+

∑
p∈S N(p)−s∑

p nonzero prime of OK
N(p)−s

,

respectively. We will omit the subscript K if it is clear from the context.

Exercise 1.5.28. Prove that the denominator
∑

p nonzero prime of OK
N(p)−s appearing in (1.14)

is asymptotic to log( 1
s−1

) as s→ 1+. (You can start by looking at Proposition 1.5.34).

We also recall another general fact in the form of the following exercise.

Exercise 1.5.29. Let K be a number field and S be a set of primes of K. Denote by S(1) the
subset of S consisting of those prime ideals p for which the size of OK/p is a prime number.
Prove that Dens+(S(1)) = Dens+(S) and Dens−(S(1)) = Dens−(S). In particular, if S admits
density, then so does S(1), and the densities coincide.

1.5.3 Factorisation of the cyclotomic Dedekind ζ function, reprise

As promised, we give an essentially self-contained proof of (a version of) Corollary 1.4.22.

Proposition 1.5.30 (Slightly weaker version of Corollary 1.4.22). For every integer n ≥ 2 we
have a factorisation

ζQ(ζn) = f(s)ζ(s)
∏

χ Dirichlet character
modulo n

L(s, χ),

where f(s) is holomorphic and nonvanishing in {ℜs > 0}.
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Proof. Both sides are given by suitable Euler products. If p is a fixed prime, the local con-
tributions at p to both sides of the desired equality are of the form (1 − ζjnp

−s)±1. Each such
function is meromorphic on all of C, and all of its zeroes and poles lie on the line ℜ(s) = 0,
where |ζjnp−s| = 1. Thus, ignoring the finitely many ramified primes (which contribute to the
function f(s)), it suffices to prove that∏

p|p

(1−N(p)−s)−1 =
∏
χ

(1− χ(p)p−s)−1, (1.15)

where p ranges over the prime divisors of p in Z[ζn] (the ring of integers of Q(ζn)) and χ
ranges over all Dirichlet characters modulo n, including the principal one. Suppose that the
multiplicative order of p modulo n is equal to f : then, the Frobenius at p is an element of
G := Gal(Q(ζn)/Q) of order f , and by definition this means that the finite field Fp is isomorphic
to Fpf (since Gal (Fp/Fp) is isomorphic to the subgroup of G generated by the Frobenius at p).
It follows from Equation (1.10) that there are precisely r = φ(n)/f primes p of Q(ζn) lying over
p, and for each of them one has N(p) = pf . Thus, the left-hand side of (1.15) can be rewritten
as (1− p−fs)−φ(n)/f .

We now turn to the right-hand side of (1.15). Let H be the cyclic subgroup of (Z/nZ)×
generated by the class of p. By definition, |H| = f . In (1.15), χ ranges over the dual group Ĝ,
but clearly only the image of χ in Ĥ is important. Since Ĝ→ Ĥ is surjective with kernel given

by Ĝ/H (Proposition 1.5.10), every character of H appears |Ĝ/H| = |G/H| = φ(n)/f times
in this product. Moreover, since Ĥ is also cyclic, generated by the character that sends p to a
primitive f -th root of unity, we obtain that the right-hand side of (1.15) can be written as

f∏
j=1

(
1− ζjfp

−s
)−φ(n)/f

.

The claim now follows from the elementary identity
∏f

j=1

(
1− ζjfT

)
= 1− T f .

1.5.4 Infinitely many primes in arithmetic progressions

The tools we have developed (or assumed) now allow us to give a quick proof of Dirichlet’s
theorem (Theorem 1.3.19), which we can now restate in a stronger form:

Theorem 1.5.31 (Dirichlet’s theorem, quantitative form). Let a,m be positive integers with
(a,m) = 1. The set

{p prime : p ≡ a (mod m)}

has Dirichlet density 1
φ(m)

.

Note that this form clearly implies Theorem 1.3.19 by Remark 1.5.26. Theorem 1.5.31 is also
true with ‘Dirichlet density’ replaced by ‘natural density’, but the proof is harder (it involves
essentially the same difficulties that one faces when proving the Prime Number Theorem). By
Exercise 1.5.23, the version for natural density implies the version given above.

The crux of the proof lies in the following fact:

Theorem 1.5.32 (Dirichlet). Let m ≥ 1 be an integer and χ be a non-principal character of
(Z/mZ)×. The ‘special value’ L(1, χ) is finite and nonzero.
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Proof. By Theorem 1.1.26, L(1, χ) is well-defined. Consider the formula of Corollary 1.4.22,

ζQ(ζm)(s) = ζ(s)
∏

χ non-principal Dirichlet
character modulo m

L(s, χ̃).

Since both ζQ(ζm) and ζ(s) have a simple pole at s = 1 (Theorem 1.1.18), this shows that∏
χ non-principal Dirichlet

character modulo m
L(s, χ̃) is bounded and nonzero around s = 1. Since each L(s, χ̃) is holo-

morphic around s = 1 (Theorem 1.1.26), this implies that each L(1, χ) is nonzero.
Note that the same argument also goes through if one uses Proposition 1.5.30 instead of

Corollary 1.4.22.

Lemma 1.5.33. The sum
∑
p,k≥2

p−ks remains bounded as s→ 1+.

Proof. This is easy:∑
p,k≥2

1

pks
=
∑
p

1

ps(ps − 1)
≤
∑
p

1

p(p− 1)
≤
∑
n≥2

1

n(n− 1)
= 1.

Proposition 1.5.34. Let m be a positive integer and let χ be a character of (Z/mZ)×. We
consider the function

∑
p χ(p)

1
ps
.

1. If χ is the trivial character,
∑

p
1
ps

is asymptotic to log
(

1
s−1

)
as s→ 1+.

2. If χ is non-trivial,
∑

p χ(p)
1
ps

stays bounded as s→ 1.

Proof. 1. We have

log ζ(s) = log
∏
p

(
1− p−s

)−1
= −

∑
p

log
(
1− p−s

)
=
∑
p

∑
k

1

kpks
=
∑
p

p−s +
∑
p,k≥2

1

kpks
.

Since ζ(s) ∼ 1
s−1

as s → 1+ (Theorem 1.1.3), the first claim follows from the fact that∑
p,k≥2

1
kpks

stays bounded as s → 1. Since
∑

p,k≥2
1

kpks
≤
∑

p,k≥2
1

pks
, this is true by

Lemma 1.5.33.

2. We proceed in a similar fashion. We have

logL(s, χ) = log
∏
p

(1− χ(p)p−s)−1 = −
∑
p

log(1− χ(p)p−s) =
∑
p

∑
k≥1

χ(p)k

kpks
,

and this time we know (from Theorems 1.1.26 and 1.5.32) that L(s, χ) is holomorphic
and nonzero in a neighbourhood of s = 1, so that logL(s, χ) is also holomorphic at
s = 1.

In the above expression, the sum for k ≥ 2 stays bounded as s→ 1+ (take absolute values

and apply Lemma 1.5.33), so we obtain as desired that
∑

p
χ(p)
ps

is bounded as s→ 1+.
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Proof of Theorem 1.5.31. Fix s > 1 and consider the sum∑
p≤x

p≡a (mod m)

1

ps
=
∑
p≤x

1a(p)
1

ps
,

where 1a(x) is the characteristic function of the subset {n ∈ Z : n ≡ a (mod m)} of Z. Clearly,
1a(x) factors via Z → Z/mZ. By Example 1.5.18, we can then rewrite the above sum as

1

φ(m)

∑
p≤x

∑
χ∈(Z/mZ)×

χ(a)−1χ(p)
1

ps
=

1

φ(m)

∑
χ∈(Z/mZ)×

χ(a)−1
∑
p≤x

χ(p)
1

ps
.

Passing to the limit for x→ ∞ and applying Proposition 1.5.34 we obtain

∑
p≡a (mod m)

1

ps
=

1

φ(m)
log

(
1

s− 1

)
(1 + o(1)) +

∑
χ∈(Z/mZ)×

χ ̸=1

O(1) as s→ 1+,

which, dividing by − log(s−1) and passing to the limit s→ 1, yields that the Dirichlet density
of {p prime

∣∣ p ≡ a (mod m)} is equal to 1
φ(m)

, as claimed.

1.5.5 The philosophy of special values

Dirichlet’s original proof of Theorem 1.5.31 follows12 basically the approach outlined above,
with the main difference being in the proof of Theorem 1.5.32. In this section, we sketch
briefly the main idea, which helps demonstrate one of the key features of L-functions: values
of L-functions (especially at points where they are not naturally defined) encode arithmetic
information.

Sketch of proof of Theorem 1.5.32. Consider the factorisation in Theorem 1.4.21,

ζQ(ζm)(s) = ζ(s)
∏
χ ̸=1

L(s, χ̃). (1.16)

Since L(s, χ̃) = f(s)L(s, χ) for some function f(s) which is holomorphic and nonvanishing
near s = 1 (see Proposition 1.4.6 (4)), the quantity L(1, χ̃) is nonzero if and only if L(s, χ) is.
Suppose that for some χ with χ ̸= χ we had L(1, χ) = 0. Then it is immediate to see that also
L(1, χ) = L(1, χ) = 0, hence the right-hand side of (1.16) vanishes at s = 1 (since the simple
pole of ζ(s) cancels out with the zero of L(s, χ), and then L(1, χ) = 0 implies the vanishing).
This is clearly a contradiction, because

lim
s→1+

ζQ(ζm)(s) ≥ lim
s→1+

∑
I◁Z[ζm]

N(I)−s ≥ lim
s→1+

1 = 1.

Hence, it only remains to show that L(1, χ) ̸= 0 when χ = χ, that is, when χ takes values in
{±1}. Now, such a character (seen as a character (Z/mZ)× → {±1}) defines – via taking the

12I am not a historian of mathematics, so take this statement with a pinch of salt.
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fixed field of the kernel – a quadratic extension Q(
√
a) of Q. Using Theorem 1.4.21 again (in

a very simple case), one obtains

ζQ(
√
a)(s) = ζ(s)L(s, χ̃).

The claim now follows from Theorem 1.5.35 below, where the crucial point is that the arithmetic
interpretation of the limit immediately implies its non-vanishing.

The following is another famous theorem of Dirichlet (at least in the case K is a quadratic
number field; I’m not sure who the general form is due to).

Theorem 1.5.35 (Analytic class number formula). Let K be a number field, with standard
invariants dK (discriminant), hK (class number), (r1, r2) (signature), and RK (regulator). Let
wK be the number of roots of unity in K. We have

lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2hKRK√

|dK |wK

.

Remark 1.5.36 (Philosophical principle: analytic information versus arithmetic information).
Analytic objects can encode arithmetic information! Theorem 1.5.35 is extremely remarkable,
in that it relates something which is purely analytic (the residue of a holomorphic function) to
something arithmetic (information about unique factorisation, roots of unity, etc.)

There is also another (surprising) point of view on Theorem 1.5.35:

Remark 1.5.37 (Philosophical principle: local-global principles). One can also reformulate
Theorem 1.5.35 as

Ress=1

∏
p

(
1−Np−s

)−1
=

2r1(2π)r2hKRK√
|dK |wK

.

This shows that we can get ‘global’ information on the arithmetic of K from the knowledge of
(an infinite amount of) ‘local’ data, namely, the sizes of the residue fields of OK .

Further special values

The functional equation (Theorem 1.3.33) and the analytic class number formula (Theorem
1.5.35) imply that ζK(s) has a zero of order r = rkO×

K = r1 + r2 − 1 at s = 0, and one has

lim
s→0

s−rζK(s) = −hKRK

wK

.

Conjecturally, the values (or more precisely, the first non-zero terms in the local series
development) of ζK at all integers should have an arithmetic interpretation. Discussing this in
detail would take us quite far afield, so we limit ourselves to recalling a striking formula due to
Euler and its connection with the arithmetic of cyclotomic extensions.

Theorem 1.5.38 (Euler). Let n be a positive integer. We have

ζ(2n) = (−1)n+1B2n(2π)
2n

2(2n)!
,

where B2n are the Bernoulli numbers, defined by the power series development

t

et − 1
=

∞∑
k=0

Bk
tk

k!
.
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Even though this result does not seem to have much arithmetic content (after all, the
numbers Bk seem to have nothing to do with arithmetic!), Kummer, Herbrand and Ribet have
found a remarkable interpretation for these numbers:

Theorem 1.5.39 (Kummer; Herbrand [Her32], Ribet [Rib76]). A prime p divides the class
number of Q(ζp) if and only if p divides the numerator of some Bernoulli number Bn for some
even n with 0 < n < p− 1.

The question of special values of L-functions is a deep rabbit hole! To get a sense of just
how deep, the reader can have a look at Question 4.2 in [Lic73], and then start learning about
K-theory, higher regulators, and a number of topics I know nothing about.

1.6 Chebotarev’s density theorem

In this section we (re)state and prove Chebotarev’s theorem.

Theorem 1.6.1 (Chebotarev, quantitative form). Let K/F be a Galois extension with group
G and let C ⊆ G be a union of conjugacy classes. The set

S = {p prime of OF

∣∣ (K/F
p

)
⊆ C}

admits (Dirichlet) density, given by Dens(S) = #C
#G

.

Remark 1.6.2. Note that
(

K/F
p

)
is a conjugacy class (see Definition 1.3.15). Since C is a

union of conjugacy classes, one may equivalently rephrase the condition in the theorem as(
K/F
p

)
∈ C, where

(
K/F
p

)
now means any element of the conjugacy class.

Remark 1.6.3. Even though we will not use it much in this course, Chebotarev’s theorem
really is one of the fundamental tools in modern number theory, and its importance is hard to
overstate13. To give some context, let me mention a few (and quite disparate) consequences of
the theorem:

1. let F1, F2 be two finite extensions of the number field K. Then F1, F2 have the same
Galois closure if and only if the primes of K that split completely in F1, F2 are the same,
or even the same up to a subset of density 0.

2. a ∈ Q× is a p-th power if and only if it is a p-th power modulo ℓ for almost all primes
ℓ. Even more: if f(x) ∈ Z[x] is irreducible and has a root modulo almost every prime p,
then deg f = 1.

3. a sufficiently strong version of Chebotarev with error term (unfortunately, one so strong
that we can only prove it under the assumption of the Generalised Riemann Hypothesis
for Dedekind ζ functions) implies Artin’s conjecture on primitive roots:

13an analytic number theorist, who will remain anonymous, once asked me: is Chebotarev the only result in
analytic number theory that you algebraic people care about?
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Conjecture 1.6.4 (Artin). Let a be an integer which is not a square and is different
from −1. There exist infinitely many primes p such that a is a primitive root modulo p.

4. Let f(x) ∈ Z[x] be an irreducible polynomial of degree at least 2. There exist infinitely
many primes p such that f(x) mod p has no roots.

5. Conversely, let f(x) ∈ Z[x] be any polynomial. There exist infinitely many primes p
such that f(x) mod p splits completely (this can also be proven elementarily, without
Chebotarev).

6. Let K be a number field. The ‘probability’ that a prime of OK is principal (that is, the
density of principal primes) is 1/h(K). This partially justifies the oft-repeated claim that
‘h(K) measures the failure of unique factorisation’ – recall that unique factorisation is
equivalent to the ring of integers being a PID, which in turn is equivalent to every prime
ideal being principal, so h(K) really is a measure of ‘how much’ unique factorisation fails.

7. The density of primes p that divide at least one number of the form 2n + 1 (for n ≥ 0 an
integer) exists and is equal to 17

24
.

8. (Elementary reformulation of the theorem) Let f(x) ∈ Z[x], of degree n, have Galois
group G. Fix a ‘cycle type’, that is, a conjugacy class of permutations in Sn (which we
think as a tuple m1, . . . ,mn with 1m1 + 2m2 + · · · + nmn = n – here mi is the number
of cycles of length i). Let d be the number of elements of G with the given cycle type.
Then, the set

S =

{
p prime :

f(x) mod p factors with m1 factors of degree 1,
m2 factors of degree 2 . . . ,mn factors of degree n

}
admits density, and this density is d

#G
.

9. Let a, b, c be integers with (a, b, c) = 1 and d := b2 − 4ac < 0. As x, y range over the
integers, the positive-definite quadratic form ax2 + bxy + cy2 represents infinitely many
primes. In fact, the density of the set

{p prime : ∃x, y ∈ Z such that p = ax2 + bxy + cy2}

is positive and can be expressed in terms of invariants of the number field Q(
√
−d). (This

is related to example 6 in this list, and if I’m not mistaken, the density in question should
be 1

2h(Q(
√
−d))

.)

10. Let f(x) ∈ Z[x] be an irreducible polynomial. The average number of zeroes of f modulo
primes is 1, that is to say,

lim
T→∞

∑
p≤T #{a ∈ Fp : f(a) = 0 (mod p)}

#{p prime : p ≤ T}
= 1.

Exercise 1.6.5. Prove as many of these as you can.
Friendly suggestion. You should avoid 3 (which is really hard), 7 (which is quite hard), and

maybe 9. Everything else you should be able to prove; it is especially important to make sure
you understand how 8 follows from Chebotarev.

Having convinced you of the importance of the theorem (hopefully), we now turn to its
proof. We give both an algebraic proof and an analytic one, starting with the latter.
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1.6.1 Analytic proof

�
Warning. The proof below is inspired by a famous paper by Lagarias and Odlyzko [LO77].

However, the aim of that paper is to give effective estimates, which involves some rather heavy
analytic number theory. I have tried to streamline the argument so as to arrive at the result
for the Dirichlet density in the most efficient way possible (Lagarias and Odlyzko work with
the natural density). It seems to me that the resulting proof is fairly straightforward, and very
interesting in the way it directly generalises the proof of Theorem 1.5.31. However, I have not
found this particular approach written down in the literature14, so there is a good chance that
it could be wrong. Treat everything in this section with extreme suspicion!

We start with the following lemma:

Lemma 1.6.6. Let L(s, ρ) be the Artin L-function of some representation ρ : Gal(L/K) →
GL(V ). We have the asymptotic relation

logL(s, ρ) =
∑

p unramified in L

tr ρ

((
L/K

p

))
N(p)−s +O(1) as s→ 1+.

Proof. Starting from Exercise 1.4.16, we can ignore the finitely many ramified primes (which
give a bounded contribution), and bound∣∣∣∣∣∑

p

∑
m≥2

χ(pm)

m(Np)ms

∣∣∣∣∣ ≤∑
p

∑
m≥2

∣∣∣∣ χ(pm)

m(Np)ms

∣∣∣∣ ≤∑
p

∑
m≥2

dimV

(Np)mℜs
≤ [K : Q]

∑
p

∑
m≥2

dimV

pmℜs
= O(1)

by Lemma 1.5.33.

Next we recall (without proof) the orthogonality relations in the case of non-abelian groups:

Proposition 1.6.7 (Orthogonality relations, non-abelian case). Let {φ1, . . . , φr} be the distinct
irreducible characters15 of a finite group G. The following hold.

1.
∑

g∈G φi(g)φj(g) =

{
|G|, if i = j

0, otherwise

2. Fix g, h ∈ G. We have

∑
χ

χ(g)χ(h) =

{
|CG(g)|, if g, h are in the same conjugacy class

0, otherwise

where the sum ranges over all the irreducible characters of G.

14apparently, it appears in unpublished notes of Serre: see https://mathoverflow.net/questions/131543/
effective-chebotarev-without-artins-conjecture

15the character of a representation is simply its trace. A finte group has only finite many (finite-dimensional)
irreducible representations: here we consider the character of each of those.

https://mathoverflow.net/questions/131543/effective-chebotarev-without-artins-conjecture
https://mathoverflow.net/questions/131543/effective-chebotarev-without-artins-conjecture
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Now let C be a conjugacy class in G. Define the class function16

fC =
|G|
|C|

1C . (1.17)

Fix g ∈ C. The orthogonality relations (Proposition 1.6.7) easily imply that

fC =
∑
φ

φ(g)φ, (1.18)

where the sum is over all the characters of the finite-dimensional irreducible representations of
G. Let furthermore H = ⟨g⟩ and let τ be the class function on H defined by

τ = |H| · 1{g},

where 1{g} is the characteristic function of the set {g}. By the usual abelian orthogonality
relations (Corollary 1.5.13) we have

τ =
∑
χ∈Ĥ

χ(g)χ.

A simple calculation (see Lemma 1.6.8 below) shows that

IndG
H(τ) = |CG(g)| · 1C =

|G|
|C|

1C = fC , (1.19)

and therefore ∑
φ

φ(g)φ = fC = IndG
H(τ) =

∑
χ∈Ĥ

χ(g) IndG
H(χ). (1.20)

Lemma 1.6.8. Equation (1.19) holds.

Proof. Representation theory tells us that, if τ : H → C is a class function, then

IndG
H(τ)(x) =

∑
s∈S

τ0(s
−1xs),

where

τ0(g) =

{
τ(g), if g ∈ H

0, otherwise

and S is a set of representatives for the left cosets {sH}. For our specific function τ , we then
have

IndG
H(τ)(x) = |H| ·#{s ∈ S : s−1xs = g} = |H| · |{s ∈ S : x = sgs−1}|.

We claim that this quantity is 0 if g, x are in different conjugacy classes in G, and is |CG(g)|
otherwise. To see this, simply observe that every element of H = ⟨g⟩ commutes with g, so
(since G = SH) we obtain

|H| ·#{s ∈ S : x = sgs−1} = |{(s, h) ∈ S ×H : x = shgh−1s−1}| = |{y ∈ G : x = ygy−1}|.

The statement is now clear: if x, g belong to different conjugacy classes no such y exists, while
if x, g are in the same conjugacy class, the set above is a coset for CG(g).

16a class function is a function f : G → C such that f(hgh−1) = f(g) for all g, h ∈ G.
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We are now ready to prove Theorem 1.6.1.

Proof of Theorem 1.6.1. We can assume that C itself is a conjugacy class. We wish to estimate∑
p⊂OK

1C

((
L/K

p

))
(Np)−s

as s→ 1. For simplicity, if φ is a character of G = Gal(L/K) and p is a prime of K unramified

in L, we denote by φ(p) the value of φ at
(

L/K
p

)
.

Using (1.17) and (1.18), we write the above as∑
p⊂OK

1C

((
L/K

p

))
(Np)−s =

|C|
|G|

∑
p⊂OK

∑
φ

φ(g)φ(p)(Np)−s,

where as before φ ranges over the irreducible characters of G. We now use (1.20) to arrive at∑
p⊂OK

1C

((
L/K

p

))
(Np)−s =

|C|
|G|

∑
p⊂OK

∑
χ∈Ĥ

χ(g) IndG
H(χ)(p)(Np)−s

=
∑
χ∈Ĥ

χ(g)
|C|
|G|

∑
p⊂OK

IndG
H(χ)(p)(Np)−s.

Lemma 1.6.6 allows us to recognise the last sum as the series development of L(s, IndG
H(χ))

around s = 1, up to a bounded error term:∑
p⊂OK

1C

((
L/K

p

))
(Np)−s =

∑
χ∈Ĥ

χ(g)
|C|
|G|

logL(s, IndG
H(χ)) +O(1).

Using the formalism of Artin L-functions (in particular, Theorem 1.4.12(3)) we arrive at∑
p⊂OK

1C

((
L/K

p

))
(Np)−s =

∑
χ∈Ĥ

χ(g)
|C|
|G|

logL(s, χ) +O(1) as s→ 1, (1.21)

where now all the involved Artin L-functions are Hecke L-functions!
Letting E = LH be the subfield fixed by H = ⟨g⟩, Theorem 1.4.21 shows that

ζL(S) = ζE(s)
∏

χ ̸=1,χ∈Ĥ

L(s, χ).

(Recall thatH is a cyclic group, so all its irreducible complex representations are 1-dimensional.)
Arguing as in Theorem 1.5.32 (and using Theorem 1.4.11 to ensure analyticity of L(s, χ) around
s = 1 for χ a non-principal character), we obtain that L(s, χ) is non-vanishing at s = 1 when
χ is a non-principal character. Thus, logL(s, χ) is bounded as s → 1 for χ ̸= 1. Using this
information in Equation (1.21) we finally obtain∑
p⊂OK

1C

((
L/K

p

))
(Np)−s =

∑
χ=1

χ(g)
|C|
|G|

logL(s, χ)+O(1) =
|C|
|G|

logL(s, 1H)+O(1) as s→ 1.
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Notice that in this last formula 1H is the trivial representation of the Galois group H of L over
E, so L(s, 1H) is the ζ-function of E. Using Theorem 1.1.18 both for E and for K, we obtain
that (as s→ 1) we have the asymptotic

logL(s, 1H) = log ζE(s) ∼ log

(
1

s− 1

)
∼ log ζK(s).

Interpreting ζK(s) as L(s, 1G) for the trivial representation of G = Gal(L/K), Lemma 1.6.6
yields log ζK(s) ∼

∑
p⊂OK

(Np)−s, again for s → 1. Combining these relations, we have∑
p⊂OK

(Np)−s ∼ L(s, 1H), and we are done:

lim
s→1+

∑
p⊂OK

1C

((
L/K
p

))
(Np)−s∑

p⊂OK
(Np)−s

= lim
s→1+

|C|
|G| logL(s, 1H) +O(1)

logL(s, 1H)
=

|C|
|G|

.

1.6.2 Algebraic (well, mostly algebraic) proof

We now give a second, (superficially) different proof of Chebotarev’s theorem, based on Schoof’s
version given in [Sch08, Chapter 15].

The first step is to establish an analogue of Dirichlet’s theorem for arbitrary number fields.
Recall that we have already remarked that Dirichlet’s theorem is precisely Chebotarev’s theorem
for the estensions Q(ζm)/Q (see the proof we gave for Theorem 1.3.19). Our first proposition
is then a direct generalisation of Dirichlet’s theorem to arbitrary number fields.

Proposition 1.6.9. Let F be a number field and let m ≥ 1 be an integer. Write H for the
group Gal(F (ζm)/F ). For every h ∈ H, the set

Sh :=

{
p prime of OF

∣∣ (F (ζm)/F
p

)
= h

}
admits Dirichlet density 1/|H|.

Remark 1.6.10. Since H is abelian,
(

F (ζm)/F
p

)
is well-defined as an element of H (it is a

conjugacy class consisting of a single element).

Proof. This closely parallels the proof of Theorem 1.5.31. By restriction, H can be identified
with a subgroup H̃ of Gal(Q(ζm)/Q) ∼= (Z/mZ)×. For every character χ : H̃ → C× (that we
interpret as a character on a subset of (Z/mZ)×) we introduce the series

L(s, χ) =
∏

p⊂OF

(
1− χ(N(p))

N(p)s

)−1

,

with the usual convention that χ(n) = 0 if (n,m) > 1. This is not a Dirichlet L-function, but it
is a Hecke L-function, corresponding to the abelian extension F (ζm)/F and the representation

Gal (F (ζm)/F )
∼−→ H̃

χ−→ C×.
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This is proved exactly as in Proposition 1.4.6(2). We show equality of the local factors at the
unramified primes (which is enough for our purposes).

Given a prime p of F unramified in F (ζm) and a primeP of F (ζm) lying over it, we show that

the Artin symbol
(

F (ζm)/F
P

)
maps to N(p) under the isomorphism H → H̃ ⊆ Gal(Q(ζm)/Q) ∼=

(Z/mZ)×. To see this, notice that σ :=
(

F (ζm)/F
P

)
is determined by its restriction to Q(ζm),

and that it satisfies

σ(ζm) ≡ ζN(p)
m (mod P ∩ Z[ζm]).

By uniqueness of Frobenius elements (in the unramified case), since the automorphism ζm 7→
ζ
N(p)
m satisfies the condition above, we see that

(
F (ζm)/F

P

)
does indeed map to ζm 7→ ζ

N(p)
m ,

which (under the canonical isomorphism Gal(Q(ζm)/Q) ∼= (Z/mZ)×) corresponds to N(p), as
claimed. Thus, for every non-trivial character χ, the function L(s, χ) agrees (possibly up to
finitely many factors of the form (1 − ζkm/N(p)s), which are holomorphic and nonvanishing
near s = 1) with a Hecke L-function. Hence, by Theorem 1.4.11, it extends to a holomorphic
function near s = 1. On the other hand, L(s, 1) is the ζ function of F .

As in Corollary 1.4.22 one then shows ζF (ζm)(s) = g(s)
∏

χ L(s, χ), where the product runs
over the characters χ of H and g(s) is holomorphic and nonvanishing around s = 1 (in fact,
g(s) is the constant 1, but we won’t need this). We then deduce that L(1, χ) ̸= 0 for every
nontrivial character, and the rest of the proof of Theorem 1.5.31 goes through.

Next we prove the key case of Chebotarev, namely, that of cyclic extensions. We remark
that the argument we give applies without change to any abelian extension (but of course this
is still not enough, since the full Chebotarev theorem applies to arbitrary, possibly non-abelian,
Galois extensions).

Proposition 1.6.11. Let F be a number field and let K/F be a cyclic extension with group G.
For every σ ∈ G, the set

Sσ :=

{
p prime of OF

∣∣ (K/F
p

)
= σ

}
has density equal to 1

#G
.

Since the proof is long, we divide it into several lemmas and propositions. In what follows,
we will tacitly exclude from any set of primes those that ramify in the relevant extensions: since
we are going to argue about densities, and the number of ramified primes is always finite, this
does not affect any of our arguments.

We begin with the following general setup. Let n = [K : F ] = |G| and put N = nk, where
k is any positive integer (we will eventually take the limit k → ∞). By Dirichlet’s theorem
(Theorem 1.5.31), there exist infinitely many primes q ≡ 1 (mod N). In particular, there
exists such a prime q that is unramified in K/Q. We will work with this auxiliary prime q and
consider the extension K(ζq) (which will be easier to treat, since it is a cyclotomic extension:
see Proposition 1.6.9).

Lemma 1.6.12. We have K ∩Q(ζq) = F ∩Q(ζq) = Q, hence the restriction homomorphisms

resK : Gal(K(ζq)/K) → Gal(Q(ζq)/Q)
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resF : Gal(F (ζq)/F ) → Gal(Q(ζq)/Q)

are isomorphisms.

Proof. No prime ramifies both in K and in Q(ζq), so K ∩ Q(ζq) is everywhere unramified.
By Minkowski’s theorem (Theorem 1.3.8), this implies K ∩ Q(ζq) = Q. As a consequence,
also F ∩ Q(ζq) ⊆ K ∩ Q(ζq) coincides with Q. The last statement follows from basic Galois
theory.

Let H = Gal(F (ζq)/F ) and consider the following diagram of field extensions:

K(ζq)

K

G

F (ζq)

HK ∩ F (ζq)

F

(1.22)

The restriction homomorphism

Gal(K(ζq)/K) → Gal(F (ζq)/(K ∩ F (ζq))

is injective (Galois theory), so

[F (ζq) : K ∩ F (ζq)] ≥ [K(ζq) : K] = #Gal(K(ζq)/K)

= #Gal(Q(ζm)/Q) = #Gal(F (ζq)/F )

= [F (ζq) : F ],

which implies K ∩ F (ζq) = F . (An alternative proof of the same equality can be obtained
as follows: any prime of F of characteristic q is unramified in K ∩ F (ζq), because this is a
sub-extension of K. On the other hand, it is totally ramified in K ∩ F (ζq), because this is a
sub-extension of F (ζq). The intersection must therefore be F , since it is both unramified and
totally ramified at the same prime.) We deduce that

Gal(K(ζq)/F ) ∼= Gal(K/F )×Gal(F (ζq)/F ) = G×H. (1.23)

Notice that this implies in particular [K(ζq) : F (ζq)] = |G|, and in fact, more precisely,
Gal(K(ζq)/F (ζq)) is identified with G× {id} under the isomorphism (1.23).

Remark 1.6.13. Before giving a formal proof of Proposition 1.6.11, we try to describe the
basic idea. The point is that the set Sσ of primes of F with Frobenius σ in the extension K/F
is the union of the sets Sσ,τ , where for each τ ∈ H we write

Sσ,τ := {P prime of OF |
(
K(ζq)/F

P

)
= (σ, τ) ∈ G×H}. (1.24)
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The trick is that for most17 (but not all!) τ ∈ H one can compute the density of Sσ,τ using
Proposition 1.6.9. Hence, by summing over these ‘good’ τ , we can at least estimate the density
of Sσ = ∪τSσ,τ . By choosing H appropriately (that is, by choosing q), the fraction of the
elements of H for which we can compute the density of Sσ,τ tends to 1, and this will lead to
the desired estimate for the density of Sσ.

Proposition 1.6.14. Let τ ∈ H have order multiple of n. Then

d−F (Sσ,τ ) =
1

[K(ζq) : F ]
.

Proof. Let J be the cyclic subgroup of G×H generated by (σ, τ) and let L be the subfield of
K(ζq) fixed by J . Let furthermore

T = {P prime of L |
(
K(ζq)/L

P

)
= (σ, τ)}

We first prove that

dL(T ) =
1

[K(ζq) : L]
. (1.25)

By Proposition 1.6.9, it suffices to check that K(ζq)/L is a cyclotomic extension. We now show
this.

Notice that J ∩ (G×{id}) = {(id, id)}: one has (σ, τ)h = (ρ, id) for some ρ ∈ G if and only
if ord(τ) | h, but then ρ = σh = id since n | ord(τ) | h. Galois theory then gives

K(ζq) = K(ζq)
J∩(G×{id} = K(ζq)

JK(ζq)
G×{id} = LF (ζq) = L(ζq),

that is, K(ζq) is generated over L by a root of unity, as desired.

Finally, let

T ′ = {P prime of L | f(P | P ∩ F ) = 1 and

(
K(ζq)/L

P

)
= (σ, τ)}.

By Exercise 1.5.29 we have dL(T ) = dL(T
′) = d−L(T

′). To finish the proof, we show that

d−L(T
′) = [L : F ]d−F (Sσ,τ ). (1.26)

It suffices to prove:

1. for every prime P in T ′, the prime P ∩ OF of F is in Sσ,τ ;

2. for every prime p in Sσ,τ there are precisely [L : F ] primes P1, . . . , P[L:F ] in L lying over
p, and each of those is in T ′ (in particular, N(Pi) = N(p), since by definitions the primes
in T ′ satisfy f(Pi | p) = 1).

17specifically, for those τ of order multiple of n: see Proposition 1.6.14.
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Indeed, if we have these two properties, we can compute the lower density of Sσ,τ in F as

Dens−F (Sσ,τ ) = lim inf
s→1+

∑
p∈Sσ,τ

N(p)∑
p nonzero prime of OF

N(p)−s

=
1

[L : F ]
lim inf
s→1+

∑
p∈Sσ,τ

∑
P |p,P∈T ′ N(p)

log
(

1
s−1

)
=

1

[L : F ]
lim inf
s→1+

∑
p∈Sσ,τ

∑
P |p,P∈T ′ N(P )

log
(

1
s−1

)
=

1

[L : F ]
lim inf
s→1+

∑
P∈T ′ N(P )

log
(

1
s−1

)
=

1

[L : F ]
Dens−L(T

′),

as desired. Note that in the next-to-last equality we have used the fact that every prime of T ′

lies over a prime in Sσ,τ , that is, (1). We now establish properties (1) and (2) above.

1. Let P be a prime in T ′. Since the norm of P ∩ OF is equal to the norm of P , the Artin

symbols
(

K(ζ)/L
P

)
= (σ, τ) and

(
K(ζ)/F
P∩OF

)
coincide. Hence, P ∩ OF is in Sσ,τ .

2. Conversely, let p be in Sσ,τ . Recall that p is unramified inK(ζ) (by convention: we exclude
the ramified primes) and let Q be a prime of K(ζ) lying over p. The decomposition group

D(Q | p) is by definition generated by
(

K(ζ)/F
p

)
= (σ, τ). Hence, K(ζ)⟨(σ,τ)⟩ = L is by

definition the decomposition field of p (that is, p is totally split in L), so that there are
r = [L : F ] primes P1, . . . , Pr of L lying over p. Each of these has degree 1 over p, and,
as in (1), their Frobenius elements are given by (σ, τ).

Finally, combining Equations (1.25) and (1.26) we obtain

d−F (Sσ,τ ) =
1

[L : F ]
d−L(T ) =

1

[L : F ]

1

[K(ζ) : L]
=

1

[K(ζ) : F ]
,

as claimed.

We are now ready to prove Proposition 1.6.11.

Proof. With Sσ,τ as in Equation (1.24) we have

Sσ =
⊔
τ∈H

Sσ,τ .

(Recall that we are excluding from all our sets the finitely many primes that ramify in K(ζq).)
In particular,

d−F (Sσ) ≥
∑
τ∈H

d−F (Sσ,τ )

by Exercise 1.6.16 and the fact that the sets Sσ,τ are clearly pairwise disjoint. We can further
estimate the lower density of Sσ as

d−F (Sσ) ≥
∑
τ∈H

n|ord(τ)

d−F (Sσ,τ ).
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Using Proposition 1.6.14 we obtain

d−F (Sσ) ≥
∑
τ∈H
n|ord τ

1

[K(ζq) : F ]
=

#{τ ∈ H : n | ord τ}
[K(ζq) : F ]

,

hence, by Exercise 1.6.15,

d−F (Sσ) ≥
#H

[K(ζq) : F ]

∏
pi|n

(
1− 1

pαi+1−βi

i

)
,

where αi = vp(#H) = vp(q − 1) and βi = vp(n). Since nkm | q − 1, for every prime p that
divides n we have αi ≥ kvp(n), so αi − βi + 1 ≥ (k − 1)vp(n) + 1 ≥ k. Thus, we have shown

d−F (Sσ) ≥
#H

[K(ζq) : F ]
·
∏
p|n

(
1− 1

pk

)
=

φ(q)

[K : F ]φ(q)
·
∏
p|n

(
1− 1

pk

)
=

1

[K : F ]
·
∏
p|n

(
1− 1

pk

)

for every k ≥ 1. By passing to the limit k → ∞, we get d−F (Sσ) ≥ 1
[K:F ]

. Finally, in order to
gain information about the upper density, it suffices to notice that the set of all primes of F
(with finitely many exceptions, namely the primes that ramify in K) is the disjoint union of
the sets Sσ′ for σ′ ∈ G. This immediately implies

d+F (Sσ) ≤ 1−
∑
σ′ ̸=σ

d−F (Sσ′) ≤ 1− [K : F ]− 1

[K : F ]
=

1

[K : F ]
,

which concludes the proof.

Finally, we prove Chebotarev’s theorem:

Proof of Theorem 1.6.1. We may and do assume that C itself is a conjugacy class. We can also
replace S by its subset S ′ of places for which N(p) is a prime number (by Exercise 1.5.29, this
does not alter its density).

Choose an element g ∈ C and let E = K⟨g⟩ be the field fixed by the subgroup H = ⟨g⟩.
Consider the set

Tg = {q prime of E
∣∣ (K/E

q

)
= g,N(q) is prime}.

Suppose that q is in Tg: we claim that p := q ∩ OF is in S ′. Indeed, N(p) divides N(q),
so N(p) = N(q) is a prime number. If Q is a prime of K lying over q, this implies that(

K/F
Q

)
=
(

K/E
Q

)
= g ∈ C, hence p ∈ S ′. Moreover, we claim that Q is the unique prime of

K lying over q. To see this, notice that D(Q | q) is by definition generated by
(

K/E
Q

)
= g, so

D(Q | q) = H: the whole Galois group of K over E sends Q to itself, and therefore Q is the
only prime of K over q.

Conversely, given p ∈ S ′, by definition there exists a prime Q of K lying over p with(
K/F
Q

)
∈ C. Replacing Q by a conjugate if necessary, we can assume that

(
K/F
Q

)
= g. If we

define q = Q∩E, then q lies over p (obvious), and we claim that it is in Tg. To see this, notice
that again we have

E = KH = K⟨g⟩ = KD(Q|p),
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so E is the decomposition field of p. This means that f(q | p) = 1 and f(Q | q) = |H| = ord(g).

In particular, N(q) = N(p)f(q|p) is prime, and as above it follows that
(

K/F
Q

)
=
(

K/E
Q

)
= g ∈ C.

Hence q is in Tg as claimed.

Summarising, there is a bijection between the primes in Tg lying over p ∈ S ′ and the primes

Q of K that divide p and satisfy
(

K/F
Q

)
= g.

Now let CG(g) be the centraliser of g in G. By the orbit-stabiliser lemma, |C| = |G|
|CG(g)| . We

count the primes in Tg lying over each prime p ∈ S ′. By the previous paragraph, it suffices to

count the primes Q of K lying over p with
(

K/F
Q

)
= g. We have already shown that there is

at least one such prime, call it Q1. Any other prime Q′ of K lying over p is conjugate to Q1

by an element σ ∈ G, say Q′ = σQ1. Then, the Artin symbol
(

K/F
Q′

)
is given by

(
K/F

Q′

)
= σ

(
K/F

Q1

)
σ−1 = σgσ−1.

Hence,
(

K/F
Q′

)
= g if and only if σ ∈ CG(g). By the orbit-stabiliser lemma again, the number

of distinct primes Q′ with
(

K/F
Q′

)
= g is

|CG(g)|
| Stab(Q1) ∩ CG(g)|

=
|CG(g)|

|D(Q1 | p) ∩ CG(g)|
=

|CG(g)|
|D(Q1 | p)|

,

where we have used both the definition of D(Q1 | p) and the fact that D(Q1 | p) = ⟨g⟩ ⊆
CG(g). In conclusion, the number of primes of K lying over p and having Artin symbol g is
|CG(g)|
|D(Q1|p)| =

|G|
|C|·f , where f = |D(Q1 | p)| = ord(g) = |H|. By what we already argued above, this

is also the number of primes in Tg lying over p.

On the other hand, by Proposition 1.6.11, Chebotarev’s theorem holds for the extension
E ⊂ K, hence we have

DensE(Tg) =
1

|H|
=

1

f
. (1.27)

Recall that we replaced S by its subset S ′ of primes whose residue field is a prime field.
From the above discussion, noticing that by definition the norm of a prime p ∈ S ′ is the same
as the norm of any prime q ∈ Tg lying over p, we obtain

|G|
f |C|

∑
p∈S′

N(p)−s =
∑
q∈Tg

N(q)−s.

Dividing by log
(

1
s−1

)
and passing to the limit for s→ 1+, we obtain

|G|
f |C|

lim
s→1+

∑
p∈S′ N(p)−s

log
(

1
s−1

) = lim
s→1+

∑
q∈Tg

N(q)−s

log
(

1
s−1

) = DensE(Tg) =
1

f
.

This shows as desired that DensF (S
′) exists and equals |C|

|G| .
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1.6.3 Exercises

Exercise 1.6.15. Let G be a cyclic group of order n =
∏
pαi
i and let m =

∏
pβi

i be a divisor
of n (so that 0 ≤ βi ≤ αi for every i). Prove that

# {g ∈ G : ord(g) ≡ 0 (mod m)} = n
∏
pi|m

(
1− 1

pαi+1−βi

i

)
.

Exercise 1.6.16. Let S1, S2 be disjoint sets of primes in a number field F . Prove that d−F (S1∪
S2) ≥ d−F (S1) + d−F (S2).



Chapter 2

Prerequisites for Tate’s thesis
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2.1 The Haar measure

In this section we review the theory of the Haar measure, the (essentially) canonical choice of
measure on a locally compact topological group. We review all the necessary definitions and
show the existence of this special measure. We also prove uniqueness (up to constants) in the
abelian case.

2.1.1 Preliminaries

Definition 2.1.1. Let X be a Hausdorff topological space. The Borel σ-algebra on X, denoted
B(X), is the σ-algebra generated by the open subsets of X. The elements of B(X) are called
Borel subsets of X.

Definition 2.1.2. Let X be a Hausdorff topological space, and let A be a σ-algebra on X such
that B(X) ⊆ A. A measure µ on A is called regular (or Radon) if the following hold.

1. µ(K) <∞ for all compact subsets K of X;

2. µ(A) = inf{µ(U) : U is open and A ⊆ U} for all A ∈ A, and

3. µ(U) = sup{µ(K) : K is compact and K ⊆ U} for all open subsets U of X.

A measure satisfying part (2) is called outer regular, and a measure satisfying part (3) is
called inner regular.

Definition 2.1.3. Let G be a group, let a ∈ G, and let A and B be subsets of G. We define
the following sets.

1. aB = {ab : b ∈ B}.

2. Ba = {ba : b ∈ B}.

3. AB = {ab : a ∈ A, b ∈ B}.

4. A−1 = {a−1 : a ∈ A}.

A set A such that A = A−1 is called symmetric.

Definition 2.1.4. A topological group is a group G endowed1 with a topology τ such that
the product m : G×G→ G and the inverse i : G→ G are continuous with respect to (τ × τ, τ)
and (τ, τ), respectively. We will denote by e the identity of G.

An isomorphism of topological groups φ : G1 → G2 is an isomorphism of groups that is
also a homeomorphism of topological spaces. A locally compact topological group is a
Hausdorff topological group G with the property that every point (equivalently, the identity)
has an open neighbourhood with compact closure.

1more precisely: the underlying set of G is endowed
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Definition 2.1.5. Let G be a topological group. The functions

La : G → G
x 7→ ax

and
Ra : G → G

x 7→ xa

are called respectively the left translation by a and the right translation by a.

Remark 2.1.6. For any a ∈ G, the functions La and Ra are homemorphisms from G to itself.
Note that the inversion map ι : G→ G is also a homeomorphism.

Lemma 2.1.7. Let G be a topological group and fix a ∈ G.

1. If U is a fundamental system of neighbourhoods for the identity e of G, then the collections
{aU : U ∈ U} and {Ua : U ∈ U} are fundamental systems of neighbourhoods for a.

2. If K and L are compact subsets of G, then the sets aK, Ka, K−1 and KL are compact.

Proof. 1. We have already observed that La, Ra are homeomorphisms, hence they carry
fundamental systems of neighbourhoods to fundamental systems of neighbourhoods.

2. The sets in question are images of K (respectively, K × L) under the continuous maps
La, Ra, ι (respectively, m : G×G→ G).

Lemma 2.1.8. Let G be a topological group and U be an open neighbourhood of e.

1. There exists an open neighbourhood V of e such that V V ⊆ U .

2. There exists a symmetric open neighbourhood V of e such that V ⊆ U .

Proof. 1. The set m−1(U) ⊆ G×G is open, hence it contains an open set of the form V1×V2
with V1, V2 open in G. Setting V := V1∩V2 we then have V V = m(V, V ) ⊆ m(V1, V2) ⊆ U .

2. The intersection V := U ∩ U−1 is open and symmetric.

Definition 2.1.9. Let X be a topological space and let f : X → C be a continuous function.
The support of f , denoted supp(f), is the closure of the set {x ∈ X : f(x) ̸= 0}.

IfX is Hausdorff and locally compact, we write K(X) for the C-vector space of all continuous
functions f : X → C with compact support.

Remark 2.1.10. For every function f ∈ K(X), the real-valued function |f | is bounded. More-
over, if µ is a regular Borel measure on X, then f is µ-integrable. Indeed, f is Borel-measurable
because it is continuous, and since µ is regular, µ(supp(f)) <∞, so

∫
X
|f | dµ =

∫
supp(f)

|f | dµ ≤
µ(supp(f)) · ∥f∥∞ is certainly finite.

Proposition 2.1.11. Let G be a topological group, let K be a compact subset of G, and let U
be an open subset of G containing K. There exist open neighbourhoods VR and VL of e such
that KVR ⊆ U and VLK ⊆ U .
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Proof. We give the construction for VR, that for VL being virtually identical. For every x ∈
K consider the open neighbourhood x−1U of e. By Lemma 2.1.8 (2), there exists an open
neighbourhood Vx of e such that VxVx ⊆ x−1U . The set {xVx}x∈K is an open cover of K. Let
x1Vx1 , . . . , xnVxn be a finite subcover, and set VR :=

⋂n
i=1 Vxi

. We claim that KVR ⊆ U . Indeed,
for any k ∈ K there exists i ∈ {1, . . . , n} such that k ∈ xiVxi

, hence (using VR ⊆ Vxi
) we obtain

kVR ∈ xiVxi
Vxi

⊆ xi
(
x−1
i U

)
= U.

2.1.2 Haar measure: existence

Definition 2.1.12 (Haar measure). Let G be a locally compact group. A left Haar measure
on G is a nonzero regular Borel measure µ on G that is invariant under left-translations, in the
sense that µ(gA) = µ(A) for all g ∈ G and all A ∈ B(G). Right Haar measures are defined
similarly.

Remark 2.1.13. Note that, since Lg is a homeomorphism, Lg(A) = gA is a Borel set if and
only if A is. In particular, µ(gA) makes sense.

Remark 2.1.14. If G is commutative, a measure µ is a left Haar measure if and only if it is a
right Haar measure. In general, µ is a left Haar measure if and only if A 7→ µ(A−1) is a right
Haar measure. From now on, following a well-established tradition, we will only consider the
case of left Haar measures, leaving the case of right-invariant measures as a simple exercise.

Example 2.1.15 (Some basic Haar measures). The following are examples of (left and right)
Haar measures.

1. Let G be a finite group endowed with the discrete topology. The counting measure on G
(that is, µ(A) = |A|) is a Haar measure.

2. Let G = (R,+) with its usual topology. The restriction of the Lebesgue measure to the
σ-algebra B(R) is a Haar measure.

3. Let G = (R+, ·) and let µ = 1
x
dx, where dx is the standard Lebesgue measure (restricted

to the σ-algebra B(R)). Then µ is a Haar measure on G: this follows from the change-
of-variables formula in elementary integration theory, since for any g ∈ R+ we have

µ(gA) =

∫
gA

1 dµ =

∫
gA

dx

x
=

∫
A

d(gx)

gx
=

∫
A

dx

x
= µ(A).

The main theorem in this section shows that every locally compact topological group carries
a(t least one) Haar measure:

Theorem 2.1.16 (Existence of the Haar measure). Let G be a locally compact topological
group. There exists a left Haar measure µ for G.

The proof will occupy the rest of this section. We start with four simple lemmas in topology.

Lemma 2.1.17. Let X be a Hausdorff topological space, and let K and L be disjoint compact
subsets of X. There exist disjoint open subsets U and V of X such that K ⊆ U and L ⊆ V .



2.1. THE HAAR MEASURE 71

Proof. Easy exercise.

Lemma 2.1.18. Let X be a locally compact Hausdorff topological space. Let x ∈ X and let
U be an open neighbourhood of x. There exists an open neighbourhood V of x with compact
closure that satisfies V ⊆ U .

Proof. Since X is locally compact, there is an open neighbourhood W of x with compact
closure. Replacing W with W ∩U if necessary, we may assume that W ⊆ U (note that W ∩ U
is closed in W , hence it is a closed subset of a compact set, and therefore it is itself compact).
Consider the sets {x} and W \W , which are compact and disjoint. Lemma 2.1.17 shows the
existence of disjoint open subsets V1 and V2 such that {x} ⊆ V1 and W \W ⊆ V2. The set
V1 ∩W an open neighbourhood of x whose closure is compact (proven as above) and satisfies
V1 ∩W ⊆ W ⊆ U (indeed, V1 ∩W does not meet V2 = W \W ).

Corollary 2.1.19. Let X be a locally compact Hausdorff topological space, let K be a compact
subset of X, and let U be an open subset of X containing K. There exists an open subset V of
X such that V is compact and that satisfies K ⊆ V ⊆ V ⊆ U .

Proof. For each point of K find a neighbourhood Vx as in the previous lemma. The union of
the Vx covers K: extract a finite cover Vx1 , . . . , Vxn and set V = ∪Vxi

.

Lemma 2.1.20. Let X be a locally compact Hausdorff topological space, let K be a compact
subset of X, and let U1 and U2 be open subsets of X such that K ⊆ U1 ∪ U2. There exist
compact sets K1 and K2 such that K = K1 ∪K2, K1 ⊆ U1 and K2 ⊆ U2.

Proof. Let U, V be the open sets obtained from applying Lemma 2.1.17 to the disjoint compact
sets K \ U1 and K \ U2. We can take K1 = K \ V and K2 = K \ U : these are closed in K,
hence compact, and K1 ⊆ K \ (K ∩ U2) ⊆ U1 (and similarly for K2). Finally, their union is all
of K since U1 ∩ U2 = ∅.

We now have all the ingredients to construct a Haar measure on any locally compact group.
The key idea is that the ‘size’ of a subset X of G should be measured as follows: one takes a
‘small’ neighbourhood of the identity U , and counts how many translates of U are necessary to
cover X. In order to make sense of this, one should first work with compact subsets X (which
ensures that finitely many translates of U suffice), and of course we also need to somehow
normalise this counting (morally, we would like to divide by the size of U itself). Since we do
not know how to assign a measure to U yet, we declare that its measure is inversely proportional
to the number of translates needed to cover a fixed reference compact set K0. Once we have a
notion of size for compact sets, the rest of the construction is standard: we first obtain an outer
measure on all Borel subsets of G, and finally check that this is in fact already a measure. We
now start putting this strategy in practice.

Remark 2.1.21. The construction sketched above is reminiscent of the Hausdorff measure in
Rn, which assigns a size to sets by counting how many balls of radius ε are needed to cover
it, in the limit ε → 0. The added difficulty we face here is that we don’t know what volume
to assign to (the analogue of) a ball of radius ε, because for general G there is no such simple
fundamental system of neighbourhoods of the identity as in the case of Rn.
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Proof of Theorem 2.1.16. We start by defining a notion of ‘index’ (K : V ), whenever K is
compact and V has non-empty interior V ◦: we set

(K : V ) = min{n ∈ N : there exists a cover of K by n translates of V ◦}.

It is clear that the definition is well-posed: {xV ◦}x∈G is an open cover of K, hence we can
extract a finite one. Notice that (K : V ) = 0 if and only if K = ∅.

Now, using the assumption of local compactness, fix a neighbourhood of the identity with
compact closure K0. This is our ‘reference compact set’; note that K◦

0 is non-empty, hence we
can also measure the index (K : K0) for any compact set K.

Let C be the collection of all compact subsets of G and let U be the collection of all open
neighbourhoods of the identity. For each U ∈ U we define a function

hU : C → R
K 7→ (K:U)

(K0:U)
.

The next lemma gives some basic properties of the functions hU .

Lemma 2.1.22. Fix U ∈ U , K,K1, K2 ∈ C and x ∈ G. The following hold.

1. 0 ≤ hU(K) ≤ (K : K0).

2. hU(K0) = 1.

3. hU(xK) = hU(K).

4. If K1 ⊆ K2, then hU(K1) ≤ hU(K2).

5. hU(K1 ∪K2) ≤ hU(K1) + hU(K2).

6. If K1U
−1 ∩K2U

−1 = ∅, then hU(K1 ∪K2) = hU(K1) + hU(K2).

Proof. Parts (2) and (4) are clear, as is the lower bound in (1). For the upper bound in (1), let
{xiK◦

0}i=1,...,(K:K0) be an open cover of K with translates of K◦
0 and let {yjU}j=1,...,(K0:U) be an

open cover of K0 with translates of U . Then, we have

K ⊆
(K:K0)⋃
i=1

xiK
◦
0 ⊆

(K:K0)⋃
i=1

xiK0 ⊆
(K:K0)⋃
i=1

xi

(K0:U)⋃
j=1

yjU

 =
⋃
i,j

xiyjU,

hence K can be covered by at most (K : K0)(K0 : U) translates of U . This gives (K : U) ≤
(K : K0)(K0 : U), which is equivalent to the desired upper bound.

For (3), observe that translating every element of an open cover of K by x gives an open
cover of xK with the same number of elements. For (5), use that the union of an open cover
of K1 and an open cover of K2, consisting respectively of (K1 : U) and (K2 : U) translates of
U , gives an open cover of K1 ∪K2 consisting of (K1 : U) + (K2 : U) translates of U .

Finally, for (6), we need to show the inequality hU(K1 ∪ K2) ≥ hU(K1) + hU(K2), or
equivalently, (K1 ∪K2 : U) ≥ (K1 : U) + (K2 : U). Let {xU} be an open cover of K1 ∪K2. We
claim that each set xU in the cover meets at most one of K1, K2: if we had xU ∩K1 ̸= ∅ and
xU ∩K2 ̸= ∅, then x would be both in K1U

−1 and in K2U
−1, contradiction since by assumption

K1U
−1 ∩K2U

−1 = ∅. Hence, from {xU} we can extract two disjoint subsets, one covering K1

and the other covering K2. The desired inequality follows immediately.
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We now construct a suitable limit of the functions hU , arguing by compactness. Let

X :=
∏
K∈C

[0, (K : K0)]

and note that X, being a product of non-empty compact intervals of R, is a non-empty compact
space. We consider X as a subset of RC, the space of functions from C to R. Lemma 2.1.22
shows that each hU is an element of X.

We now construct the desired ‘limit’ of the functions hU . For each open neighbourhood V
of e, let S(V ) be the closure in X of the set {hU : U ∈ U , U ⊆ V }. If V1, . . . , Vn are in U and
V is their intersection, then hV ∈

⋂n
i=1 S(Vi). This implies that any finite intersection of sets

S(Vi) is nonempty; by compactness,
⋂

V ∈U S(V ) is also non-empty. Let h◦ be an element of
this intersection. The next lemma is the analogue of Lemma 2.1.22 for h◦.

Lemma 2.1.23. Fix K,K1, K2 ∈ C and x ∈ G. The following hold:

1. 0 ≤ h◦(K).

2. h◦(∅) = 0.

3. h◦(K0) = 1.

4. h◦(xK) = h◦(K).

5. If K1 ⊆ K2, then h◦(K1) ≤ h◦(K2).

6. h◦(K1 ∪K2) ≤ h◦(K1) + h◦(K2).

7. If K1 ∩K2 = ∅, then h◦(K1 ∪K2) = h◦(K1) + h◦(K2).

Proof. The key point is that, by the definition of the product topology, for any fixed K ∈ C,
the projection

X → R
h 7→ h(K)

is continuous. This implies easily all statements (1) through (6): for example, for (6), fix K1, K2

and consider the function

X → R
h 7→ h(K1) + h(K2)− h(K1 ∪K2).

As already argued, this function is continuous. By Lemma 2.1.22 (5) it is non-negative on every
hU , hence (by continuity) on every S(V ), and thus, in particular, on h◦.

Part (7) requires some more care. By Lemma 2.1.17, there exist open sets U1, U2 with
K1 ⊆ U1, K2 ⊆ U2 and U1 ∩ U2 = ∅. Proposition 2.1.11 gives two open neighbourhoods V1, V2
of e such that KiVi ⊆ Ui for i = 1, 2. Letting V = V1 ∩ V2, we have K1U

−1 ∩K2U
−1 = ∅ for

any U ⊆ V −1, and therefore hU(K1 ∪K2) = hU(K1) + hU(K2) for any such U (Lemma 2.1.22
(6)). By continuity, the same condition holds for all h ∈ S(V −1), and in particular for h◦.
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The function h◦ is essentially the desired Haar measure. We now carry out the necessary
measure-theoretic verifications. We define first an outer measure on open sets by setting

µ∗ : V → [0,∞]
U 7→ sup{h◦(K) : K ⊆ U,K ∈ C}, (2.1)

where V is the collection of all open sets in G. It is immediate to check that, if U is both open
and compact, then µ∗(U) = h◦(U). Next, we extend µ∗ to all subsets of G by setting

µ∗ : P(G) → [0,∞]
A 7→ inf{µ∗(U) : A ⊆ U,U ∈ V}. (2.2)

Lemma 2.1.23 implies that µ∗ is monotonic, non-negative, and satisfies µ∗(∅) = 0. It remains
to check that µ∗ is countably sub-additive and that all Borel sets are measurable.

It follows easily from the definition (2.2) that it suffices to check the sub-additivity on open
sets. Let {Ui}i≥1 be a countable collection of open sets in G and let K ⊆

⋃
i Ui be a compact

set. Since the Ui form an open cover of the compact set K, there is an index n such that
K ⊆

⋃n
i=1 Ui. By Lemma 2.1.20 and a straightforward induction, we obtain compact sets

K1, . . . , Kn such that Ki ⊆ Ui for i = 1, . . . , n and K = K1 ∪ · · · ∪Kn. By Equation (2.1) we
have µ∗(Ki) ≤ µ∗(Ui). Combining this with Lemma 2.1.23 (6) we obtain

µ∗(K) ≤
n∑

i=1

µ∗(Ki) ≤
n∑

i=1

µ∗(Ui) ≤
∞∑
i=1

µ∗(Ui).

Since this holds for all compact sets K ⊆
⋃

i Ui, taking the supremum in K we get µ∗ (
⋃

i Ui) ≤∑∞
i=1 µ

∗(Ui), as desired.

We now turn to the measurability of Borel sets. Since the set of measurable sets is a σ-
algebra, and since by definition B(G) is the σ-algebra generated by open sets, it suffices to show
that open sets are measurable. Recall that, by definition, a set X is µ∗-measurable if and only
if, for all subsets Y of G we have

µ∗(Y ) = µ∗(Y ∩X) + µ∗(Y \X). (2.3)

We claim that is enough to show this when Y is itself an open set. Indeed, suppose that the
equality

µ∗(V ) = µ∗(V ∩X) + µ∗(V \X) (2.4)

holds for all open sets V . Consider the infimum of the above expression over all open sets V
that contain Y . We have

1. infV⊇Y µ
∗(V ) = µ∗(Y ), by definition;

2. infV⊇Y µ
∗(V ∩X) ≥ µ∗(Y ∩X): to see this, recall that we are assuming X to be open,

so the intersection V ∩ X is open and contains Y ∩ X. Thus, the left-hand side of the
previous equality is the infimum of µ∗(U) over certain open subsets U containing Y ∩X.
Thus, the left-hand side is at least as large as the right-hand side (which is the infimum
of µ∗(U) over all open subsets U containing Y ∩X).
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3. infV⊇Y µ
∗(V \X) = µ∗(Y \X): to see this, write the definition of both sides as

inf
V⊇Y

inf
U1 open
U1⊇V \X

µ∗(U1) = inf
U2⊇Y \X

µ∗(U2).

Given a set U1 as on the left-hand side, this is in particular an open that contains Y \X,
hence it also appears in the infimum on the right-hand side. This proves that the LHS
is greater than or equal to the LHS. Conversely, let U2 be an open set that appears
in the infimum on the right-hand side. Then V = U2 ∪ X is an open set containing
(Y \X)∪X ⊇ Y , and U1 = U2 is an open set containing V \X = (U2 ∪X) \X = U2 \X.
Thus, U2 also appears in the infimum on the left-hand side, which establishes the opposite
inequality.

Thus, if (2.4) holds for all open sets X and V , taking the infimum as above we obtain

µ∗(Y ) ≥ µ∗(Y ∩X) + µ∗(Y \X)

for all sets Y . On the other hand, the opposite inequality is true by sub-additivity (which we
have already shown), hence we have obtained (2.3) for all open sets X and for all sets Y .

Hence, to finish the proof that Borel sets are measurable, it suffices to prove that if U, V
are open sets with µ∗(V ) <∞ we have

µ∗(V ) ≥ µ∗(V ∩ U) + µ∗(V ∩ U c).

Choose a compact subset K of V ∩ U with h◦(K) ≥ µ∗(V ∩ U) − ε and a compact subset L
of V ∩Kc with h◦(L) ≥ µ∗(V ∩Kc)− ε. Clearly K and L are disjoint and V ∩ U c ⊆ V ∩Kc.
Since µ∗ is monotonic, we have

h◦(L) ≥ µ∗(V ∩Kc)− ε ≥ µ∗(V ∩ U c)− ε

and from Lemma 2.1.23 (7) we obtain

h◦(K∪L) = h◦(K)+h◦(L) ≥ (µ∗(V ∩ U)− ε)+(µ∗(V ∩ U c)− ε) = µ∗(V ∩U)+µ∗(V ∩U c)−2ε.

Since K ∪ L ⊆ V we have obtained

µ∗(V ) ≥ h◦(K ∪ L) ≥ µ∗(V ∩ U) + µ∗(V ∩ U c)− 2ε

for all ε. Taking the limit ε → 0 finishes the proof that V is µ∗-measurable. In particular,
the restriction of µ∗ to the Borel σ-algebra is a measure µ. By property (4) in Lemma 2.1.23,
the measure µ satisfies µ(xA) = µ(A) for every Borel set A and every x ∈ G. Furthermore, it
follows from Lemma 2.1.23 (3) and the definition of µ∗ that µ is nonzero. To show that µ is
the desired Haar measure it now suffices to check that it is regular (see Definition 2.1.2).

If K a compact set and U is an open set containing K, then by definition h◦(K) ≤ µ∗(U) =
µ(U). Taking the infimum over all U we obtain

h◦(K) ≤ µ(K). (2.5)

Suppose now that V is open with compact closure. Then for every compact subset L of V
we have h◦(L) ≤ h◦(V ) by Lemma 2.1.23 (5). Taking the supremum over L we obtain that
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µ(V ) ≤ h◦(V ) is finite (notice that h◦ is finite on compact sets by definition). If K is an
arbitrary compact subset of G, then by Corollary 2.1.19 (applied to K and U = G) there exists
an open set V containing K whose closure is compact. Thus, by monotonicity we have that
µ(K) ≤ µ(V ) ≤ h◦(V ) is finite. We have checked property (1) in the definition of a regular
measure. Outer regularity (property (2) in the definition) is an immediate consequence of the
definition in Equation (2.2), while inner regularity follows from Equations (2.1) and (2.5).

We conclude this section by highlighting the key property of Haar measures from the stand-
point of integration:

Theorem 2.1.24 (Invariance of the Haar integral under translation). Let G be a locally compact
group and µ be a left Haar measure on G. Let furthermore f be a µ-integrable function on G
and fix x ∈ G. We have ∫

G

f(t) dµ(t) =

∫
G

f(x−1t) dµ(t).

Sketch of proof. When f is the characteristic function of a (measurable) set A, the function
f(x−1t) is the characteristic function of xA, so we have

∫
G

f(t) dµ(t) = µ(A) = µ(xA) =

∫
G

f(x−1t) dµ(t),

as desired. By linearity, the claim holds for all simple functions, and by passing to the limit we
obtain it for all measurable functions.

2.1.3 Haar measure: uniqueness (up to constants)

In the previous section we have shown that every locally compact group carries at least one
(left) Haar measure. It can be shown that this measure is in fact essentially unique:

Theorem 2.1.25 (Uniqueness of the Haar measure up to constants). Let G be a locally compact
group and let µ1, µ2 be two left Haar measures on G. There exists c ∈ R, c > 0, such that
µ2 = cµ1.

It wouldn’t be too hard to prove this theorem in general, but since we only need it for the
case of abelian groups, we limit ourselves to giving a (shorter and easier) proof for this special
case. For the general case, the reader can refer to [RV99, pp. 16–19].

Proof in the commutative case. Fix a non-zero, non-negative function g ∈ K(G) (see Definition
2.1.9; that one such function exists follows for example from Urysohn’s lemma). It is easy to see
that one can choose g in such a way that

∫
G
g(x−1) dµ1(x) > 0. Let f(x) ∈ K(G) be arbitrary.
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Using the Fubini-Tonelli theorem together with Theorem 2.1.24 we compute∫
G

f(x) dµ1(x) ·
∫
G

g(y) dµ2(y) =

∫
G

∫
G

f(x)g(y) dµ1(x) dµ2(y)

=

∫
G

∫
G

f(xy)g(y) dµ1(x) dµ2(y)

y 7→x−1y=yx−1

=

∫
G

∫
G

f(y)g(yx−1) dµ1(x) dµ2(y)

=

∫
G

f(y)

(∫
G

g(yx−1) dµ1(x)

)
dµ2(y)

=

∫
G

f(y)

(∫
G

g(x−1) dµ1(x)

)
dµ2(y)

=

(∫
G

g(x−1) dµ1(x)

)∫
G

f(y) dµ2(y).

Rearranging, we have obtained∫
G

f(y) dµ2(y) =

∫
G
g(y) dµ2(y)∫

G
g(x−1) dµ1(x)

·
∫
G

f(x) dµ1(x),

where the ratio c :=
∫
G g(y) dµ2(y)∫

G g(x−1) dµ1(x)
is independent of f (recall that we chose g(x) so that the

denominator is strictly positive). We have thus obtained∫
G

f dµ2 = c

∫
G

f dµ1

for all f ∈ K(X). Standard arguments in measure theory (e.g., using Riesz’s representation
theorem 2.1.28, which says that measures are equivalent to positive linear functionals on the
space of compactly supported continuous functions) then imply µ2 = cµ1, as desired.

Remark 2.1.26. An alternative proof of the same result, not using Theorem 2.1.28 or Urysohn’s
lemma, goes as follows. Let K be a compact set with non-empty interior U (which exists, be-
cause by assumption G is locally compact). We first claim that µ1(K) and µ2(K) are non-zero.
Indeed, suppose by contradiction that µj(K) = 0 (for j = 1 or j = 2). Any compact set K ′

can be covered with finitely many translates x1U, . . . , xnU of the interior U of K. Using the
translation-invariance of Haar measures we then have

µj(K
′) ≤

n∑
i=1

µj(xiU) =
n∑

i=1

µj(U) ≤ nµj(K) = 0,

so every compact set has measure 0. By regularity, this implies that µj is identically 0, contra-
diction.

Take now g = 1K−1 to be the characteristic function of K−1 and f = 1V to be the char-
acteristic function of any open set V with compact closure. The argument in the previous
proof shows that µ2(V ) = cµ1(V ), where the constant c is independent of V . Thus, µ2 and cµ1

coincide on all open sets with compact closure. By outer regularity, this easily implies that µ2

and cµ1 coincide on all compact sets; and by inner regularity, this finally implies µ2 = cµ1.
This remark is due to Davide Colpo and Giulio Grammatica.
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Definition 2.1.27. Let G be a locally compact group. We denote by L1(G) the C-vector space
of functions f : G → C such that

∫
G
|f | dµ < ∞, where µ is any left Haar measure on G. By

Theorem 2.1.25, this definition is independent of the choice of the Haar measure.

We conclude this section by stating the exact form of the Riesz(-Markov-Kakutani) rep-
resentation theorem we used above. It will also later help us obtain Haar measures on the
multiplicative group of a field.

Theorem 2.1.28 (Riesz–Markov–Kakutani). Let X be a locally compact Hausdorff space. For
any positive linear functional ψ on K(X), there is a unique Radon measure µ on X such that

∀f ∈ Cc(X) : ψ(f) =

∫
X

f(x) dµ(x).

2.2 Abstract Fourier analysis

Our purpose in this section is to generalise Theorem 1.5.17 to an arbitrary locally compact
abelian group. We will not give proofs: the statements should all look familiar and believ-
able, but the detailed arguments get complicated. The interested reader may refer to any
of the following sources: the original paper by Cartan and Godement [CG47]; Chapter 4 of
[Fol16]; Chapter 3 of [RV99] (Chapter 2 of the same book covers the relevant spectral theory
prerequisites).

We mention right at the start that, when working with a general topological group G, one
can consider both

• its characters, that is, the continuous homomorphisms G→ S1 = {z ∈ C : |z| = 1};

• its quasi-characters, that is, the continuous homomorphisms G→ C×.

Note that the two notions coincide when G is finite, which is why we didn’t have to worry
about the distinction in Section 1.5. While in this section we are mostly concerned with the
actual characters of a group, the more general notion of quasi-character will be central in Tate’s
thesis.

2.2.1 Pontryagin duality: general case

We start by stating Pontryagin duality in general (see Proposition 1.5.8 for the finite case). We
omit the proof, for which the reader can refer to [RV99, Proposition 3-2 and Theorem 3-20].

Definition 2.2.1 (Topological dual group). Let G be a locally compact abelian group. We
denote by

Ĝ = Homcont(G,S1)

the group of continuous homomorphisms from G to S1. We endow Ĝ with the compact-open
topology, defined as follows. For every compact neighbourhood K of idG in G and every open
neighbourhood V of 1 ∈ S1, denote by

U(K,V ) = {χ ∈ Ĝ : χ(K) ⊆ V }.
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The (compact-open) topology on Ĝ is by definition the topology having the sets {U(K,V )}K,V

as a basis of neighbourhoods of the trivial character. We extend it to a topology on Ĝ by using
the group structure as usual (that is, a basis of neighbourhoods around a general element χ ∈ Ĝ
is {χU(K,V )}K,V ). The topological group thus obtained is called the Pontryagin dual of G.

Theorem 2.2.2 (Pontryagin duality). For every locally compact abelian group G let Ĝ be the
Pontryagin dual group as in Definition 2.2.1.

1. Ĝ is also a locally compact abelian group.

2. The canonical map

Ψ : G → ˆ̂
G

g 7→ Ψg,

where Ψg is given by

Ψg : Ĝ → C×

χ 7→ χ(g),

is an isomorphism of topological groups.

3. G is compact if and only if Ĝ is discrete.

Remark 2.2.3. Every finite group G is a topological group when equipped with the discrete
topology. Moreover, in this case, the compact-open topology on Ĝ is also the discrete topology.
Thus, applying Theorem 2.2.2 to the case of finite groups recovers Proposition 1.5.8.

We also have the following analogue of Proposition 1.5.10 (see [Fol16, Proposition 4.39,
Theorem 4.40] for a proof):

Proposition 2.2.4 (Functoriality of G 7→ Ĝ, locally compact case). Let G be a locally compact
abelian group. The following hold:

1. The association G 7→ Ĝ can be extended to a contravariant functor from the category of
locally compact abelian groups to itself by letting it act on arrows as follows: if f : G→ H
is a continuous group homomorphism between locally compact abelian groups, we define

f̂ : Ĥ → Ĝ
χ 7→ χ ◦ f.

2. This functor is exact: for every short exact sequence2

0 → H
ι−→ G

π−→ G/H → 0,

the dual sequence

0 → Ĝ/H
π̂−→ Ĝ

ι̂−→ Ĥ → 0

is also exact in the category of locally compact abelian groups. In particular, Ĝ/H is
closed in Ĝ, and can be identified with the subgroup

H⊥ = {χ ∈ Ĝ : χ|H = 1},

which is itself a closed subgroup of Ĝ.
2in the category of locally compact abelian groups: in particular, H has to be closed in G
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We also mention the following analogue of Proposition 1.5.12 for compact groups:

Proposition 2.2.5. Let G be a compact abelian group and let χ ∈ Ĝ be a character. We have∫
G

χ(g) dg =

{
0, if χ ̸= idĜ

µ(G), otherwise

Proof. Exactly as in the finite case: if χ is nontrivial, there exists a ∈ G such that χ(a) ̸= 1.
Using the translation-invariance property of the Haar measure,

χ(a)

∫
G

χ(g) dg =

∫
G

χ(ag) dg =

∫
G

χ(g) dg,

hence
∫
G
χ(g) dg = 0.

2.2.2 The abstract Fourier transform

Let G be a locally compact abelian group and let µG be a choice of Haar measure on G. (If G
is compact, we can normalise our choices by taking as µG the unique normalised Haar measure,
but this is not important for the discussion of this section.)

Recall from Definition 2.1.27 the C-vector space L1(G) of complex-valued integrable func-
tions on G. We now introduce a notion of Fourier transform in this generality, which will
generalise both the usual notion of Fourier transform encountered in real and complex analysis
and the Fourier transform of Definition 1.5.15.

Definition 2.2.6 (Abstract Fourier transform). Let G be a locally compact topological group
with a fixed choice µG of Haar measure and let f ∈ L1(G). We define the (abstract) Fourier
transform of f as

f̂ : Ĝ → C
χ 7→

∫
G
f(g)χ(g) dµG(g).

Remark 2.2.7. Note that the integral makes sense:
∫
G
|f(g)χ(g)| dµG(g) =

∫
G
|f(g)| dµG(g) <

∞ since χ takes values in S1.

It will be useful to single out a class of well-behaved functions:

Definition 2.2.8. We denote by V1(G) the C-vector space of functions f : G→ C that satisfy
the following three conditions:

1. f is continuous;

2. f is in L1(G);

3. f̂ is in L1(Ĝ).

Remark 2.2.9. In the previous definition, L1(G), L1(Ĝ) are defined with respect to any choice
of Haar measures on G, Ĝ: since any two Haar measures only differ by a constant, the spaces
L1(G), L1(Ĝ) are independent of this choice.
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The main theorem of abstract Fourier analysis can be stated as follows (for a proof see
[Fol16, Theorem 4.33] or [RV99, Theorem 3-9]; notice that in our statement the function f is
assumed to be continuous).

Theorem 2.2.10 (Fourier inversion for the abstract Fourier transform). Let G be a locally
compact topological group with a fixed choice µG of Haar measure. There is a unique Haar
measure µĜ on Ĝ such that the following holds: for all functions f ∈ V1(G) we have

f(g) =

∫
Ĝ

f̂(χ)χ(g) dµĜ(χ) ∀g ∈ G.

Definition 2.2.11 (Dual measure). In the context of Theorem 2.2.10, we will say that µĜ is

the measure on Ĝ dual to the given Haar measure on G.

Remark 2.2.12. A crucial feature of Theorem 2.2.10 is the fact that the Haar measure µĜ is
independent of the function f . Notice that Haar measures are determined up to a constant,
and therefore, one can determine µĜ in the following way. Let µ be any Haar measure on Ĝ:
then µĜ = αµ for some nonzero α. The inversion formula yields

f(g) = α

∫
Ĝ

f̂(χ)χ(g) dµ(χ). (2.6)

In particular, if one can compute
∫
Ĝ
f̂(χ)χ(g) dµ(χ) for even a single function f and a single

g ∈ G, the previous equation uniquely determines α (provided that f(g) ̸= 0) and hence µĜ.

Example 2.2.13 (Recovering the finite case). Let G be a finite abelian group. We endow
G with the counting measure, which is a Haar measure since it is obviously invariant under
translation by an element of G. Notice that with this choice of Haar measure on G the Fourier
transform coincides with that of Definition 1.5.15.

What is the measure µĜ appearing in Theorem 2.2.10? Following Remark 2.2.12, we take
f = 1e, the characteristic function of the singleton {e}, where e is the identity of G. The
Fourier transform is

f̂(χ) =

∫
G

f(g)χ(g) dµG =
∑
g∈G

δg,eχ(g) = χ(e) = 1,

that is, the constant function 1. The dual measure µĜ is some multiple α of the counting

measure on Ĝ. With reference to Equation (2.6), we take µ to be the counting measure on Ĝ,
f = 1e and g = e. With these choices we obtain

1 = f(e) = α
∑
χ∈Ĝ

f̂(χ)χ(e) = α
∑
χ∈Ĝ

1 = α · |G|,

which yields α = 1
|G| . Thus, µĜ is 1

|G| times the counting measure, and we recover Theorem
1.5.17.
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2.3 Review of local fields

In this section, we give a quick review of the basics of the theory of completions of number
fields. The standard reference on the general theory of local fields is Serre’s classical book
[Ser79].

Definition 2.3.1 (Norm on a number field, place). Let K be a number field. A (multiplicative)
norm on K is a function

d : K → R≥0

x → |x|

that satisfies the following:

1. |xy| = |x| · |y|;

2. |x+ y| ≤ |x|+ |y|;

3. |x| = 0 if and only if x = 0.

The norm is called non-archimedean if it further satisfies |x+y| ≤ max{|x|, |y|}. Every norm
induces a distance, hence a topology, on K. Two norms | · |1, | · |2 on a number field are called
equivalent if they induce the same topology on K. An equivalence class of norms is called a
place of K.

Remark 2.3.2. Note that equivalent norms induce the same topology, so to each place we can
attach a topology on K.

The classification of places of a number field is known as Ostrowski’s theorem. Before
stating it, we describe a way to obtain a norm on a number field starting from a prime of its
ring of integers.

Definition 2.3.3 (p-adic norm). Let K be a number field and let p be a prime ideal of the
ring of integers OK . Let q be the size of the residue class field Fp := OK/p.

1. A uniformiser at p is an element π ∈ OK such that the factorisation of (π) is of the form
pI, with (p, I) = (1). Equivalently, it is an element in p \ p2 (the equivalence, and the
fact that p \ p2 is non-empty, follows from unique factorisation in ideals, Theorem 1.3.3).

2. The p-adic valuation vp on K is the function

vp : K× → Z
x 7→ vp(x)

defined as follows. Given x ∈ K×, there exists a unique integer n such that x/πn is in
O×

K : we set n = vp(x). We further set, conventionally, vp(0) = ∞.

3. The p-adic norm on K is then obtained by setting

∥x∥p := q−vp(x).
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Theorem 2.3.4 (Ostrowski). Let K be a number field. Denote by σ1, . . . , σn1 , τ1, τ1, . . . , τn2 , τn2

the embeddings of K in C, as in Section 1.3.6 (in particular, the image of each σi is contained
in R, while the image of each τi is not). The following is a complete list of non-equivalent
norms on K (that is, a complete list of places of K):

1. ∥x∥σi
:= |σi(x)|, for i = 1, . . . , n1, where | · | is the standard norm on R; the corresponding

places are called real;

2. ∥x∥σj
:= |σj(x)|2, for j = 1, . . . , n2, where | · | is the standard Euclidean norm on C; the

corresponding places are called complex;

3. ∥x∥p for each non-zero prime ideal p of the ring of integers OK; the corresponding places
are called finite, and are precisely the non-archimedean ones.

Each place is an equivalence class of norms. For each place, we will consistently take as
representative given in Ostrowski’s theorem, with the normalisation of Definition 2.3.3. (We
chose a normalisation when we set ∥π∥p = q−1. One can replace q with any other real number
greater than 1 and obtain an equivalent norm, but our choice has several technical advantages.)

Example 2.3.5 (Places of Q). The places ΩQ of Q are in bijection with {p : p prime} ∪ {∞},
with ∞ conventionally representing the place coming from the obvious embedding Q ↪→ R. For
every non-zero rational number x = a

b
and every prime p, write x = pn

a′p
b′p
, where n is a (positive

or negative) integer and (a′p, p) = (b′p, p) = 1. The different norms are then given by

∥x∥p = p−n, ∥x∥∞ = |x|.

One further piece of notation:

Definition 2.3.6. We will write ΩK for the set of all places of K and Ω∞
K for the subset of

‘infinite places’, that is, the archimedean ones. As already mentioned in Theorem 2.3.4, a place
is called ‘finite’ if it is non-archimedean, that is, it lies in ΩK \ Ω∞

K .
We will usually denote a place by v, or, if it comes from a prime p of OK , simply by p. By a

slight abuse of notation, we will write ∥x∥v for the norm of x ∈ K, as measured by our standard
norm which represents the place v. When v is a finite place, corresponding to the prime ideal
p of OK , we denote by qv the size of the residue field OK/p and by pv its characteristic.

Exercise 2.3.7 (Product formula for K = Q). Check that
∏

v∈ΩQ
∥x∥v = 1 for every x ∈ Q×.

The previous exercise is no coincidence:

Theorem 2.3.8 (General product formula). Let K be a number field. The equality∏
v∈ΩK

∥x∥v = 1

holds for every x ∈ K×.

Possibly the most important use of place is to define the completions of a number field:
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Definition 2.3.9 (Completion of a number field). Let K be a number field and let v be a place
of K. We denote by Kv the completion of K with respect to the topology induced by v. It is a
topological field, that is, the operations + : K ×K → K, · : K ×K → K and −1 : K× → K×

are continuous. We will usually refer to Kv as the completion of K at v.

Remark 2.3.10. Let ∥ · ∥ be a norm corresponding to v. By general facts in topology, ∥ · ∥
extends to a norm on Kv (which we still denote by the same symbol) and makes Kv into a
complete metric space.

Exercise 2.3.11. Let K be a (number) field and let ∥ · ∥ be a norm on K.

1. Prove that the subspace topology on K× coincides with the subspace topology induced
on K× by the topology of K ×K, where K× is embedded in K ×K via x 7→ (x, x−1).

2. Prove that x 7→ x−1 is continuous.

Exercise 2.3.12. Let R be the ring Q equipped with the topology for which a basis of open
neighbourhoods of q ∈ Q is given by {q +mZ}m∈Z>0 . Prove that R is a topological ring (that
is, the operations +,− and · are continuous), but −1 : R× → R× is not continuous for the
subspace topology.

Completions of number fields can be described fairly explicitly:

1. when v is a real place, the completion is isomorphic to R;

2. when v is a complex place, the completion is isomorphic to C;

3. when v is a finite place of characteristic p, the completion is a finite extension of the field
Qp, the completion of Q with respect to the p-adic metric. Such fields are called p-adic
fields.

In general, the completion of a number field at a (finite or infinite) place is called a local
field. (There is a more general definition of local fields, but we will not need it here.)

The field Qp of p-adic numbers, and more generally its finite extensions, have been ex-
tensively studied, and a lot is known about their structure. Here, we will limit ourselves to
mentioning some of their fundamental properties, starting with the fact that, for every finite
extension L of Qp, there exists a number field K and a place v of K of characteristic p such
that L is isomorphic to Kv as a topological field.

Theorem 2.3.13. Let L be a finite extension of Qp (equivalently: let L be the completion of
some number field K at a place v of characteristic p). Let ∥ · ∥ be the norm on L (see Remark
2.3.10 in case L is obtained as the completion of a number field). The following hold:

1. OL = {x ∈ L : ∥x∥ ≤ 1} is a subring of L, called the ring of integers;

2. O×
L = {x ∈ L : ∥x∥ = 1} is its group of units;

3. OL is a local ring; its maximal ideal m is principal, and any generator of m is called a
uniformiser π of L;

4. every ideal of OL is a power of m; in particular, every element x of L× can be written as
x = u · πn for some n ∈ Z and u ∈ O×

L ; the integer n is called the valuation of x;
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5. the quotient κL := OL/m is a finite field, of cardinality pf ; the integer f is called the
inertia degree of L over Qp;

6. the ideal (p)OL is of the form (πe); the integer e is called the ramification index of L
over Qp;

7. let L be obtained as the completion of a number field K at a finite place p. Write (p)OK =
pe

′
I, with (p, I) = (1). The ramification index and inertia degree of L over Qp coincide

with the ramification index and inertia degree of p over p.

We also mention the fact that, once the completions of Q have been constructed, the com-
pletions of an arbitrary number field can also be described in the following, more algebraic
terms.

Theorem 2.3.14 (Completions and tensor products). Let K be a number field of signature
(n1, n2), and let pe11 · · · perr be the factorisation in OK of the ideal (p), where p is a prime of Z.

1. The tensor product K⊗QR is isomorphic (as a topological ring) to the product Rn1 ×Cn2.

2. The tensor product K⊗QQp is isomorphic (as a topological ring) to the product
∏r

i=1Kpi.
The field Kpi is a finite extension of Qp of degree eifi, where ei := e(pi

∣∣ p) and fi :=
f(pi

∣∣ p). Moreover, the ramification index and inertia degree of Kpi over Qp are given
by ei and fi, respectively.

We will also make use of some fundamental topological properties of the completions Kv.
The most important one is of course their completeness, which is true by construction. Another
fact (well-known in the real and complex case, and easy to prove in the p-adic setting) which
we will need is the following:

Proposition 2.3.15. Let Kv be a completion of a number field and let X be a subset of Kv.
The topological closure X of X in Kv is compact if and only if X is bounded with respect to the
norm on Kv. In particular, Kv is locally compact, and so is K×

v .

Exercise 2.3.16. Prove Proposition 2.3.15.

In the next chapter we will need the notion of different of an extension of p-adic fields (in
particular when the ground field is Qp itself).

Definition 2.3.17 (Different). Let L/K/Qp be finite extensions of p-adic fields. The different
of L over K is the fractional ideal of L given by

d−1
L/K = {x ∈ L : trL/K(xy) ∈ OK ∀y ∈ OL}.

The absolute different of L, denoted simply by dL, is the different of the extension L/Qp.

Remark 2.3.18. Notice that d−1
L/K contains the ring of integers OL; it follows that its inverse

dL/K is contained in OL and is therefore an integral ideal.

It is not hard to show the following result:
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Theorem 2.3.19. Let L/K be a finite extension of p-adic fields. Define the (relative) dis-
criminant of L over K like in the number field case, that is,

dL/K =
(
det
(
σi(αj)

)2)
,

where the σi, for i = 1, . . . , [L : K] are the embeddings of L into K that fix K, and the αj, for
j = 1, . . . , [L : K], are a basis of OL over OK. Notice however that dL/K is only an integral
ideal of OK and not an actual number.

The (absolute value of the) discriminant |dL/K | is equal to NL/K(dL/K), the norm from L
to K of the different of L over K.

Using Theorem 2.3.14, the study of extensions of number fields can be reduced to a large
extent to the local case. For example, one has the following:

Theorem 2.3.20. Let K be a number field. For every prime p we have K ⊗ Qp =
∏

p|pKp,
where p ranges over the primes of OK of characteristic p. We have

|dK | =
∏
p

∏
p|p

N(dKp/Qp) :

the global discriminant is the product of all the local ones.

Remark 2.3.21. Note that the equality in the previous theorem should be interpreted purely
as an equality of ideals, not of numbers.

Since the different and the discriminant can be defined in terms of traces, Theorem 2.3.20
is related to the following statement (see e.g. [Neu99, Proposition II.8.2 and Corollary II.8.3]
for a proof):

Theorem 2.3.22. Let K be a number field and p be a prime number. Write K ⊗ Qp as the
direct product

∏
p|pKp, where p ranges over the primes of OK of characteristic p. We have

trK⊗Q(x) =
∑
p|p

trKp/Qp(x)

for all x ∈ K. Similarly, for p = ∞ write K ⊗R as the direct product
∏

v infinite placeKv, where
v ranges over the infinite places of K. We have

trK⊗R(x) =
∑

v infinite place

trKv/R(x).

Exercise 2.3.23. Prove the case p = ∞ of Theorem 2.3.22.
Hint. Using properties of the trace, reduce to the Galois case. Treat this case explicitly.

2.4 Restricted direct products

We discuss the notion of restricted direct product from several points of view: abstract
group theory, topology, measure theory, Pontryagin duality, and Fourier analysis. In this
section, given a set of indices I, we say that a property holds for almost all i ∈ I if it holds for
all but finitely many i.
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2.4.1 Abstract group theory

We start by introducing a general definition of restricted product:

Definition 2.4.1 (Restricted product of groups). Let (Gi)i∈I be a collection of groups and let
(Hi)i∈I be a collection of subgroups, with Hi < Gi for each i. The restricted product of the
groups Gi with respect to the subgroups Hi is the subset of

∏
i∈I Gi given by

{(xi) ∈
∏
i

Gi : there exists a finite subset S ⊆ I : xi ∈ Hi for all i ̸∈ S}.

Note that the subset S in the previous definition can depend on (xi)i∈I . The restricted product
is often denoted by

∏′
i∈I(Gi, Hi),

∏
i∈I(Gi, Hi), or simply

∏′
i∈I Gi if the Hi are clear from the

context.

Remark 2.4.2. Note that the definition makes sense even if, for i in some finite subset S0 of
indices, the group Hi is not defined: indeed, we may always take S (as in the definition above)
to contain S0, and therefore, we don’t need to know anything about the groups Hi for i ∈ S0.

Exercise 2.4.3. Check that the restricted product
∏′(Gi, Hi) is a subgroup of

∏
Gi.

There is also an obvious variant of this definition where the Gi are replaced by rings Ri and
the Hi by subrings:

Definition 2.4.4 (Restricted product of rings). Let (Ri)i∈I be a collection of rings and let
(Ti)i∈I be a collection of subrings, with Ti ⊆ Ri for every i. The restricted product of the
rings Ri with respect to the subrings Ti is the subset of

∏
i∈I Ri given by

{(xi) ∈
∏
i

Ri : there exists a finite subset S ⊆ I : xi ∈ Ti for all i ̸∈ S}.

For our applications, by far the most interesting examples of restricted products will be the
group of idèles and the ring of adèles. We now introduce these objects, which we will then
study in more detail in the next subsections.

Let now k be a number field and let Ωk be the collection of its places. For each v ∈ Ωk, we
can consider:

1. the completion kv and its non-zero elements k×v ;

2. the “integers” Ov, which are defined in the usual way if v is a finite place, and as Ov := kv
if v is an archimedean place;

3. the “units” uv, which are defined in all cases as O×
v .

Both the ring of adèles and the group of idèles are suitable restricted products:

Definition 2.4.5 (Adèles and idèles). We call

Ak :=
∏ ′

(kv,Ov)

the ring of adèles of k, and

Ik :=
∏ ′

(k×v ,O×
v )

the group of idèles of k.
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The following exercise is essential:

Exercise 2.4.6. The group of units of Ak (as a ring) is Ik.

2.4.2 Topological groups

The definitions of the last section already cover the basic algebraic properties of adèles and
idèles. However, matters become more complicated (and interesting) when we want to equip
AK and IK with a topology. To this end, we give yet another definition of restricted product,
this time in a topological setting.

Definition 2.4.7 (Restricted product of locally compact abelian groups). Let I be a set of
indices and let {Gi}i∈I be a collection of locally compact abelian groups. Suppose that, for
almost all i ∈ I (meaning ‘for all but a finite number of elements of I’), we are also given a
subgroupHi ⊂ Gi which is open and compact. We define the topological group G :=

∏′
i(Gi, Hi)

as follows:

• as a group, it is the restricted product of Definition 2.4.1 (with the interpretation of
Remark 2.4.2);

• a fundamental system of neighbourhoods of 1 in G is given by the sets
∏

i∈I Ni, where
each Ni is a neighbourhood of 1 in Gi for all i and Ni = Hi for almost all i.

Remark 2.4.8. 1. Naturally, we can and will identify each Gi0 to a subgroup of the re-
stricted product (specifically, the subgroup of elements x = (xi) for which xi = 1 for all
i ̸= i0). The natural map is an isomorphism of topological groups.

2. Let S be a finite set of indices, including those for which Hi is not defined. The set
GS := {x = (xi) ∈ G : xi ∈ Hi ∀i ̸∈ S} is a subgroup ofG, and is an open neighbourhood
of 1.

3. Let GS be as above. Then, GS
∼=
∏

i∈S Gi ×
∏

i ̸∈S Hi is a direct product of locally
compact groups, almost all of which are compact. It follows that GS is locally compact,
hence (since GS is a neighbourhood of 1 in G) that G is also locally compact.

4. By definition, G =
⋃

S⊆I
S finite

GS.

The groups GS, being direct products, are already easier to analyse than the restricted
product G. An even simpler class of subgroups is given in the next definition:

Definition 2.4.9. Notation as in Definition 2.4.7. Let S be a finite subset of I. We denote by
GS ⊂ GS the subgroup of those elements x = (xi) ∈ G such that xi = 1 for i ∈ S and xi ∈ Hi

for i ̸∈ S.

A useful property of the topology on a restricted direct product is given in the following
lemma:

Lemma 2.4.10. Notation as in Definition 2.4.7. A subset C ⊆ G is relatively compact (that
is, has compact closure) if and only if it is contained in a product

∏
i∈I Bi where each Bi is

a compact subset of the corresponding Gi and Bi = Hi for almost all i (recall that the Hi are
compact by definition). Moreover, every compact subset of G is contained in some GS.



2.4. RESTRICTED DIRECT PRODUCTS 89

Proof. Let K be a compact subset of G: we claim that there exists S such that K ⊆ GS. To
see this, recall that we have already observed that the groups GS cover G, so K ⊆S

⋃
GS,

and by compactness we have K ⊆ GS1 ∪ · · · ∪ GSr (recall that the GSi
are open). Notice

furthermore that GS1 ∪ · · · ∪ GSr ⊆ GS1∪···∪Sr , so – setting S =
⋃
Si – we have that K is a

subset of GS =
∏

i∈S Gi ×
∏

i ̸∈S Hi. (This shows the last statement in the lemma.) Finally,
let Ki := πi(K) for i ∈ S: then Ki is compact (continuous image of a compact set), and by
construction we have K ⊆

∏
i∈S Ki ×

∏
i ̸∈S Hi, as desired.

Conversely, Tychonoff’s theorem implies the compactness of any product
∏

iBi (where each
Bi is compact and Bi = Hi for almost all i); any such set is contained in some GS, hence it is
a compact subset of G. Hence, if K is contained in

∏
iBi with the Bi as above, its closure is

contained in a compact set and is therefore compact.

2.4.3 (Quasi-)Characters of a restricted product

Let G =
∏′(Gi, Hi) be a restricted direct product in the sense of Definition 2.4.7. We now

wish to study the quasi-characters of G, that is, the continuous homomorphisms from G to C×.
Given a c : G→ C×, we denote by ci its restriction to Gi, that is,

ci : Gi → C×

xi 7→ c((1, 1, . . . , 1, xi, 1, . . .)).

It is clear that ci is a homomorphism Gi → C×. The next two lemmas show how to factor any
continuous c : G→ C× as a product of ci.

Lemma 2.4.11. The homomorphism ci is trivial on Hi for almost all i, and for every x ∈ G
we have

c(x) =
∏
i∈I

ci(xi),

where almost all of the factors of the product are equal to 1.

Proof. Let U be a neighbourhood of 1 in the complex plane that contains no multiplicative
subgroup (Exercise 3.1.18). Let N =

∏
iNi be a neighbourhood of the identity in G such that

c(N) ⊆ U . By Definition 2.4.7, we may assume that Ni = Hi for almost all i. If we let S be
a finite set containing all the indices i for which Ni ̸= Hi, then N contains GS, and therefore
c(GS) ⊆ U is a subgroup of U , hence is trivial. It follows that c(Ni) = c(Hi) = {1} for i ̸∈ S.
Now, for a given x ∈ G, enlarging S if necessary we can assume x ∈ GS. Identify xi ∈ Gi

(the i-th component of x) to the element of G that coincides with x in position i and is 1
elsewhere, and denote by xS ∈ GS the element such that x =

∏
i∈S xi · xS. We already know

that c(GS) ⊆ c(N) = {1}, hence

c(x) =
∏
i∈S

c(xi) · c(xS) =
∏
i∈S

ci(xi) =
∏
i

ci(xi)

as desired (the last equality holds since ci(xi) = 1 for i ̸∈ S).

Conversely, starting from a collection of ci that are almost all trivial on the corresponding
Hi we obtain a global homomorphism c:
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Lemma 2.4.12. For each i ∈ I fix a continuous homomorphism ci : Gi → C×. Suppose that
ci is trivial on Hi for all but finitely many i. The map

c(x) =
∏
i

ci(xi)

is a well-defined continuous homomorphism G→ C×.

Proof. It is clear that c is well-defined (almost all factors in the product are equal to 1) and
multiplicative (it is by restriction to any GS). To prove continuity, let U be an open neigh-
bourhood of 1 in the complex plane and choose a finite set S containing all the i for which
ci(Hi) ̸= {1}. Let furthermore V be a neighbourhood of 1 in C such that V #S ⊆ U . For each
i ∈ I, define

Ni =

{
an open neighbourhood of the identity in Gi such that c(Ni) ⊆ V , if i ∈ S

Hi, if i ̸∈ S

Letting N =
∏

iNi, we have

c(N) ⊆
∏
i

ci(Ni) ⊆ V #S ⊆ U.

To check continuity in general, consider now an arbitrary open subset V of C×. Either
c−1(V ) is empty, in which case we are done, or it is not. If it is not, let g be a point in c−1(V ).
By definition of the topology on C×, the open set V contains an open neighbourhood of c(g) of
the form c(g)Ug, where Ug is an open neighbourhood of 1 in C×. By what we already showed,
there is an open neighbourhood Ng of 1 in G such that c(Ng) ⊆ Ug. It follows that c−1(V )
contains gNg, which is an open neighbourhood of g. Since this holds for every g, the set c−1(V )
is open and c is continuous.

We summarise the above discussion as follows:

Proposition 2.4.13. The quasi-characters c of G are in bijection with the collections (ci)i∈I ,
where each ci is a quasi-character of Gi and ci|Hi

is trivial for almost all i.

The same arguments apply verbatim to characters, and show that the characters of G are
of the form

∏
i ci, where each ci is a character (and not just a quasi-character) of Gi and almost

all ci are trivial on Hi. This already suggests that the dual group of G is itself a restricted
product. We now make this precise.

For each i where Hi is defined, let H
⊥
i ⊆ Ĝi be the subgroup

H⊥
i = {ci ∈ Ĝi

∣∣ ci(Hi) = {1}}.

By Theorem 2.2.2 and Proposition 2.2.4, the fact that Hi is compact implies that its dual

Ĥi
∼= Ĝi

H⊥
i

is discrete, and hence H⊥
i is open in Ĝi. Similarly, the fact that Hi is open implies

that Gi/Hi is discrete, and hence Ĝi/Hi
∼= H⊥

i is compact. Thus, the subgroups H⊥
i have all

the necessary characteristics to form a restricted product, and we have:

Theorem 2.4.14 (Dual group of a topological restricted product). The dual group of
∏′

i(Gi, Hi)

is
∏′

i(Ĝi, H
⊥
i ).
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Proof. Restricting the bijection of Proposition 2.4.13 to characters yields an isomorphism φ of
abstract groups

∏′
i(Ĝi, H

⊥
i )

∼= Ĝ, sending (ci)i∈I to
∏

i∈I ci. We check that this isomorphism
is also a homeomorphism.

Fix a basis element for the topology Ĝ, say U(K,V ), where K is a compact neighbourhood
of the identity in G and V is an open neighbourhood of 1 in S1. Restricting V if necessary, we
assume that V contains no non-trivial subgroup of C×.

We want to find a neighbourhood
∏

iNi of 1 in
∏′

i(Ĝi, H
⊥
i ) such that (ci)i∈I ∈

∏′
i(Ĝi, H

⊥
i )

implies
∏

i ci ∈ U(K,V ). Now, since K is compact, by Lemma 2.4.10 it is contained in a
product of the form

∏
i∈I Bi, where each Bi is compact and Bi = Hi for almost all i. Let

S be the (finite) set of indices for which Bi ̸= Hi. Choose furthermore V ′ to be an open
neighbourhood of 1 in S1 that satisfies (V ′)#S ⊆ V . Setting

Ni =

{
U(Bi, V

′) if i ∈ S

H⊥
i if i ̸∈ S

we obtain that
∏
Ni is a neighbourhood of 1 in

∏′
i(Ĝi, H

⊥
i ) and φ(

∏
iNi) ⊆ U(K,V ). Indeed,

if (ci)i∈I is in
∏

iNi we have

(
∏
i

ci)(K) ⊆ (
∏
i

ci)(
∏
i

Bi) =
∏
i∈S

ci(Bi) ⊆ (V ′)#S ⊆ V,

that is, φ((ci)i∈I) ∈ U(K,V ). This shows continuity of φ.

Continuity of φ−1 : Ĝ→
∏′

i(Ĝi, H
⊥
i ) is similar. Let

∏
iNi be an open neighbourhood of 1 in∏′

i(Ĝi, H
⊥
i ), where all but finitely many of the Ni coincide with H⊥

i . Write S for the finite set
of indices for which Ni ̸= H⊥

i . Restricting the neighbourhood (which we can certainly do), we
may and do assume that, for i ∈ S, we have Ni = U(Ki, Vi) for certain compact neighbourhoods
Ki of the identity in Gi and neighbourhoods Vi of 1 in S1. Let V =

⋂
i∈S Vi. Shrinking V if

necessary, we can assume that V contains no non-trivial subgroups of S1. Set Ki = Hi for i ̸∈ S
and consider the open subset U(

∏
Ki, V ) of Ĝ.

Since (φ−1)−1 = φ simply sends c to the collection (ci)i∈I of the restrictions of c to each
factor Gi, for c ∈ U(

∏
Ki, V ) we have φ−1(c)i ∈ Ni for every i. Indeed:

• if i ̸∈ S, then ci(Ki) = ci(Hi) ⊆ V implies ci(Hi) = {1}, hence ci ∈ H⊥
i = Ni.

• if i ∈ S, then ci(Ki) ⊆ V ⊆ Vi implies ci ∈ Ni by definition.

2.4.4 Measure theory

Consider again a collection of locally compact topological groups Gi, and fix (for almost all
i) an open, compact subgroup Hi of Gi. Fix furthermore a Haar measure dgi on each Gi and
suppose that

∫
Hi
dgi = 1 for almost all i. Notice that we require dgi to be defined for all indices

i; it’s only the condition
∫
Hi
dgi = 1 that is allowed to fail (for finitely many indices).

We now define a Haar measure dg on G =
∏′(Gi, Hi) which is morally the product of the

measures dgi. To do this, fix any finite subset S of the indices (containing those for which Hi is
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not defined) and write GS = (
∏

i∈S Gi)×GS. Notice that GS ∼=
∏

i ̸∈S Hi is compact. It carries

a unique Haar measure dgS normalised in such a way that∫
GS

dgS =
∏
i ̸∈S

(∫
Hi

dgi

)
. (2.7)

The product measure dgS =
(∏

i∈S dgi
)
×dgS is therefore well-defined on GS =

(∏
i∈S Gi

)
×GS.

Furthermore, it is a Haar measure (one can check translation-invariance one coordinate at a
time). Since GS is open in G, there exists a unique measure Haar dg on G such that the the
restriction of dg to GS coincides with dgS. In principle, the measure dg thus constructed could
depend on the set S. To show that it is well-defined, it suffices to check that, if T is another set
of indices, the restriction of dgS to GS ∩ GT coincides with the restriction of dgT to GS ∩ GT .
Replacing T with T ∪ S, we can and do assume that S ⊆ T , so that GS ⊆ GT . There is an
obvious decomposition

GS =

 ∏
i∈T\S

Hi

×GT ,

and we claim that

dgS =

 ∏
i∈T\S

dgi

× dgT .

Indeed, both are Haar measures, so – in order to check that they coincide – it suffices to
show that they give the same (non-zero) volume to some subset. In particular, evaluating the
right-hand side of the previous (claimed) equality on GS we obtain∏

i∈T\S

∫
Hi

dgi ·
∫
GT

dgT =
∏

i∈T\S

∫
Hi

dgi ·
∏
i ̸∈T

(∫
Hi

dgi

)
=
∏
i ̸∈S

(∫
Hi

dgi

)
=

∫
GS

dgS,

as desired. Thus, upon restriction to GS we have

dgS =

(∏
i∈S

dgi

)
× dgS =

(∏
i∈S

dgi

)
×

 ∏
i∈T\S

dgi

× dgT = dgT ,

as claimed.

Definition 2.4.15 (Haar measure on a restricted product). We denote the measure dg just
constructed by

∏
i dgi.

Definition 2.4.16 (Limit over S). Let S be the collection of all finite subsets of I, let X be
a topological space, and let φ : S → X be a function we write limS φ(S) = x if the following
holds: for every open subset U of X containing x, there exists a finite set V (U) ∈ S such that
V (U) ⊆ S ⇒ φ(S) ∈ U .

Equivalently: add to S a formal point ∞ and make S ∪ {∞} into a topological space
by declaring that a basis consists of the sets WV := {∞} ∪ {S : S ⊇ V }. We then have
limS φ(S) = x if and only if the extended function φ̃ : S ∪ {∞} → V that sends ∞ to x is
continuous at x.

In particular, if f is a function on indices, we define∏
i∈I

f(i) = lim
S

∏
i∈S

f(i).
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Intuitively, one can think of limS φ(S) as the limit of the values φ(S) as the set S gets larger
and larger.

Lemma 2.4.17. Let f : G→ C satisfy one of the following:

1. f is measurable, real-valued and non-negative, or

2. f is in L1(G).

Then,
∫
G
f(g) dg = limS

∫
GS
f(g) dg.

Proof. Under either assumption,
∫
G
f(g) dg is the limit of

∫
B
f(g) dg for larger and larger com-

pacts B ⊆ G. We know that each compact is contained in some GS, see Lemma 2.4.10.

Definition 2.4.18 (Product functions). For each i ∈ S fix a continuous function fi : Gi → C
with fi ∈ L1(Gi). Suppose that fi|Hi

= 1 for almost all i. We define the function

f =
∏

i∈I fi : G → C
g = (gi)i∈I 7→

∏
i∈I fi(gi).

Notice that the product
∏

i∈I fi(gi) contains only finitely many terms different from 1, for each
g = (gi) ∈ G.

Lemma 2.4.19. Let f =
∏

i∈I fi be a product function as in Definition 2.4.18.

1. f is continuous on G.

2. Let S be a finite subset of I containing the (finitely many) indices i for which fi(Hi) ̸= {1}
and those for which

∫
Hi
dgi ̸= 1. We have∫

GS

f(g) dg =
∏
i∈S

(∫
Gi

fi(gi) dgi

)
.

Proof. 1. Upon restriction to a set of the form GS, f is the product of finitely many contin-
uous functions, hence continuous. Since the GS are open and cover G, f is continuous on
G.

2. For g ∈ GS, say g = (gi)i∈I , we have as above

f(g) =
∏
i∈S

fi(gi).

Hence (recalling the defining property (2.7) of dgS)∫
GS

f(g) dg =

∫
GS

f(g) dgS =

∫
GS

(∏
i∈S

fi(gi)

)(∏
i∈S

dgi × dgS

)

=
∏
i∈S

(∫
Gi

fi(gi) dgi

)
×
∫
GS

dgS =
∏
i∈S

(∫
Gi

fi(gi) dgi

)
×
∏
i ̸∈S

(∫
Hi

dgi

)
=
∏
i∈S

(∫
Gi

fi(gi) dgi

)
,

where in the last equality we used the fact that
∫
Hi
dgi = 1 for every i ̸∈ S.
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The previous two lemmas yield the following result:

Theorem 2.4.20. Let f be a product function as in Definition 2.4.18. Assume∏
i

(∫
Gi

|fi(gi)| dgi
)
<∞,

where the meaning of the product is as in Definition 2.4.16. Then f(g) is in L1(G), and∫
G

f(g) dg =
∏
i

(∫
Gi

fi(gi) dgi

)
.

Proof. Apply Lemmas 2.4.17 and 2.4.19 to |f(g)| =
∏

i |fi(gi)| shows that f ∈ L1(G), at which
point the same lemmas (applied to f(g) itself) yield the result.

2.4.5 Fourier analysis

We have seen in Theorem 2.4.14 that for a restricted direct product G =
∏′

i∈I(Gi, Hi) we have

Ĝ =
∏
i∈I

′
(Ĝi, H

⊥
i ).

Denote by c = (ci)i∈I an element of Ĝ, that is, a continuous homomorphism G → S1. Let dci
be the measure on Ĝi dual to the measure dgi on Gi (see Definition 2.2.11).

Lemma 2.4.21. The following hold.

1. Let fi be the characteristic function of Hi. Its Fourier transform is
∫
Hi
dgi times the

characteristic function of H⊥
i .

2.
(∫

Hi
dgi

)(∫
H⊥

i
dci

)
= 1.

Proof. 1. By definition,

f̂i(ci) =

∫
Gi

fi(gi)ci(gi) dgi =

∫
Hi

ci(gi) dgi.

By Proposition 2.2.5, this integral is 0 if ci(gi) is nontrivial on H (that is, if 1H⊥
i
(ci) = 0),

and is
∫
Hi
dgi otherwise.

2. Since f = 1Hi
is in L1(Gi), is continuous, and has its Fourier transform in L1(Ĝi) (by

part (1) of the lemma), Fourier inversion (Theorem 2.2.10) gives

1Hi
(g) =

∫
Ĝi

f̂(ci)ci(g) dci =

∫
Ĝi

(∫
Hi

dgi

)
1H⊥

i
(ci)ci(g) dci =

(∫
Hi

dgi

)(∫
H⊥

i

ci(g)dci

)
.

Evaluating at g ∈ Hi yields

1 =

(∫
Hi

dgi

)(∫
H⊥

i

dci

)
as claimed.
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Thus, we see that the collection {dci}i∈I of the dual measures satisfies the condition to give

a measure
∏
dci on Ĝ =

∏′
i∈I(Ĝi, H

⊥
i ). We denote this measure by dc.

Lemma 2.4.22 (Product decomposition for the Fourier transform). If fi belongs to V1(Gi) for
all i ∈ I and fi(gi) = 1Hi

for almost all i, then the function f(g) =
∏

i fi(gi) belongs to V1(G)

and has Fourier transform f̂(c) =
∏

i f̂i(ci).

Proof. Apply Theorem 2.4.20 to the function f(g)c(g) =
∏

i fi(gi)ci(gi): it implies that f̂(c) =∏
i f̂i(ci).

Since fi ∈ V1(Gi) for all i, we have f̂i ∈ L1(Ĝi) for all i. Moreover, by Lemma 2.4.21, f̂i is
the characteristic function of H⊥

i for almost all i. From this, Lemma 2.4.19 and Lemma 2.4.21
(2) we then obtain f̂ ∈ L1(Ĝ). Since f is continuous and in L1(G) (again by Lemma 2.4.19),
we get that f is in V1(G).

Corollary 2.4.23. The measure dc =
∏

i dci is dual to dg =
∏

i dgi.

Proof. The previous lemma (applied to Ĝ, with the measure dc) shows that the Fourier inversion
formula

f(g) =

∫
Ĝ

f̂(c)c(g) dc

holds at least for the product functions considered in the lemma. Since the dual measure of
(G, dg) is unique, it must be dc.
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Tate’s thesis
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3.1 The local theory

In this section we let k := Kv be the completion of a number field K at a place v. If v is a
finite place, so that k is a p-adic field, we denote by O its ring of integers. We denote by x the
variable in the additive group (k,+), and by α the variable in (k×, ·). In particular, we will
eventually denote by dx and dα certain Haar measures on (k,+) and on (k×, ·), respectively.

3.1.1 The additive group

Recall our choice of norm on k = Kv:

1. the ordinary absolute value if k ∼= R;

2. the square of the ordinary absolute value if k ∼= C;

3. ∥α∥ = (Np)−vp(α), if v is the finite place corresponding to the prime p.

We begin by studying the group of characters of the locally compact group k+ := (k,+).

Proposition 3.1.1. Let χ be any non-trivial character of k+.

1. For each η ∈ k, the map x 7→ χ(ηx) is a continuous character.

2. The map αχ : k+ → k̂+ given by η 7→ χη, where χη(x) := χ(ηx), is an isomorphism (of
topological groups) between k+ and its character group.

Proof. Since x 7→ ηx is a continuous homomorphism of k+ into itself, by composition with χ
we see that χη is indeed a continuous character of k+. One checks easily that η 7→ χη is a
homomorphism. Moreover, αχ is injective, because χη is the trivial character 1 if and only if
χ(ηx) = 1 for all x ∈ k. Since χ is non-trivial, there exists y ∈ k such that χ(y) ̸= 1. If η ̸= 0,
setting x = y/η gives a contradiction, so χη is trivial only for η = 0.

Next we show that αχ is a topological isomorphism between k and its image (and in par-

ticular, that αχ is open). We start by recalling the topology on k̂+. By definition, a basis of

neighbourhoods of the identity in k̂+ is given by the U(K,V ) (see Definition 2.2.1), where K is
a compact neighbourhood of 0 ∈ k and V is a neighbourhood of 1 ∈ S1. Clearly, it suffices to
let K and V range over a basis of neighbourhoods of 0 and 1 in k and S1, respectively. Thus,
we may only consider

K = Cm = {x ∈ F : ∥x∥ ≤ m} and V = Vε = {z ∈ S1 : ∥z − 1∥ < ε}.

Since χ is continuous, for all ε > 0 there exists a δ > 0 such that

∥χ(x)− 1∥ < ε whenever ∥x∥ < δ. (3.1)

Since αχ is a group homomorphism, to show that it is continuous it suffices to show that it is
continuous at the identity. Explicitly, we have to show that for every U(Cm, Vε) there exists an
open neighbourhood W of 0 in k+ such that

αχ(W ) ⊆ U(Cm, Vε),
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that is, we must choose W in such a way that for every x ∈ W

∥αχ(x)(y)− 1∥ < ε ∀y ∈ Cm,

or equivalently,
∥χ(xy)− 1∥ < ε ∀y ∈ Cm.

Thus, it suffices to take as W the open set {x ∈ F : ∥x∥ < δ
m
}: for x ∈ W and y ∈ Cm one has

∥xy∥ < δ
m
m = δ, and hence ∥χ(xy)− 1∥ < ε by (3.1).

Now we show continuity of α−1
χ : αχ(k) → k. Again by definition of the respective topologies,

we have to show that, for every δ > 0, there exist ε > 0,m ∈ R such that

αχ(x) ∈ αχ(k) ∩ U(Cm, Vε) =⇒ ∥x∥ < δ.

Since χ is nontrivial, there exists x0 ∈ k such that χ(x0) ̸= 1. Set

ε = ∥χ(x0)− 1∥, m =
2∥x0∥
δ

.

Suppose now that x is such that αχ(x) ∈ U(Cm, Vε), that is to say,

∥χ(xy)− 1∥ < ε ∀y with ∥y∥ < m.

Note that y = x−1x0 does not satisfy ∥χ(xy) − 1∥ < ε, hence y = x−1x0 does not satisfy
∥y∥ < m. This implies

∥x−1x0∥ ≥ m =
2∥x0∥
δ

⇒ ∥x∥−1 ≥ 2

δ
⇒ ∥x∥ ≤ δ

2
< δ,

as desired.
Since αχ is a topological isomorphism, αχ(k) is locally compact, hence closed (see Exercise

3.1.2). Thus, in order to show that αχ(k) = k̂+, it suffices to prove that H := αχ(k) is

everywhere dense in k̂+. We now observe that

H⊥ = {x ∈ k : ψ(x) = 1 ∀ψ ∈ H} = {x ∈ k : χ(xy) = 1 ∀y ∈ k} = {0},

which, by Proposition 2.2.4, yields

0 = Ĥ⊥ = k̂+/H,

hence H = k̂+, as desired.

Exercise 3.1.2. Let H be a locally compact subgroup of a topological group G. Prove that
H is closed in G.

Sketch of solution. Let K be the closure of H. It suffices to prove that K = H. Clearly, H
is dense in K (which is Hausdorff, since G is Hausdorff by assumption!). Given a point h ∈ H,
let U be an open neighbourhood of h in H whose closure C in H is compact. Write U = V ∩H
for some open V in K. Since C is compact and G (hence K) is Hausdorff, C is also closed
in K. Now observe that V \ C is open in K and does not meet H (since V ∩ H = U ⊆ C).
As H is dense in K but does not meet the open set V \ C, we must have V \ C = ∅, that is,
V ⊆ C ⊆ H, so H contains a neighbourhood of h. As h was arbitrary, we see that H is open
in K. Every open subgroup of a topological group is closed (consider the partition given by
its cosets), so in particular H is closed in K. Since K is the closure of H, we have K = H as
desired.
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Using Proposition 3.1.1, we may identify k+ with its dual provided that we fix a non-trivial
character. We start by defining a certain function λ : Qp → R/Z for each p ∈ {primes} ∪ {∞}.

1. if p = ∞, the completion Qp is R, and we let λ(x) be the class of −x in the quotient R/Z.
Note the choice of sign!

2. if p is a prime number, one can prove (see Exercise 3.1.3) that Qp/Zp is isomorphic to
the subgroup of Q/Z given by torsion elements of order a power of p. Identifying Q/Z to
a subset of R/Z, we take λ to be the projection

λ : Qp →
Qp

Zp

↪→ Q
Z
↪→ R

Z
.

Concretely, λ(x) can be described as follows: let v be an integer such that pvx is in Zp,
and let n be an integer such that n ≡ pvx (mod pv). We then have λ(x) = n

pv
(mod 1).

In particular, x− λ(x) is a p-adic integer.

Exercise 3.1.3. Let p be a prime number.

1. Describe an isomorphism between Qp/Zp and the p-power torsion of Q/Z.

2. Check the description of λ given above.

3. Check that λ is continuous.

Finally, if k = Kv is an arbitrary completion of a number field and if p is the prime of Q
‘lying under v’ (that is, p = ∞ if v is archimedean, and p = pv if v is finite), we have a natural
inclusion Qp ⊆ k. We then give the following definition.

Definition 3.1.4 (Fundamental character of the additive group). We set Λ(x) := λ
(
trk/Qp(x)

)
.

Since the trace map is continuous, Λ is a non-trivial, continuous map from k to R/Z. Using
Proposition 3.1.1, we obtain

Theorem 3.1.5 (Dual group of k+). k+ is isomorphic to its dual group via the isomorphism
η 7→ χη, where

χη(x) = e2πiΛ(ηx).

For later use, we record a lemma connecting properties of characters with the arithmetic of
k.

Lemma 3.1.6. Let v be a finite place of characteristic p. The character e2πiΛ(ηx) corresponding
to η is trivial on O if and only if η is in the inverse different ideal d−1

k (see Definition 2.3.17).

Proof. The character e2πiΛ(ηx) is trivial if and only if Λ(ηx) is an integer for every x ∈ O, if and
only if trk/Qp(ηx) is in Zp for every x ∈ O, if and only if η is in the inverse different.
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Choice of Haar measure

Let µ be a Haar measure on k+. We now investigate the interactions between µ and the
multiplicative structure of k, and describe the measure on the dual group which appears in
Theorem 2.2.10 (abstract Fourier inversion).

Lemma 3.1.7. For every α ∈ k× and for every measurable set M in k we have µ(αM) =
∥α∥µ(M) for the choice of norm ∥ · ∥ recalled at the beginning of Section 3.1.

Proof. Note that M 7→ µ(αM) is a Haar measure on k+, so µ(αM) = φ(α)µ(M) for some
constant φ(α) > 0 which may depend on α but not on M . To identify this constant, note
that in the real and complex case this is precisely ∥α∥, as follows from the change-of-variables
formula for integration that is familiar from analysis (in the complex case, note that α = u+ iv
acts on C ∼= R2 as the linear transformation(

x
y

)
7→
(
u v
−v u

)(
x
y

)
,

whose (Jacobian) determinant is u2 + v2 = ∥α∥). Finally, in the p-adic case, consider the set
M = O. Suppose first that α is integral: then O/αO has N(α) elements, which means that

O =
⊔N(α)

i=1 (xi + αO) for some collection x1, . . . , xN(α) of points in O. Since the Haar measure
is translation-invariant, we obtain

µ(O) =

N(α)∑
i=1

µ(xi + αO) = N(α)µ(αO).

If we let π be a uniformiser of k, we have α = πvu with v ∈ N and u ∈ O×, and N(α) =
N(π)v = ∥α∥−1. Thus, we conclude that

µ(O) = ∥α∥−1µ(αO),

as desired. Finally, if α has negative valuation, the same argument with α replaced by α−1

gives the desired statement.

By standard results in measure theory, Lemma 3.1.7 implies the following equality for inte-
grable functions f on k+ and for α ∈ k×:∫

k+
f(x) dµ(x) =

∫
k+
f(αx) dµ(αx) = ∥α∥

∫
k+
f(αx) dµ(x).

Remark 3.1.8 (Measure of a fractional ideal). Every fractional ideal of k is principal, generated
by a power of the uniformiser π. Writing I = (πv) and using Lemma 3.1.7, we obtain

µ(I) = µ(πvO) = ∥π∥vµ(O) = (Nπ)−vµ(O) = (N(I))−1µ(O).

The (essentially) canonical identification of k+ with its dual group provided by Theorem
3.1.5 allows us to interpret the abstract Fourier transform of a function on k+ (which would
formally be a function on the dual group of k+) as another function on k+ itself. We now
look for a choice of Haar measure on k+ that is ‘natural’ with respect to Fourier inversion.
More specifically, for every Haar measure on k+, Theorem 2.2.10 yields the existence of a
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corresponding Haar measure on the dual. However, since we have identified k+ with its dual,
this means that from every Haar measure on k+ we obtain a ‘Fourier-dual Haar measure’ on
k+ itself. The most natural choice is then to require that the Fourier-dual measure coincide
with the original measure! This is achieved by taking µk+ as in the following definition.

Definition 3.1.9 (Choice of Haar measure). We define µk+ to be

1. the ordinary Lebesgue measure on the the real line, if k is real;

2. twice the ordinary Lebesgue measure in the plane, if k is complex;

3. the unique Haar measure for which µk+(O) = N(dk)
−1/2, if k is p-adic.

We will simply write dx for dµk+(x).

We summarise (and give details for) the above discussion in the next theorem.

Theorem 3.1.10. Let dx denote the measure on k+ introduced in Definition 3.1.9. If we define
the Fourier transform f̂ of a function f ∈ L1(k+) by

f̂(η) =

∫
k+
f(x)e−2πiΛ(ηx) dx, (3.2)

then the inversion formula

f(x) =

∫
k+
f̂(η)e2πiΛ(xη) dη =

ˆ̂
f(−x)

holds for f ∈ V1(k+) (see Definition 2.2.8 for the notation V1).

Proof. Theorem 2.2.10 implies that the identity

f(x) = c

∫
k+
f̂(η)e2πiΛ(xη) dη

holds for some nonzero (in fact, positive) constant c independent of f , because the Fourier
transform defined in the statement is equivalent to the general, abstract Fourier transform of
Definition 2.2.6 under the isomorphism between k+ and its dual provided by Theorem 3.1.5.
Thus, it suffices to check that c = 1 for a single function f . We distinguish three cases, according
to the nature of k:

1. if k is real, we take f(x) = e−π∥x∥2 . The result then reduces to the classical calculation of
the Fourier transform of a Gaussian, see Exercise 3.1.11.

2. if k is complex, we similarly take f(x) = e−2π∥x∥ (recall that our norm on complex fields
is the square of the usual absolute value), see again Exercise 3.1.11.

3. if k is p-adic, we take as f the characteristic function of O. We compute its Fourier
transform: by definition,

f̂(η) =

∫
O
e−2πiΛ(ηx)dx.
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We are integrating a character of O on the whole group: similarly to Proposition 1.5.12,
the result is either 0 (if this character is nontrivial) or µk+(O). Using Lemma 3.1.6, we
obtain

f̂(η) =

{
µk+(O), if η ∈ d−1

k

0, otherwise,

and therefore f̂(η) = µk+(O)1d−1
k

= N(dk)
−1/21d−1

k
, where the last equality follows from

our normalisation µk+(O) = N(dk)
−1/2. Next, we plug f̂(η) in the Fourier inversion

formula: ∫
k+
f̂(η)e2πiΛ(xη) dη =

∫
d−1
k

N(dk)
−1/2e2πiΛ(xη) dη.

Fix a uniformiser π of k and write dk = πr. The change of variables η = π−ry leads to∫
d−1
k

N(dk)
−1/2e2πiΛ(xη) dη =

∫
O
N(dk)

−1/2e2πiΛ(xπ
−ry) ∥π−r∥ dy,

where we have used Lemma 3.1.7. By definition, ∥π−r∥ = N(πr) = N(dk). Finally,
applying Lemma 3.1.6 again,∫

k+
f̂(η)e2πiΛ(xη) dη = N(dk)

1/2µk+(O)1O(x) dx = 1O(x),

which concludes the proof.

Finally, we check the equality
ˆ̂
f(x) = f(−x). By definition,

ˆ̂
f(x) is the Fourier transform

of (3.2), hence it is given by

ˆ̂
f(η) =

∫
k+
f̂(x)e−2πiΛ(ηx) dx =

∫
k+
f̂(x)e2πiΛ((−η)x) dx = f(−η)

by what we already showed.

Exercise 3.1.11. Fill in the details of the proof of Theorem 3.1.10 in the real and complex
cases. It can be useful to recall (and prove, if necessary) the classical formula∫ ∞

−∞
e−ax2

e−2πikx dx =

√
π

a
e−π2k2/a.

Please try this exercise if you’ve never seen it before! A solution is given by Lemma 3.1.36.

3.1.2 The multiplicative group

We now turn to the study of characters of k∗, and more generally of quasi-characters, that
is, continuous homomorphisms k∗ → C×. A special such homomorphism is given by the norm
itself, α 7→ ∥α∥ ∈ R×. Of particular importance will be its kernel:

Definition 3.1.12. Following Tate, we denote by u the subgroup of k× of elements of norm 1,
that is, the kernel of ∥ · ∥ : k× → R×. Note that u is nothing else than the group of units O×.
We say that a quasi-character χ : k× → C× is unramified if χ(u) = 1.
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The unramified quasi-characters are easy to classify:

Lemma 3.1.13. The unramified quasi-characters of k× are the maps of the form c(α) = |α|s :=
es log ∥α∥, where s is any complex number. When v is archimedean, s is uniquely determined by
c; when v is finite, corresponding to a prime p, the number s is determined modulo 2πi

logN(p)
.

Proof. Clearly, it suffices to classify the continuous homomorphisms from c̃ : k×/u to C×. Since
u is the kernel of the norm, k×/u is isomorphic to the image of ∥ ·∥ (the ‘value group’), which is
the group of positive real numbers when v is archimedean and ⟨N(p)⟩ ∼= Z when v is finite and
corresponds to p. The claim follows easily: when v is finite, the value group ∥k×∥ is isomorphic
to Z, so a homomorphism from ∥k×∥ to C× is determined by its value on a generator. For the
archimedean case, see Exercise 3.1.14.

Exercise 3.1.14. Show that every continuous homomorphism from the positive reals to C× is
of the form x 7→ xs, and that different values of s give different homomorphisms.

We now give a partial description of all the quasi-characters of k×. This will be an immediate
consequence of Lemma 3.1.13 once we make the following observations:

1. if v is archimedean, every element α of k× can be written uniquely as α̃ρ with α̃ ∈ u and
ρ > 0;

2. if v is finite, letting π be a uniformiser of k, every element α of k× can be written uniquely
as α̃ρ with α̃ ∈ u and ρ a power of π.

In either case, the map α 7→ α̃ is a continuous homomorphism k× → u which is the identity on
u.

Exercise 3.1.15. Check that α 7→ α̃ is continuous when v is a finite place.
Hint. ρ is locally constant.

The following classification of quasi-characters is now immediate:

Theorem 3.1.16. The quasi-characters of k× are the maps of the form c : α 7→ c̃(α̃)∥α∥s,
where c̃ is any (continuous) character of u. The character c̃ is uniquely determined by c (it is
its restriction to u), while s is determined as in Lemma 3.1.13.

Thus, the classification of the quasi-characters of k× reduces to the classification of those of
u.

Proposition 3.1.17 (Classification of quasi-characters of u). The quasi-characters c̃ of u can
be described as follows:

1. if k is real, u = {±1} and the quasi-characters are x 7→ xn for n = 0, 1;

2. if k is complex, u ∼= S1 and the quasi-characters are of the form x 7→ xn for n ∈ Z;

3. if k is p-adic, with uniformiser π, there is an integer n ≥ 1 such that c̃ factors via the
finite set u/(1 + (π)n).
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Proof. The real case is obvious. The complex case requires us to classify all continuous homo-
morphisms from S1 to C×; the answer is well-known, but we re-derive it here.

Since S1 is compact, the image of any continuous homomorphism c : S1 → C× is compact,
hence contained in S1. Indeed, if z is an element of the image with |z| ≠ 1, then either
z or 1/z is in the image and has absolute value greater than one. This easily implies that
the image of c is unbounded, hence not compact. Now, every continuous homomorphism
S1 → S1 lifts to a continuous homomorphism between their universal covers, that is, to a
continuous homomorphism f : R → R, where the universal covering map R → S1 is given by
x 7→ exp(2πix).

It is well-known that the only continuous endomorphisms of R are given by x 7→ ax for
a ∈ R. In order for f to descend to a map S1 → S1, f must map 1 to an integer n. Thus,
c : S1 → S1 is of the form exp(2πix) 7→ exp(2nπix), hence of the form c(z) = zn for n ∈ Z. On
the other hand, it is clear that all these maps are characters of S1.

Finally, the p-adic case follows essentially from topological considerations. Specifically, since
c̃ : u → C× is continuous, the inverse image of an open subset of C× is an open subset of u.
Choose an open subset V of C× that does not contain any non-trivial multiplicative subgroup
of C× (see Exercise 3.1.18). Then, c̃−1(V ) is an open neighbourhood of 1 in u.

By definition of the p-adic topology, the subgroups 1 + (π)n form a basis of open neigh-
bourhoods of the identity of u. Hence, there exists n ≥ 1 such that H := 1 + (π)n ⊆ c̃−1(V ).
However, this implies c̃(H) ⊆ V , and c̃(H) is a subgroup of C×, so c̃(H) must be trivial, which
proves that the kernel of c̃ contains 1+(π)n, hence that c̃ factors via u/(1+(π)n), as desired.

Exercise 3.1.18. 1. Show that every sufficiently small neighbourhood of 1 in C× contains
no non-trivial subgroup of C×.

2. Mimicking the proof of Proposition 3.1.17 in the p-adic case, show that if G is a profinite
group and ρ : G→ GLn(C) is a continuous representation, then the image of ρ is finite.

Remark 3.1.19. Let K be a number field. The second part of Exercise 3.1.18, together with
the fact that Gal(K/K) is a profinite group, shows that the definition of an Artin L-function
may be reformulated by considering – formally more generally – any complex representation
of Gal

(
K/K

)
. Indeed, any such representation factors via a finite quotient of Gal(K/K),

hence via Gal(L/K) for some finite extension L/K. This topological obstruction prevents one
from fully understanding Gal(K/K) by only looking at complex representations: to get a more
complete picture, one should also consider continuous p-adic representations. These constitute
a very rich area of research1, but we won’t discuss them, since this would take us too far afield.

Theorem 3.1.16 justifies the following definition.

Definition 3.1.20 (Exponent of a quasi-character). Let c : k× → C× be a quasi-character.
By Theorem 3.1.16, we may write c(α) = c̃(α̃)∥α∥s, hence |c(α)| = ∥α∥σ, where σ = ℜ(s) is
uniquely determined by the character χ. We call σ the exponent of c and denote it by σ(c).

Remark 3.1.21. Notice that a quasi-character c : k× → C× is a character if and only if its
exponent is zero.

1I’m biased: it’s something I actively do research about
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Choice of Haar measure

We would now like to choose a Haar measure on k× in a way that is compatible with the Haar
measure on k+. If g is a function in K(k×), then by definition there is an open neighbourhood
B of 0 (for the topology of k) such that g|B vanishes. Since ∥x∥ is bounded away from 0 on the

complement of B, we conclude that h(x) := g(x)
∥x∥ is a continuous function with bounded support

on all of k (where of course we set h(0) = 0). In particular, we may consider the (positive)
linear functional

ψ : K(k×) → R
g 7→

∫
k+
g(x) dx

∥x∥ .

By the representation theorem (Theorem 2.1.28), there exists a unique Radon measure µk× on
k× such that

ψ(g) =

∫
k×
g(α) dµk×(α).

Moreover, µk× is invariant under translation by elements of k×: it suffices to check that
ψ(g(β·)) = ψ(g(·)) for every g ∈ K(k×), and this follows from the identities

ψ(g(β·)) =
∫
k+
g(βx)

dx

∥x∥
=

∫
k+
g(y)

d(β−1y)

∥β−1y∥
=

∫
k+
g(y)

∥β−1∥dy
∥β−1y∥

=

∫
k+
g(y)

dy

∥y∥
,

where we have used Lemma 3.1.7. Hence, µk× is a Haar measure on k×. We now select an
appropriate multiple that is more suitable to our arithmetic applications:

Definition 3.1.22 (Haar measure on k×). We denote by dα the Haar measure given by

1. dα = dµk× =
dµk+ (α)

∥α∥ , if v is archimedean;

2. dα = Np
Np−1

dµk× = Np
Np−1

dµk+ (α)

∥α∥ , if v is finite and corresponds to the prime p.

The next lemma gives the measure of the group of units:

Lemma 3.1.23. If v is discrete, ∫
u

dα = (Nd)−1/2.

Proof. Let π be a uniformiser. We have

O =
⊔
n≥0

πnu,

hence

µk+(O) =
∑
n≥0

µk+ (πnu) =
∑
n≥0

∥p∥nµk+ (u) =
1

1−N(p)−1
µk+(u) =

N(p)

N(p)− 1
µk+(u).

Recalling that we have defined µk+ so that µk+(O) = N(d)−1/2 (see Definition 3.1.9), we obtain∫
u

dα =

∫
u

Np

Np− 1
dµk×(α) =

Np

Np− 1

∫
u

dx

∥x∥
=

Np

Np− 1

∫
u

dx

=
Np

Np− 1
µk+(u) = µk+(O) = N(d)−1/2.
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3.1.3 Local zeta functions I: the general functional equation

Fix a function f : k → C. Continuing with our notation from the previous sections, we will
denote by f(x) the function on the whole of k, and by f(α) its restriction to k×.

Definition 3.1.24 (Class of z-functions). We denote by z the class of all functions f : k → C
that satisfy

1. f(x) ∈ V1(k
+) (that is, f(x) is continuous and in L1(k+), and f̂ is in L1(k+), see both

Definition 2.2.8 and Theorem 3.1.5);

2. f(α)∥α∥σ and f̂(α)∥α∥σ are in L1(k×) for all σ > 0.

For each function f of class z we can introduce a generalised Fourier transform where –
instead of integrating f(x) only against characters – we more generally consider all quasi-
characters of positive exponent. This is made precise in the following definition.

Definition 3.1.25 (Tate’s local ζ function). Let f ∈ z and let c be a quasi-character of k×

with strictly positive exponent. We set

ζ(f, c) =

∫
k×
f(α)c(α) dα

and call such a function a ζ-function of k.

At least ‘locally’ (to be defined shortly), we can consider ζ(f, c) as a holomorphic function.
More precisely:

Definition 3.1.26. We say that two quasi-characters c1, c2 are equivalent if there exists an
unramified quasi-character χ such that c2(α) = c1(α)χ(α).

By Lemma 3.1.13, the equivalence class of the quasi-character c is given by the set of all
quasi characters of the form

α 7→ c(α)∥α∥s.

This allows us to consider a ζ function of k as a collection of many functions of a complex
variable s: for each quasi-character c of positive exponent, we can consider the function

s 7→ ζ(f, c · ∥α∥s).

Notice that, by Lemma 3.1.13, this function can (and should) be considered as being defined

1. on the whole complex plane, if v is archimedean;

2. on the cylinder C
Z· 2πi

log ∥Np∥
, if v is finite and corresponds to p.

Each of these functions turns out to be holomorphic, in the following sense.

Lemma 3.1.27. For every quasi-character c of positive exponent, the function s 7→ ζ(f, c·∥α∥s)
is well-defined and holomorphic in {ℜs > 0}.
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Proof. Convergence of the integral is guaranteed by the fact that f(x) is a function of class z.
To show holomorphicity, it suffices to check that we can differentiate under the integral sign.

By definition,

ζ(f, c · ∥α∥s) =
∫
k×
f(α)c(α)∥α∥s dα =

∫
k+
f(x)c(x)∥x∥s−1 dx.

Fix a compact subset K of {ℜs > 0} with non-empty interior. The derivative (in s) of
the function being integrated is f(x)c(x) log ∥x∥∥x∥s−1. For s ∈ K, this function is uniformly
absolutely integrable: denoting by e the exponent of c, the integral of the absolute value is∫

k+
|f(x)| · |c(x)| · | log ∥x∥| · ∥x∥s−1 dx =

∫
k+

|f(x)| · | log ∥x∥| · ∥x∥e+ℜs−1 dx

with ℜs bounded above and below. Convergence can only fail around 0 and as ∥x∥ → ∞. Let
C = {x ∈ k+ : ∥x∥ ≤ 1} be a compact neighbourhood of 0 in k+. Splitting the integral as∫
C
+
∫
k+\C , we have∫

C

|f(x)| · | log ∥x∥| · ∥x∥e+ℜs−1 dx ≤ ∥f |C∥∞
∫
C

| log ∥x∥| · ∥x∥e+ℜs−1 dx.

The exponent e+ℜs−1 is bounded below by a constant κ0 strictly larger than −1 (since e > 0
and ℜs ≥ mins∈K ℜs > 0). The integral

∫
C
| log ∥x∥| · ∥x∥κ0 dx converges (Exercise 3.1.28).

As for the integral on k+ \ C, we have∫
k+\C

|f(x)| · | log ∥x∥| · ∥x∥e+ℜs−1 dx ≤
∫
k+\C

|f(x)| · ∥x∥e+ℜs dx,

and for s ∈ K the exponent e + ℜs is bounded above by some κ1 > 1, so that the function
being integrated is dominated by the L1 function |f(x)| · ∥x∥κ1 . Thus, thanks to the dominated
convergence theorem we may in fact differentiate under the integral sign at any s in the interior
of K. As K is arbitrary, this proves the desired holomorphicity.

Exercise 3.1.28. Prove that
∫
∥x∥≤1

| log ∥x∥| · ∥x∥κ dx converges for all local fields k and all
κ > −1.

Hint. The cases k = R and k = C are easy exercises in analysis (but do pay attention to the
fact that ∥z∥ is the square of the usual complex absolute value). For the p-adic case, reduce to
summing over certain annuli Av (see Remark 3.1.41 below if necessary).

Remarkably, all ζ functions satisfy a functional equation of a very general type. To state
it, we introduce the following notation:

Definition 3.1.29. For a quasi-character c we set ĉ(α) = ∥α∥c−1(α).

Remark 3.1.30. It is clear from the definitions that σ(ĉ) = 1− σ(c).

The following proposition, while comparatively easy to prove, will be the key to all subse-
quent results about analytic continuation and functional equations.

Proposition 3.1.31 (Functional equation of local ζ functions). Let f, g ∈ z. For every quasi-
character c with σ(c) ∈ (0, 1) we have

ζ(f, c)ζ(ĝ, ĉ) = ζ(f̂ , ĉ)ζ(g, c). (3.3)
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Remark 3.1.32. An equivalent (but perhaps easier to remember) way to state the proposition
is that the ‘pairing’ (f, g) 7→ ζ(f, c)ζ(ĝ, ĉ) is symmetric in f, g.

Proof. The condition σ(c) ∈ (0, 1) guarantees that both sides are well-defined. By definition,
ĉ(α) = ∥α∥c(α)−1, and so

ζ(f, c)ζ(ĝ, ĉ) =

∫
k××k×

c(α)f(α)ĝ(β)ĉ(β) dα dβ =

∫
k××k×

c(α)f(α)ĝ(β)∥β∥c(β)−1 dα dβ

=

∫
k××k×

c(αβ−1)f(α)ĝ(β)∥β∥ dα dβ.

Replacing (α, β) → (α, αβ), which (by properties of the Haar measure) does not change dα dβ,
we rewrite the above as ∫

k××k×
c(β−1)f(α)ĝ(αβ)∥αβ∥ dα dβ.

We now express everything in terms of the additive measure on k+. Recall from Definition

3.1.22 that dα =
dµk+ (α)

∥α∥ , up to multiplicative constants. Thus, again up to multiplicative
constants independent of f, g, the above integral is equal to∫

k×k

c(β−1)f(α)ĝ(αβ)∥αβ∥ 1

∥α∥∥β∥
dµk+(α) dµk+(β).

We finally replace ĝ with its definition (Theorem 3.1.10) to obtain∫
k×k

∫
k

g(x)e−2πiΛ(αβx)c(β−1)f(α) dµk+(x) dµk+(α) dµk+(β),

which is manifestly symmetric in f and g.

The crucial remark is now the following: provided that ζ(ĝ, ĉ) and ζ(f̂ , ĉ) are not identically
zero, Equation (3.3) can be written as

ζ(f, c)

ζ(f̂ , ĉ)
=
ζ(g, c)

ζ(ĝ, ĉ)
,

where the right-hand side is clearly independent of f . Hence, the left-hand side must also be
independent of f , even though this is not at all obvious. This suggests that one should use the
functional equation of Proposition 3.1.31 by letting g vary, while fixing f to be a simple enough
function that the ratio ζ(f,c)

ζ(f̂ ,ĉ)
can be evaluated exactly. We turn to the task of computing

ρ(c) :=
ζ(f, c)

ζ(f̂ , ĉ)

in the next section, but first we establish some formal properties of the function ρ(c) that follow
directly from the functional equation.

Proposition 3.1.33. 1. ρ(ĉ) = c(−1)
ρ(c)

2. ρ(c) = c(−1)ρ(c)
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3. |ρ(c)| = 1 for c of exponent 1/2.

Proof. 1. ζ(f, c) = ρ(c)ζ(f̂ , ĉ) = ρ(c)ρ(ĉ)ζ(
ˆ̂
f, ˆ̂c) = ρ(c)ρ(ĉ)ζ(f(−α), c), where in the last step

we used ˆ̂c = c (by definition) and
ˆ̂
f = f(−α) (by Theorem 3.1.10). On the other hand,

by definition,

ζ(f, c) =

∫
k×
f(α)c(α)dα =

∫
k×
f(−α)c(−α)d(−α)

= c(−1)

∫
k×
f(−α)c(α)d(α) = c(−1)ζ(f(−α), c).

Comparing the two expressions for ζ(f, c) we get ρ(c)ρ(ĉ) = c(−1).

Remark 3.1.34. There seems to be a typo in Tate’s proof of this relation.

2. ζ(f, c) = ζ(f, c) = ρ(c)ζ(f̂ , ĉ). Now observe that ĉ(α) = ∥α∥c(α)
−1

= ĉ(α), while

f̂(η) =

∫
k+
f(x)e−2πiΛ(ηx) dx =

∫
k+
f(x)e2πiΛ(ηx) dx =

¯̂
f(−η).

Replacing in ζ(f, c) = ρ(c)ζ(f̂ , ĉ) we get

ζ(f, c) = ρ(c)ζ(
¯̂
f(−η), ĉ) = ρ(c)c(−1)ζ(

¯̂
f, ĉ) = ρ(c)c(−1)ζ(f̂ , ĉ),

where the last equality follows immediately from the definition of ζ(f, c). On the other
hand,

ζ(f, c) = ρ(c)ζ(f̂ , ĉ) = ρ(c)ζ(f̂ , ĉ).

Comparing the two expressions yields the result.

3. If c has exponent 1/2, then c(α)c(α) = ∥c(α)∥2 = ∥α∥ = c(α)ĉ(α), and therefore c = ĉ.
Comparing the expressions for ρ(c) and ρ(ĉ) given in (1) and (2) yields ρ(c)ρ(c) = 1.

We will check in the next section that ρ(c) is a ‘familiar’ function, for all quasi-characters
c, and in particular it trivially admits analytic continuation to C. As a consequence, the local
functional equation of Proposition 3.1.31 yields the following important theorem:

Theorem 3.1.35. Any ζ-function of k has an analytic continuation to the domain of all quasi-
characters given by a functional equation of the form

ζ(f, c) = ρ(c)ζ(f̂ , ĉ),

where ρ(c) is a meromorphic function of c.

Proof. By Lemma 3.1.27, the function ζ(f, c) is defined and holomorphic for c of positive
exponent. The function ρ(c)ζ(f̂ , ĉ) is similarly defined and meromorphic (since ρ(c) is only
known to be meromorphic) for ĉ of positive exponent, that is, for c of exponent strictly less
than 1.

In particular, both functions are defined and meromorphic for all 0 < exponent c < 1, and
they coincide in this domain by Proposition 3.1.31. Thus, we get meromorphic continuation of
ζ(f, c) to the domain of all quasi-characters.
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3.1.4 Local zeta functions II: computation of the local factors

Our objective in this section is to compute the function

ρ(c) :=
ζ(f, c)

ζ(f̂ , ĉ)

when f is a particularly simple function taken in class z. We will organise the computation
according to the equivalence class of the quasi-character c(α) = c0(α)∥α∥s. For c in a fixed
equivalence class, we will find that ρ(c), seen as a function of the complex variable s, is holo-
morphic and non-vanishing for ℜs ∈ (0, 1). These functions ρ(c) will form the basis of all of
our discussion concerning the functional equations satisfied by the ζ functions.

It will be necessary to distinguish cases according to whether k is real, complex, or p-adic.
Following Tate, we begin each section by recalling our choices for the map Λ, for the norm on
k, and for the Haar measures on k+ and on k×.

Real case

Conventions.

1. Λ(x) = −x (mod 1)

2. ∥α∥ is the ordinary absolute value

3. dµk+(x) = dx is the ordinary Lebesgue measure

4. dα =
dµk+ (α)

∥α∥

Equivalence classes of quasi-characters. According to Lemma 3.1.13 and Proposition
3.1.17, there are two equivalence classes:

α 7→ ∥α∥s and α 7→ (signα)∥α∥s.

We denote the former by ∥ · ∥s and the latter by ±∥ · ∥s.

Choice of f . We correspondingly take

f(x) = e−πx2

and f±(x) = xe−πx2

. (3.4)

Fourier transforms. We have

f̂(x) = f(x) and f̂±(x) = if±(x).

Before we check these equalities, we pause to recall a classical lemma in real Fourier analysis:

Lemma 3.1.36. Let a, b ∈ R. We have∫
R
e−2πy2+4πiay dy =

e−2πa2

√
2

and more generally ∫
R
e−2bπy2+4πiay dy =

1√
2b
e−2π(a2/b).
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Proof. We have ∫
R
e−2πy2+4πiay dy =

∫
R
e−2π(y2−2iay−a2+a2) dy

=

∫
R
e−2π(y−ia)2−2πa2 dy

= e−2πa2
∫
R
e−2π(y−ia)2 dy.

Since the function y 7→ e−2π(y−ia)2 is holomorphic, we can shift the integration contour from
the real line R to ia+ R, thus rewriting the above integral as

e−2πa2
∫
R
e−2πy2 dy.

The value I :=
∫
R e

−2πy2 = 1√
2
is well-known, and can be obtained by the standard trick

I2 =

∫
R2

e−2π(x2+y2) dx dy =

∫ ∞

0

∫ 2π

0

e−2πr2r dr dϑ =
1

2

∫ ∞

0

e−2πr2d(2πr2) =
1

2

∫ ∞

0

e−tdt =
1

2
.

This proves the first formula in the statement. The second follows: upon writing y = z√
b
we

obtain ∫
R
e−2bπy2+4πiay dy =

∫
R
e
−2πz2+4πi a√

b
z dz√

b
=

1√
2b
e−2π(a2/b).

Let us now compute f̂(x). By definition, recalling from Equation (3.2) the definition of the
Fourier transform in our setting, we have

f̂(x) =

∫
R
f(y)e−2πiΛ(yx) dy =

∫
R
e−πy2e2πiyx dy = e−πx2

,

where in the last step we used Lemma 3.1.36 with a = 1
2
x, b = 1

2
. For the sake of completeness,

we also derive the expression for f̂±:

f̂(x) =

∫
R
f(y)e−2πiΛ(yx) dy =

∫
R
ye−πy2e2πiyx dy

=

∫
R
e−πx2

ye−π(y−ix)2 dy = e−πx2

∫
R
ye−π(y−ix)2 dy

= e−πx2

∫
R
(y + ix)e−πy2 dy = ixe−πx2

+

∫
R
ye−πy2 dy = ixe−πx2

,

where the integral
∫
R ye

−πy2 dy vanishes since we are summing a (rapidly decaying) odd function
over a symmetric domain.

Remark 3.1.37. The same result can also be derived more cleanly by recalling that, writing

g(x) = 2πixf(x), one has df̂(x)
dx

= ĝ. Applying this to f(x) and g(x) = 2πif±(x) immediately
yields

2πif̂± =
d

dx

(
e−πx2

)
= −2πxe−πx2 ⇒ f̂± = ixe−πx2

= if±(x).
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The ζ-functions. From the definitions we obtain

ζ (f, ∥ · ∥s) =
∫
R∗
f(α)∥α∥s dα =

∫
R
e−πx2|x|s dx

|x|

= 2

∫ ∞

0

xs−1e−πx2

dx
y=x2

=

∫ ∞

0

y(s−1)/2e−πy y−1/2dy

z=πy
=

1

π

∫ ∞

0

( z
π

)s/2−1

e−z dz = π−s/2Γ(s/2).

Remark 3.1.38. Note that we have essentially interpreted the Γ function as a ζ function of R!
Furthermore, notice that this exact function π−s/2Γ(s/2) is precisely the ‘missing factor’ from
the completed ζ function of Remark 1.1.10. This already strongly suggests that Tate’s local
ζ functions should have something to do with the ‘global’ Dedekind ζ function we met at the
beginning of the course.

A similar calculation leads to

ζ (f±,±∥ · ∥s) =
∫ 0

−∞
−xe−πx2|x|s dx

|x|
+

∫ ∞

0

xe−πx2 |x|s dx
|x|

= 2

∫ ∞

0

xse−πx2

dx = π− s+1
2 Γ

(
s+ 1

2

)
.

Now note that ∥̂ · ∥s = ∥ · ∥1−s and ±̂∥ · ∥s = ±∥ · ∥1−s. Combined with the linearity of ζ(f, c)
in the first argument, this shows

ζ(f̂ , ∥̂ · ∥s) = ζ(f, ∥ · ∥1−s) = π− 1−s
2 Γ

(
1− s

2

)
,

ζ
(
f̂±, ±̂∥ · ∥s

)
= ζ(if±,±∥ · ∥1−s) = iπ− (1−s)+1

2 Γ

(
(1− s) + 1

2

)
.

The function ρ(c). We have obtained

ρ(∥ · ∥s) =
π−s/2Γ

(
s
2

)
π− 1−s

2 Γ
(
1−s
2

) = 21−sπ−s cos
(πs
2

)
Γ(s)

ρ(±∥ · ∥s) = i
π− s+1

2 Γ
(
s+1
2

)
π− (1−s)+1

2
Γ( (1−s)+1

2 )
= −i21−sπ−s sin

(πs
2

)
Γ(s).

Exercise 3.1.39. Check the funny-looking identities above, using the results of Exercise 1.1.6
(including Euler’s reflection formula).

Complex case

Conventions.

1. ξ = x+ iy = reiϑ

2. Λ(ξ) = −2ℜ(ξ) = −2x
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3. ∥α∥ = αα = |α|2 = r2 is the square of the ordinary absolute value

4. dµk+(ξ) = 2 dx dy is twice the ordinary Lebesgue measure

5. dα =
dµk+ (α)

|α|2

Equivalence classes of quasi-characters. According to Lemma 3.1.13 and Proposition
3.1.17, the equivalence classes are parametrised by n ∈ Z. Representatives for each equivalence
class are given by

cn(re
iϑ) = einϑ,

and the corresponding equivalence class consists of all characters of the form cn(α)∥α∥s.

Choice of f . We take

fn(ξ) =

{
(x− iy)|n|e−2π(x2+y2), for n ≥ 0

(x+ iy)|n|e−2π(x2+y2), for n < 0
(3.5)

Notice that, writing α = reiϑ ̸= 0, the value fn(α) (for n ≥ 0) can also be written as

(r(cosϑ− i sinϑ))ne−2πr2 = rne−inϑe−2πr2 ,

while for n ≤ 0 we have

fn(α) = (r(cosϑ+ i sinϑ))−ne−2πr2 = r−ne−inϑe−2πr2 .

We may thus write the uniform formula fn(re
iϑ) = r|n|e−inϑe−2πr2 .

Fourier transforms. We have

f̂n(ξ) = i|n|f−n(ξ)

for all n. To prove this we proceed as follows:

1. for n = 0 we compute

f̂0(ξ) =

∫
C
f(η)e−2πiΛ(ηξ) dk+(η) = 2

∫
R2

e−2π(x2+y2)e4πiℜ(ξ(x+iy)) dx dy.

Writing ξ = u+ iv, the previous integral becomes

f̂0(ξ) = 2

∫
R2

e−2π(x2+y2)e4πi(ux−bv) dx dy = 2

(∫
R
e−2πx2+4πiux dx

)(∫
R
e−2πy2−4πivy dy

)
= 2

(
e−2πu2

√
2

)(
e−2πv2

√
2

)
= e−2π(u2+v2) = f0(u+ iv) = f0(ξ),

where the single real integrals are treated using the first part of Lemma 3.1.36 (with a = u
and a = −v, respectively).
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2. for n ≥ 0 we proceed by induction. Assume that we know f̂n(ξ) = i|n|f−n(ξ), that is,

2

∫
R

∫
R
(u− iv)ne−2π(u2+v2)+4πi(xu−yv) du dv = in(x+ iy)ne−2π(x2+y2). (3.6)

Introduce the differential operator D = 1
4πi

(
∂
∂x

+ i ∂
∂y

)
and observe that D(x + iy) = 0,

hence D(x+ iy)n = 0 (this is essentially a consequence of the Cauchy-Riemann equation
for the analytic function z 7→ zn). Applying D to both sides of (3.6) we obtain

2

∫
R

∫
R
(u− iv)n+1e−2π(u2+v2)+4πi(xu−yv) du dv = in+1(x+ iy)n+1e−2π(x2+y2),

which is nothing but the equality f̂n+1(ξ) = in+1f−(n+1)(ξ).

3. finally, to handle the case n < 0, we write n = −m with m ≥ 0 and consider the equality

f̂m(ξ) = inf−m(ξ).

Taking the Fourier transform of both sides, we get

fm(−ξ) =
̂̂
fm(ξ) = imf̂−m(ξ),

which, using fm(−ξ) = (−1)mfm(ξ), yields the desired equality.

The ζ-functions. Recall the formula fn(re
iϑ) = r|n|e−inϑe−2πr2 . From this, we obtain

ζ(fn, cn∥ · ∥s) =
∫
C×
f(α)cn(α)∥α∥s dα =

∫
C
r|n|e−inϑe−2πr2einϑr2s

2dx dy

r2

=

∫ ∞

0

∫ 2π

0

r|n|+2s−2e−2πr22r dr dϑ = 2π

∫ ∞

0

(r2)
|n|+2s−2

2 e−2πr2 d(r2)

= 2π

∫ ∞

0

t
|n|
2
+(s−1)e−2πtdt = 2π

∫ ∞

0

( u
2π

) |n|
2
+(s−1)

e−udu

2π

= (2π)−
|n|
2
+(1−s)

∫ ∞

0

u
|n|
2
+(s−1)e−u du = (2π)−

|n|
2
+(1−s)Γ

(
s+

|n|
2

)
.

We highlight two aspects of this calculation that are easy to get wrong: on the one hand, recall
that our Haar measure is twice the standard Lebesgue measure, which justifies the factor of 2
in front of dx dy, hence the factor of 2 in 2r dr dϑ. On the other hand, note ∥α∥s = r2s (and
not rs).

Remark 3.1.40. Speaking of getting computations wrong: Tate finds (2π)
|n|
2
+(1−s)Γ

(
s+ |n|

2

)
instead (note the sign change in |n|

2
). I double-checked my computations and could not find the

mistake, but I’m ready to wager that Tate is right and I’m wrong. If you can find the error,
I’d be happy to hear about it!

(Luckily, the sign in question is irrelevant for the computation of ρ(c).)

Now note that ĉn∥ · ∥s = c−n∥ · ∥1−s, so

ζ(f̂n, ĉn∥ · ∥s) = ζ(i|n|f−n, c−n∥ · ∥1−s) = i|n|(2π)−
|n|
2
+sΓ

(
1− s+

|n|
2

)
.
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The function ρ(c). We simply take the ratio of the functions computed above to get

ρ(cn∥ · ∥s) = (−i)|n|
(2π)1−sΓ

(
s+ |n|

2

)
(2π)sΓ

(
(1− s) + |n|

2

) .
p-adic case

Conventions.

1. ξ is a p-adic variable

2. Λ(ξ) = λ(trk/Qp(ξ))

3. dµk+(ξ) is normalised in such a way that O has measure (Nd)−1/2

4. α = α̃πn, where α is a variable in k×, π is a uniformiser, and α̃ is a unit

5. ∥α∥ = (Np)−n

6. dµk×(α) =
Np

Np−1

dµk+ (α)

∥α∥ , so that u gets measure (Nd)−1/2

Equivalence classes of quasi-characters. The classification of quasi-characters is compli-
cated (see Proposition 3.1.17). Luckily, for the computation of the local ζ function we only
need to know the conductor of our character (that is, the minimal n ≥ 0 such that c is trivial
on the subgroup2 (1+pn)∩u of u). Also note that each equivalence class of characters contains
a representative for which c(π) = 1. Let then cn be a character such that

c(π) = 1, c(1 + pn) = {1}, c(1 + pn−1) ̸= {1} if n ≥ 1.

Choice of f . We take f to depend only on the conductor. Precisely, we set

fn(ξ) =

{
e2πiΛ(ξ), if ξ ∈ d−1p−n

0, otherwise
(3.7)

Notice that for n = 0 the function f0(ξ) is the characteristic function of d−1 (for ξ ∈ d−1 we
have Λ(ξ) = 0).

Fourier transforms. We claim that

f̂n(ξ) =

{
(Nd)1/2(Np)n, if ξ ≡ 1 (mod pn)

0, if ξ ̸≡ 1 (mod pn).
(3.8)

By definition,

f̂n(ξ) =

∫
k

fn(η)e
−2πiΛ(ξη) dη =

∫
k

e2πiΛ(η)1η∈d−1p−ne−2πiΛ(ξη) dη =

∫
d−1p−n

e−2πiΛ((ξ−1)η) dη.

2note that for n ≥ 1 the set 1 + pn is contained in u and is a subgroup. For n = 0, we set conventionally
1 + p0 = u.
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If ξ ≡ 1 (mod pn), then (ξ− 1)η lies in d−1 for every η ∈ d−1p−n. By definition of the different,
we have trk/Qp(d

−1) ⊆ Zp, which implies Λ((ξ−1)η) = 0. Thus, if ξ ≡ 1 (mod pn), the function
that is integrated is identically equal to 1, hence we get the measure of the set over which we
are integrating, that is,

µk+
(
d−1p−n

)
= (Np)n(Nd)1/2,

where we have used Remark 3.1.8.

On the other hand, suppose that ξ ̸≡ 1 (mod pn). Then (by definition of conductor) the
map η 7→ Λ((ξ− 1)η) is a non-trivial character of the group d−1p−n, hence its integral over this
(compact) group vanishes by Proposition 2.2.5.

The ζ-functions. Let again c be a character of conductor πn that satisfies c(π) = 1. We
begin by computing the ζ function in case c is unramified, that is, n = 0. In this case, the
conditions c(π) = 1 and c(u) = {1} force c to be trivial, and its equivalence class is the class of
the powers of the norm, ∥ · ∥s. The local ζ function is then

ζ(f0, ∥ · ∥s) =
∫
k×
f0(α)∥α∥s dk×(α) =

∫
d−1

e2πiΛ(α)∥α∥s dk×(α).

Next, we observe that Λ(α) ∈ Zp for α ∈ d−1, hence the integral reduces to∫
d−1

∥α∥s dk×(α).

Writing d = πd, we have

d−1 =
∞⊔

v=−d

{x ∈ k : ∥x∥ = (Np)−v}.

Further set Av := {x ∈ k : ∥x∥ = (Np)−v}.

Remark 3.1.41. Since µk× is invariant under rescaling by elements of k× (that’s the point of
the Haar measure!), we have µk×(Av) = µk×(π

vu) = µk×(u) = (Nd)−1/2 for all v.

Using this remark we easily obtain∫
d−1

∥α∥s dµk×(α) =
∞∑

v=−d

∫
Av

∥α∥sdµk×(α) =
∞∑

v=−d

∫
Av

(Np)−vsdµk×(α)

=
∞∑

v=−d

(Np)−vsµk×(Av) = (Nd)−1/2 (Np)ds

1− (Np)−s
.

Finally, recalling that d = pd has norm (Np)d, the result may be rewritten as

ζ(f0, ∥ · ∥s) =
(Nd)s−1/2

1− (Np)−s
. (3.9)
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Now for the Fourier transform f̂0: we have computed above that this is (Nd)1/21O, hence

ζ(f̂0, ∥̂ · ∥s) = ζ(f̂0, ∥ · ∥1−s) = (Nd)1/2
∫
O
∥α∥1−s dµk×(α)

= (Nd)1/2
∑
v≥0

(Np)−v(1−s) µk×(Av)

= (Nd)1/2
∑
v≥0

(Np)−v(1−s) µk×(Av) =
1

1− (Np)s−1
,

where we have used again Remark 3.1.41. More generally, essentially by the same computation
one shows:

Theorem 3.1.42. Let χ be an unramified character of k× (so that χ(u · πv) = χ(π)v for all v
and all u ∈ u; we may then evaluate χ on any fractional ideal (πv)). Let f be the characteristic
function of the fractional ideal I = (πn). The local ζ function ζ(f, χ) is given by

ζ(f, χ) =
(Nd)−1/2χ(I)(NI)−s

1− χ(p)(Np)−s
.

Exercise 3.1.43. Check Theorem 3.1.42.

Remark 3.1.44. It should be almost unnecessary to point out that if we take k = Qp and
I = (1) in Theorem 3.1.42 we get that the local zeta function ζ(f, χ) looks very much like the
local factor at p of the classical Dirichlet L-functions (see Equation (1.1)). We will clarify the
connection later, when we discuss global zeta functions.

We are left with computing the local zeta functions of ramified characters. Write the
different as d = pd. We start by decomposing the integral defining ζ as a sum over the annuli
Av:

ζ(fn, cn∥ · ∥s) =
∫
d−1p−n

e2πiΛ(α)cn(α)∥α∥s dµk×(α) =
∞∑

v=−d−n

(Np)−vs

∫
Av

e2πiΛ(α)cn(α) dµk×(α).

Next, we observe that all but one of the terms in this sum actually vanish:

Lemma 3.1.45. For every v > −d− n we have
∫
Av
e2πiΛ(α)cn(α) = 0.

Proof. We distinguish two cases:

1. v ≥ −d. In this case Av ⊆ d−1, hence Λ(α) ∈ Zp for all α ∈ Av by definition of the
different. It follows that e2πiΛ(α) = 1 on all of Av, and the integral in question is∫

Av

cn(α) dµk×(α) =

∫
πvu

cn(α) dµk×(α) =

∫
u

cn(π
vα) dµk×(α)

= cn(π)
v

∫
u

cn(α) dµk×(α) = 0

by Proposition 2.2.5 (notice that cn, being ramified, is by definition nontrivial on u).
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2. −d > v > −d − n. We write Av as the disjoint union of sets of the form α0 + p−d =
α0(1 + p−d−v). On each such set, Λ is constant and equal to Λ(α0). It follows that∫

α0+d−1

e2πiΛ(α)cn(α) dµk×(α) = e2πiΛ(α0)

∫
α0+d−1

cn(α) dµk×(α).

We now prove that the last integral is zero. Translating (multiplicatively) by α0 shows
that ∫

α0+d−1

cn(α) dµk×(α) =

∫
α0(1+p−v−d)

cn(α) dµk×(α)

=

∫
1+p−v−d

cn(α0α) dµk×(α)

= cn(α0)

∫
1+p−v−d

cn(α) dµk×(α).

Since −v − d > 0 by assumption, 1 + p−v−d is a (compact) subgroup of u. On the
other hand, cn(α) is nontrivial on it, because by definition of the conductor the smallest
exponent k such that cn is trivial on 1+ pk is k = n, and −v− d < n by assumption. We
conclude once again by applying Proposition 2.2.5.

Thus, the local zeta function is given simply by

ζ(fn, cn∥ · ∥s) = (Np)(d+n)s

∫
A−d−n

e2πiΛ(α)cn(α) dµk×(α).

As is usual in the p-adic setting, we can use the fact that the functions we integrate are
locally constant to rewrite the remaining integral as a finite sum. More precisely, fix a set {ε}
of representatives for the quotient u/(1 + pn). Then

A−d−n = uπ−d−n =
⊔
ε

επ−d−n(1 + pn) =
⊔
ε

(επ−d−n + d−1).

On each set επ−d−n(1 + pn) the character cn is constant by definition of n, and its value is
cn(ε)cn(π)

−d−n = cn(ε) (recall that we chose our representatives cn to satisfy cn(π) = 1).
Similarly, Λ is also constant and equal to Λ(επ−d−n). Thus,

ζ(fn, cn∥ · ∥s) = (Np)s(d+n)
∑
ε

cn(ε)e
2πiΛ(επ−d−n)

∫
1+pn

dµk×(α).

Finally, we compute the local zeta functions attached to the Fourier transforms of the
fn for n > 0. We have already seen in Equation (3.8) that the Fourier transform of fn is
(Nd)1/2(Np)n11+pn . On the set 1 + pn, both cn(α)

−1 and ∥α∥1−s are equal to 1 (here we use
n > 0), and therefore

ζ(f̂n, ĉn∥ · ∥s) = (Nd)1/2(Np)n
∫
1+pn

dµk×(α),

which is simply a constant.
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The function ρ(c). For the unramified character c0 we get

ρ(c∥ · ∥s) = (Nd)s−1/21− (Np)s−1

1− (Np)−s
.

The situation is slightly more complicated for a ramified character c of conductor f = pn. Let
{ε} be a set of representatives for the quotient u/(1 + f) and set

ρ0(c) = (N f)−1/2
∑
ε

c(ε)e2πiΛ(ε/π
v(df)).

The function ρ(c) is then given by

ρ(c∥ · ∥s) =
(Np)s(d+n)

∑
ε cn(ε)e

2πiΛ(επ−d−n)
∫
1+pn

dµk×(α)

(Nd)1/2(Np)n
∫
1+pn

dµk×(α)

= ρ0(c)
(Np)s(d+n)(N f)1/2

(Nd)1/2(Np)n
= ρ0(c)(Np)(s−1/2)(d+n)

= ρ0(c)(Ndf)s−1/2,

where we have used the definitions d = pd, f = pn. Setting s = 1
2
we obtain ρ(c∥ · ∥s) = ρ0(c),

which – using Proposition 3.1.33 (3) – shows the nontrivial fact that |ρ0(c)| = 1.

A final remark

We conclude this section with a remark that will be useful when we discuss the ‘global’ theory
over number fields.

Remark 3.1.46 (Non-vanishing of the standard local ζ functions). For each character c of
the multiplicative group k× of a local field k, we have constructed a ‘standard’ function f
(depending on c) and computed ζ(f, c). One can check directly that all these local zeta functions
are meromorphic and everywhere non-vanishing. (The Γ function has no zeroes, see Exercise
1.1.6). In particular, their inverses are everywhere holomorphic.

3.2 The global theory

We now let k be a number field, denote by v a place of k (Definition 2.3.1), and by kv the
corresponding completion. For each v we then have all the analogues of the quantities defined
in the previous section, which we decorate with a subscript v: the ring of integers Ov, the units
uv, the norm ∥ · ∥v, the character Λv, the different dv if v is finite, etc.

3.2.1 The additive group: the adèles

Recall from Definition 2.4.5 the notion of ring of adèles, which we consider in the topological
sense of Definition 2.4.7. Thus, as a topological group, Ak is

∏′
v(k

+
v ,Ov). The ring structure is

provided by the component-wise multiplication.
Theorem 2.4.14, combined with Theorem 3.1.5 and Lemma 3.1.6, shows that the dual group

of Ak is the restricted direct product of the groups k̂+v
∼= k+v with respect to the subgroups d−1

v
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(for v finite). Since d−1
v = Ov for almost all v, this shows that the dual group is simply Ak

itself. More precisely, an adèle (ηv) ∈ Ak corresponds to the character

(xv) 7→
∏
v

e2πiΛv(ηvxv) = e2πi
∑

v Λv(ηvxv).

It is then useful to define the standard adèlic character

Λ((xv)) =
∑
v

Λv(xv). (3.10)

Since we also have a local measure dµk+v
for each place v, from the discussion in Section 2.4.4

we get a product measure dµAk
=
∏

v dµk+v
on Ak. Moreover, since each dµk+v

is self-dual for
the Fourier transform (see Theorem 3.1.10), we obtain from Corollary 2.4.23 that dµAk

is also
self-dual. Thus, the abstract general theory leads to the following:

Theorem 3.2.1 (Fourier inversion on the adèles). The additive group of adèles Ak is its own
character group. An isomorphism is obtained by identifying the adèle (ηv) with the character
(xv) 7→ e2πiΛ(ηx). If for a function f(x) ∈ L1(Ak) we define the Fourier transform by the formula

f̂(η) =

∫
Ak

f(x)e−2πiΛ(ηx) dµAk
(x),

then for f ∈ V1(Ak) we have the inversion formula

f(x) =

∫
Ak

f̂(η)e2πiΛ(xη) dµAk
(η).

We also recall the following fact (see Exercise 2.4.6):

Lemma 3.2.2. The unit group of Ak is Ik, the group of idèles of k. In particular, for η =
(ηv) ∈ Ak, the map x 7→ ηx of Ak into itself is an automorphism if and only if η is an idèle.

The following is the analogue of Lemma 3.1.7.

Lemma 3.2.3 (Rescaling the adèlic Haar measure). Let a be an idèle of k. We have

dµAk
(ax) = ∥a∥dµAk

(x),

where ∥a∥ is the product
∏

v ∥av∥v (the product is finite, in the sense that all but finitely many
terms are equal to 1).

Proof. Since dµAk
(x) is a Haar measure and x 7→ ax is a ring automorphism, dµAk

(ax) is
another Haar measure. Thus, it suffices to compare the measures of any set of positive measure
N . We take N =

∏
vNv, where Nv = Ov for v finite, and Nv is a compact neighbourhood of 1

if v is infinite. Applying Lemma 3.1.7 to each place we obtain∫
aN

dµAk
(x) =

∏
v

∫
avNv

dµk+v
(xv) =

∏
v

∥av∥v
∫
Nv

dµk+v
(xv) =

(∏
v

∥av∥v

)∫
N

dµAk
(x).
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The field as a subgroup of the adèles

We consider k as embedded in Ak via the map ξ 7→ (ξ, ξ, . . . , ξ, . . .) which sends an element of
k to the adèle whose components are all equal to ξ. The next lemma shows that k acts as a
sort of ‘complement’ for the subring of ‘integral adèles’.

To state it, let S∞ denote the set of Archimedean places of k, and observe that Ak,S∞ :=
(Ak)S∞ is by definition the set of adèles (xv) such that xv is in Ov for every finite v.

Lemma 3.2.4. The following hold.

1. k ∩ Ak,S∞ = Ok.

2. k + Ak,S∞ = Ak.

Proof. 1. This is simply the statement that a field element that has non-negative valuation
at each finite place is an algebraic integer.

2. We need to show that, given an adèle x = (xv), there is ξ ∈ k such that x+ξ is integral at
every finite place p. Let m be an integer divisible by all the primes p such that xp ̸∈ Op.
Replacing m by mN for some N ≫ 0 we may assume that mxp has non-negative valuation
at p for all p.

Denote by S the finite set of places dividing m; note that S contains all the places at
which xp is not integral.

We look for a field element ξ of the form a
m
with a ∈ Ok. Since both xp and

a
m
are integral

at p for p ̸∈ S, it suffices to show that we can choose a in such a way that mxp + a ≡ 0
(mod pvp(m)) for all p ∈ S. Such an a exists by the Chinese remainder theorem. Note
that, with a slight abuse of notation, we have identified mxp ∈ Op/p

vp(m) with an element
of Ok/p

vp(m). This identification is possible since the canonical map

Ok

pvp(m)
→ Ov

Ovpvp(m)

is an isomorphism (it is injective between groups with the same cardinality).

We now introduce the following notation:

Definition 3.2.5 (Infinite part of the adèles). We denote by A∞
k the product

∏
v∈S∞

kv of the
archimedean completions of Ak. If (r1, r2) is the signature of k (see Definition 1.3.20), then A∞

k

is isomorphic to Rr1 × Cr2 . Given x ∈ Ak, we denote by x∞ its projection on A∞
k .

Lemma 3.2.6. Let ω1, . . . , ωn be a Z-basis of Ok (so that in particular [k : Q] = n and
r1 + 2r2 = n).

1. ω∞
1 , . . . , ω

∞
n is a R-basis of A∞

k .

2. Let D∞ = {
∑n

i=1 xiωi : xi ∈ [0, 1)} be the ‘fundamental parallelotope’ spanned by the

given basis. The volume of D∞ with respect to the measure
∏

v∈S∞
dxv is

√
|dk|, where

dk is the discriminant of k.
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Proof. Denote by σ1, . . . , σr1 the r1 real embeddings of k and by σr1+1, . . . , σr1+r2 a choice of r2
non-equivalent non-real embeddings of k into C (here, by non-equivalent we mean that no two
of them are complex conjugate of each other). An isomorphism A∞

k
∼= Rr1 × R2r2 is given by

ξ 7→ ((σi(ξ))i=1,...,r1 , (ℜσr1+i(ξ),ℑσr1+i(ξ))i=1,...,r2) .

Here we use the fact that C (with its standard Lebesgue measure) is isomorphic as a measure
space to R × R (with its standard Lebesgue measure) via the map z 7→ (ℜz,ℑz). Via this
isomorphism, the elements ωm are sent to the vectors

ω∞
m =



σ1(ωm)
...

σr1(ωm)
ℜσr1+1(ωm)
ℑσr1+1(ωm)

...
ℜσr1+r2(ωm)
ℑσr1+r2(ωm)


=



σ1(ωi)
...

σr1(ωm)
σr1+1(ωm)+σr1+1(ωm)

2
σr1+1(ωm)−σr1+1(ωm)

2i
...

σr1+r2 (ωm)+σr1+r2 (ωm)

2
σr1+r2 (ωm)−σr1+r2 (ωm)

2i


.

Consider the matrix ω∞ having ω∞
m as columns. We want to compute the absolute value of the

determinant of this matrix; in order to do so, we can consider ω∞ as a matrix with complex
coefficients.

Summing 1/i-times each row ℜσr1+j(ωm) to the following one (which does not change the
determinant of ω∞) we replace the m-th column of ω∞ with

σ1(ωm)
...

σr1(ωm)
σr1+1(ωm)+σr1+1(ωm)

2

σr1+1(ωm)/i
...

σr1+r2 (ωm)+σr1+r2 (ωm)

2

σr1+r2(ωm)/i


.

We now subtract i/2-times each row σr1+r2(ωm)/i from the previous one, obtaining a matrix
(with the same determinant as ω∞) having as m-th column the vector

σ1(ωm)
...

σr1(ωm)
σr1+1(ωm)

2

σr1+1(ωm)/i
...

σr1+r2 (ωm)

2

σr1+r2(ωm)/i


.
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Pulling out a factor of 1/2 from each row
σr1+j(ωm)

2
and a factor 1/i from each row σr1+j(ωm),

we obtain

detω∞ = i−r22−r2 det (σi(ωm))i,m ,

hence in absolute value we have

| det(ω∞)| = 2−r2| det (σi(ωm))i,m | = 2−r2
√

|dk|,

see Definition 1.3.1.

1. The previous determinant computation shows in particular that the vectors ω∞
m are lin-

early independent.

2. Note that (up to a set of measure zero) D∞ is the image of [0, 1]n under the linear map

that sends a vector x =


x1
x2
...
xn

 to ω∞x, where ω∞ is as above. Thus, one of the basic

properties of the determinant shows that the volume of D∞ is | det(ω∞)| · vol ([0, 1]n).
The claim follows from the fact that | det(ω∞)| = 2−r2

√
|dk| and vol ([0, 1]n) = 2r2 , since

our choice of Haar measure on Rr2 is twice the standard Lebesgue measure.

Definition 3.2.7 (Additive fundamental domain). The additive fundamental domain D
of Ak is the set {x ∈ Ak : x ∈ Ak,S∞ and x∞ ∈ D∞}. Equivalently, D = AS∞

k ×D∞.

Theorem 3.2.8 (Properties of the additive fundamental domain). The following hold:

1. Ak is the disjoint union
⊔

ξ∈k(ξ +D)

2. The measure of D is 1.

Proof. 1. We first prove that ξ1 +D and ξ2 +D intersect trivially if ξ1, ξ2 are elements of k
with ξ1 ̸= ξ2. Equivalently, we need to show that ξ1 − ξ2 ∈ D implies ξ1 = ξ2. Since D
is contained in Ak,S∞ , by Lemma 3.2.4 we see that ξ1 − ξ2 is an algebraic integer, hence
an integral linear combination of ω1, . . . , ωn (notation as in Lemma 3.2.6). However, by
projecting on A∞

k we obtain that its coordinates in the Z-basis ω1, . . . , ωn are all strictly
less than 1, hence they are all equal to zero, that is, ξ1 − ξ2 = 0.

Now we show that every adèle x is in some ξ +D. By Lemma 3.2.4, there exists ξ1 such
that y := x − ξ1 is in Ak,S∞ . Now consider y∞: by Lemma 3.2.6 the set ω1, . . . , ωn is a
basis of this vector space, so we can write y∞ =

∑n
i=1 ciωi +

∑n
i=1 δiωi with ci ∈ Z and

δi ∈ [0, 1). The field element ξ2 =
∑n

i=1 ciωi is in Ok, so y − ξ2 is still in Ak,S∞ , and
furthermore, by construction, (y− ξ2)

∞ is in D∞. It follows as desired that x− ξ1 − ξ2 is
in D.
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2. By definition we have D = AS∞
k ×D∞ ⊆ Ak,S∞ . Since the adèlice measure coincides with

the product measure on subsets of the form (Ak)S, the adèlic measure of D is

µAk
(D) =

(∫
AS∞
k

dµAS∞
k

)(∫
D∞

∏
v∈S∞

dµxv

)
.

The second factor is equal to
√
|dk| by Lemma 3.2.6. As for the first, we have∫

AS∞
k

dµAS∞
k

=
∏
v ̸∈S∞

∫
Ov

dµv =
∏
v ̸∈S∞

N(dv)
−1/2 =

∏
v ̸∈S∞

|dkv |−1/2,

where we used our normalisation for the additive Haar measures on the local fields kv
(Definition 3.1.9) and Theorem 2.3.19. Finally, using Theorem 2.3.20 we conclude that∏

v ̸∈S∞
|dkv |−1/2 = |dk|−1/2, which simplifies

∫
D∞

∏
v∈S∞ dµxv = |dk|1/2, giving the result.

Corollary 3.2.9 (Position of k inside Ak). The field k is a discrete subgroup of Ak and the
quotient Ak/k is compact.

Proof. It is clear that Theorem 3.2.8 remains true if we replace our choice of D∞ with the set
D̃∞ = {

∑n
i=1 xiωi : xi ∈ [−1/2, 1/2)}. Define D̃ as the corresponding additive fundamental

domain. Since D̃ contains a neighbourhood of 0, the decomposition Ak =
⊔

ξ∈k(ξ + D̃) of
Theorem 3.2.8(1) shows that each point of ξ has a neighbourhood that is disjoint from a
neighbourhood of any other point. Thus, k is discrete in Ak. The quotient Ak/k is compact
since there is a continuous surjection D ↠ Ak/k with D compact.

Lemma 3.2.10. The character Λ of Equation (3.10) vanishes on k.

Proof. For each place v of k, let Qv be the completion of Q at its unique place lying under v
(equivalently: the closure of Q in kv). By definition,

Λ(ξ) =
∑
v

Λv(ξ) =
∑
v

λv(trkv/Qv ξ) =
∑
w∈ΩQ

λw

∑
v|w

trkv/Qw(ξ)

 =
∑
w∈ΩQ

λw
(
trk/Q(ξ)

)
,

where we used Theorem 2.3.22. Setting x = trk/Q(ξ) we are then reduced to showing∑
w∈ΩQ

λw (x) ≡ 0 (mod 1) :

we have reduced the lemma to the case k = Q. To treat this, we need to show that
∑

v λv(x) is
an integer for every x ∈ Q. Clearly it suffices to show that is q-integral at each (finite) prime
q. This is achieved by looking at the decomposition

∑
v

λv(x) =

( ∑
p ̸=q,∞

λp(x)

)
+ λq(x) + λ∞(x) =

( ∑
p ̸=q,∞

λp(x)

)
+ (λq(x)− x) mod Z :

each λp(x) is a rational number with denominator a power of p, hence it is q-integral, while
λq(x)− x is q-integral by definition.
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Theorem 3.2.11 (Dual of Ak/k). The map

β : k → Âk/k
η 7→ exp(2πiΛ(η·))

is an isomorphism of topological groups.

Proof. By Proposition 2.2.4, we have Âk/k ∼= k⊥, where k⊥ is the closed subgroup of Âk given
by those characters that vanish on k. By Lemma 3.2.10 we have k ⊆ k⊥. We now show that
they are equal, by combining the following three observations:

1. By Proposition 2.2.4 there is an isomorphism of Âk/k with k⊥. Note that Âk/k is discrete,
because Ak/k is compact (apply Theorem 2.2.2 and Corollary 3.2.9). We have already
observed that k ⊆ k⊥, so we can consider the quotient k⊥/k, which is therefore discrete3.

2. On the other hand, via the self-duality Ak
∼= Âk, the quotient k⊥/k can be considered as

a subgroup Ak/k, which is compact by Corollary 3.2.9. Combined with (1), this shows
that k⊥/k is both discrete and compact, hence finite.

3. Finally, k⊥ has a natural structure of k-vector space (for ψ ∈ k⊥, ξ ∈ k we set (ξ ·ψ)(η) :=
ψ(ξη)), and k is a k-vector subspace. Thus, k⊥/k is a k-vector space of finite cardinality.
Since k is infinite, this implies k⊥ = k, as desired.

The Riemann-Roch theorem

In this section we want to work with (continuous) functions φ̃ : Ak/k → C. We find it
technically simpler to consider them as functions Ak → C that are invariant under translation
by any ξ ∈ k. We give this as a formal definition:

Definition 3.2.12 (Periodic function). Let π : Ak → Ak/k be the canonical projection. A
function φ : Ak → C is called periodic if φ(x + ξ) = φ(x) for all x ∈ Ak and all ξ ∈ k ⊆ Ak.
Such a function induces, by passage to the quotient, a function φ̃ : Ak/k → C. Conversely,
given φ̃ : Ak/k → C, we denote by φ = φ̃ ◦ π the corresponding function on Ak.

Remark 3.2.13. Notice that φ̃ : Ak/k → C is continuous if and only if the corresponding
function φ : Ak → C is continuous and periodic.

Lemma 3.2.14. Let φ(x) : Ak → C be continuous and periodic, and let φ̃ : Ak/k → C be the
corresponding continuous function on Ak/k. We have∫

D

φ(x) dµAk
(x) =

∫
Ak/k

φ̃(x) dµ(x),

where the measure dµ on Ak/k is the unique Haar measure on this (compact, by Corollary
3.2.9) group such that µ(Ak/k) = 1.

3note that if X is a discrete topological group and Y is any subgroup, then X/Y is discrete: each point is
open!
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Proof. Follows from Theorem 3.2.8(2). More precisely, denote by π the canonical projection
Ak → Ak/k and introduce the function

I : L1(Ak/k) → C
φ̃(x) 7→

∫
D
φ̃ ◦ π(x) dµAk

(x).

It is easy to check that I has the properties required to be a Haar integral4. Moreover, it gives
measure 1 to Ak/k by Theorem 3.2.8(2).

We check in greater detail the invariance of I under translation. Let y ∈ Ak and let
ψ(x) = φ(x + y). Denote by ψ̃ the corresponding function on the quotient Ak/k. We need to
check that ∫

D

φ̃ ◦ π(x) dµAk
(x) =

∫
D

ψ̃ ◦ π(x) dµAk
(x),

or equivalently ∫
D

φ(x) dµAk
(x) =

∫
D

ψ(x) dµAk
(x),

which can further be rewritten as∫
D

φ(x) dµAk
(x) =

∫
D

φ(x+ y) dµAk
(x).

Since dµAk
is translation-invariant, we are reduced to showing∫

D

φ(x) dµAk
(x) =

∫
y+D

φ(x) dµAk
(x).

Now, since Ak =
⊔

ξ∈k(ξ +D), we have

y +D =
⊔
ξ∈k

((ξ +D) ∩ (y +D)) ,

where only finitely many sets in the union are non-empty.
We rewrite the integral

∫
y+D

φ(x) dµAk
(x) as the series (really a finite sum)

∑
ξ∈k

∫
(ξ+D)∩(y+D)

φ(x) dµAk
(x) =

∑
ξ∈k

∫
(ξ+D)∩(y+D)

φ(x+ ξ) dµAk
(x)

=
∑
ξ∈k

∫
D∩(y−ξ+D)

φ(x) dµAk
(x),

(3.11)

where we have used the translation-invariance of both the measure dµAk
and the function φ.

Now, it is immediate to check that y+D is another additive fundamental domain for Ak, hence
the sets {−ξ+(y+D)}ξ∈k are disjoint and cover Ak. It follows that the sets {D∩(y−ξ+D)}ξ∈k
are disjoint and coverD, and therefore the last integral in (3.11) is also equal to

∫
D
φ(x) dµAk

(x),
as desired.

4to be precise: if we only consider functions φ̃ that are the characteristic functions of subsets of Ak/k, the
functional I clearly gives a measure on Ak/k. We will see below that this measure is translation-invariant and
gives mass 1 to Ak/k, so it is the unique normalised Haar measure. A posteriori, this implies that I is the
integration against this Haar measure, hence it is well-defined on all of L1(Ak/k).
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Recall from Theorem 3.2.11 that k is the character group of Ak/k. It follows that the Fourier
transform of a function on Ak/k can be identified with a function on k, and precisely we have:

Definition 3.2.15 (Fourier transform on Ak/k). Let φ be a complex-valued, periodic, contin-
uous function on Ak. Its Fourier transform is the function

φ̂ : k → C
ξ 7→

∫
D
φ(x)e−2πiΛ(ξx) dµAk

(x).

Note that, by compactness of Ak/k (Corollary 3.2.9), any continuous function on this quo-
tient is automatically L1. We exploit this in the next lemma:

Lemma 3.2.16. Let φ(x) be continuous and periodic with
∑

ξ∈k |φ̂(ξ)| < ∞. We have the
Fourier inversion formula

φ(x) =
∑
ξ∈k

φ̂(ξ)e2πiΛ(xξ).

Proof. As already observed, φ(x) induces a continuous function φ̃(x) in L1(Ak/k). The hypoth-
esis of the lemma means that the Fourier transform of φ̃(x) is in L1(k). Thus, φ̃(x) satisfies
the assumptions of the abstract Fourier inversion theorem (Theorem 2.2.10). The conclusion of
the lemma is then simply the inversion formula, once we check that the measure µk on k dual
to the Haar measure we fixed on Ak/k is the counting measure (and not a nontrivial multiple
thereof).

To see that this holds, we apply Lemma 2.4.21 (2) to Hi = Ak/k. The group H⊥
i is

clearly trivial (hence can be identified to the singleton {0} of k ∼= Âk/k), so we obtain 1 =
µAk/k(Ak/k) · µk({0}) = 1 · µk({0}), which shows that µk is the counting measure, as desired.

Now, the simplest (and most ‘traditional’ !) way to build a periodic function is to take an
arbitrary function f(x) and consider the sum of all its translates f(x + ξ). The next lemma
describes what assumptions are necessary to obtain a well-behaved function in this way.

In order to state it formally, we need a notion of uniform convergence for sums indexed
by elements of k. Since k is a number field (which is a discrete object, without any natural
topology), the only possible definition is the following:

Definition 3.2.17 (Uniform convergence of a series of functions). Let aξ(x) : Ak → C be a set
of complex-valued functions and let X be a subset of Ak. We say that the series

∑
ξ∈k aξ(x)

converges uniformly for x ∈ X if the following holds: for every ε > 0 there exists a finite set
F ⊂ k such that ∑

ξ ̸∈F

|aξ(x)| < ε

for all x ∈ X.

Note that, by standard arguments, the sum of a uniformly convergent series of continuous
functions is itself a continuous function.

Lemma 3.2.18. Let f(x) be a continuous function in L1(Ak) and suppose that
∑

η∈k f(x+ η)
is uniformly convergent for x ∈ D. The continuous periodic function φ(x) =

∑
η∈k f(x + η)

satisfies φ̂(ξ) = f̂(ξ) for all ξ ∈ k.
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Remark 3.2.19. Note that the equality φ̂(ξ) = f̂(ξ) only makes sense for ξ ∈ k: we consider
φ as a function on Ak/k, so its Fourier transform is defined on k).

Proof. This is essentially a direct calculation. We have

φ̂(ξ) =

∫
D

φ(x)e−2πiΛ(ξx) dµAk
(x)

=

∫
D

(∑
η∈k

f(x+ η)e−2πiΛ(xξ)

)
dµAk

(x)

(1)
=
∑
η∈k

∫
D

f(x+ η)e−2πiΛ(xξ) dµAk
(x)

(2)
=
∑
η∈k

∫
η+D

f(x)e−2πiΛ((x−η)ξ) dµAk
(x)

(3)
=

∫
Ak

f(x)e−2πiΛ(xξ) dµAk
(x)

= f̂(ξ),

where

• in (1) we have used the fact that the series converges uniformly in D, which is of finite
measure;

• in (2) we have used the translation-invariance of the Haar measure;

• in (3) we have applied the relation Λ(ηξ) = 0 for all η, ξ ∈ k, which follows from Lemma
3.2.10.

We now have all the ingredients to prove the two main results of this section:

Proposition 3.2.20 (Poisson formula). Let f(x) : Ak → C satisfy the following three condi-
tions:

1. f(x) is continuous and in L1(Ak);

2.
∑

ξ∈k f(x+ ξ) is uniformly convergent for x ∈ D;

3.
∑

ξ∈k |f̂(ξ)| converges.

The following equality holds: ∑
ξ∈k

f̂(ξ) =
∑
ξ∈k

f(ξ).

Proof. Let φ(x) =
∑

η∈k f(x+ η). By assumption, we can apply Lemma 3.2.18 to obtain

φ̂(ξ) = f̂(ξ),
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where φ(x) is continuous and periodic. Taking absolute values and summing over ξ ∈ k we
obtain ∑

ξ∈k

|φ̂(ξ)| =
∑
ξ∈k

|f̂(ξ)| <∞,

so the assumption of Lemma 3.2.16 is satisfied. That lemma then implies

φ(x) =
∑
ξ∈k

φ̂(ξ)e2πiΛ(xξ).

Replacing φ(x) with its definition and φ̂(ξ) with f̂(ξ) (Lemma 3.2.18 again) we arrive at∑
η∈k

f(x+ η) =
∑
ξ∈k

f̂(ξ)e2πiΛ(xξ).

Setting x = 0 gives the result.

In turn, the Poisson formula leads immediately the most important result of this section,
that Tate calls ‘an arithmetic analogue of the Riemann-Roch theorem’ (more on that in a
moment!).

Theorem 3.2.21 (Riemann-Roch). Let f(x) : Ak → C satisfy the following three conditions:

1. f(x) is continuous and in L1(Ak);

2.
∑

ξ∈k f(a(x+ ξ)) is convergent for all idèles a and all adèles x, uniformly for x ∈ D;

3.
∑

ξ∈k |f̂(aξ)| is convergent for all a ∈ Ik.

The following holds for every idèle a ∈ Ik:

1

∥a∥
∑
ξ∈k

f̂(ξ/a) =
∑
ξ∈k

f(aξ).

Proof. Fix an idèle a and define g(x) = f(ax). We check that g(x) satisfies the hypotheses of
Proposition 3.2.20. It is clear that g(x) is continuous and L1, and

∑
ξ∈k g(x + ξ) is uniformly

convergent for x ∈ D by assumption. As for the third condition, we compute the Fourier
transform of g(x) as follows:

ĝ(x) =

∫
g(η)e−2πiΛ(xη) dµAk

(η)

=

∫
f(aη)e−2πiΛ(xη) dµAk

(η)

=
1

∥a∥

∫
f(η)e−2πiΛ(xη/a) dµAk

(η)

=
1

∥a∥
f̂(x/a),

where in the only non-trivial equality we used Lemma 3.2.3. We now have
∑

ξ∈k |ĝ(ξ)| =
1

∥a∥
∑

ξ∈k |f̂(a−1ξ)| <∞ by assumption. Thus, the Poisson formula holds and yields∑
ξ∈k

g(ξ) =
∑
ξ∈k

ĝ(ξ),
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that is, ∑
ξ∈k

f(aξ) =
1

∥a∥
∑
ξ∈k

f̂(ξ/a).

Analogy with the geometric Riemann-Roch theorem (⋆)

In this short optional section, we try to connect Theorem 3.2.21 to the classical statement
known as the Riemann-Roch theorem in the geometry of curves (over finite fields).

Let k be the function field of a curve C over a finite field Fq. In this setting, the places of k
(that are trivial on Fq) are in bijection with the Galois orbits of points of C(Fq) (aka the closed
points of the scheme). Each valuation has a degree deg v, defined as the degree over Fq of the
residue field of the point corresponding to v. The local ring at v, or ring of integers at v,
is the subring Ov of k consisting of those elements for which v(f) ≥ 0. This ring is local, with
unique maximal ideal pv = {0} ∪ {f ∈ k× : v(f) > 0}.

We define a divisor to be a formal linear combination
∑

v nvv, where each nv is an integer
and all but finitely many of them are zero. We denote by Div(k) the set of all divisors. There
is a notion of degree, namely deg(

∑
nvv) =

∑
nv deg(v), and a notion of principal divisor:

given f ∈ k×, the principal divisor corresponding to f is

div(f) =
∑
v

v(f)v.

The (analogue of the) product formula, Theorem 3.2.27 below, holds in this context, and gives

1 = ∥f∥Ak
=
∏
v

∥f∥v =
∏
v

(qdeg v)v(f) = q
∑

v v(f) deg(v),

which shows that deg(div f) = 0. Finally, it is not hard to see that an element f ∈ k× satisfies
div f = 0 if and only if f ∈ F×

q .

We define a partial ordering on the set of divisors by∑
v

nvv ≥
∑
v

n′
vv ⇐⇒ nv ≥ n′

v ∀v.

To each divisor D we then associate the linear system

L(D) = {0} ∪ {f ∈ k× : div(f) ≥ −D}.

It is immediate to see that L(D) is an Fq-vector space. We write l(D) for its dimension. It is
not hard to show that l(D) is finite for every D, but we will simply admit this.

Before connecting Theorem 3.2.21 to the classical statement of Riemann-Roch, we make
two further remarks. One is that, given a divisor D =

∑
nvv, we can always find an idèle

x(D) = (x(D)v) such that v(x(D)v) = nv. If we further define

f =
∏
v

1Ov , (3.12)
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the product of the characteristic functions of the local rings at all valuations, for every ξ ∈ k
we have

f(ξx(D)) =
∏
v

1Ov(ξx(D)v) =
∏
v

{
1, if v(x(D)v) + v(ξ) ≥ 0

0, otherwise
=

{
1, if v(ξ) ≥ −nv ∀v
0, otherwise

,

and therefore, by definition, this number is 1 if ξ is in L(D) and is 0 otherwise. Thus,∑
ξ∈k

f(ξx(D)) = #L(D) = ql(D).

Theorem 3.2.22 (Riemann-Roch, geometric form). There exists an integer g ≥ 0 and a divisor
KC of degree 2g − 2 such that

l(D)− l(KC −D) = deg(D)− g + 1.

Proof. Fix a character Λ : Ak → S1 which gives rise to a self-duality, as in Theorem 3.2.1. For
each place v, let pmv

v be the minimal power of pv on which Λv is trivial (note that mv can easily
be negative, see Lemma 3.1.6). We define

KC = −
∑
v

mvv;

it is a divisor, because mv = 0 for almost all v.
We now compute the Fourier transform of the function f defined in (3.12). By Lemma

2.4.22, this is given by the product of the Fourier transforms of the functions 1Ov . By the exact
same calculation as in the proof of Theorem 3.1.10, we obtain that

1̂Ov(x) = N(pmv
v )1/2 · 1pmv

v
.

Multiplying over all v, we obtain the Fourier transform of f as∏
v

N(pmv
v )1/2 ·

∏
v

1pmv
v

= q
1
2

∑
mv deg(v) ·

∏
v

1pmv
v

= q−
1
2
degKC ·

∏
v

1pmv
v
.

Applying this formula to ξx(D)−1, where x(D) is as above, we obtain

f̂
(
ξx(D)−1

)
=

{
q−

1
2
degKC , if v(ξ) ≥ mv + nv ∀v

0, otherwise.

Notice that this is nonzero precisely if v(ξ) ≥ −v(D) + v(KC) = −v(D −KC), so∑
ξ∈k

f̂
(
ξx(D)−1

)
= q−

1
2
degKC#L(KC −D) = q−

1
2
degKC+l(KC−D).

Finally, we apply Theorem 3.2.21 to the function f and the idèle x(D). It yields∑
ξ∈k

f(ξx(D)) = ∥x(D)∥−1
∑
ξ∈k

f̂(ξx(D)−1),
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that is,

ql(D) = ∥x(D)∥−1q−
1
2
degKC+l(KC−D).

Since ∥x(D)∥−1 =
∏

v(q
deg v)nv = qdegD, we have obtained

ql(D) = qdegD− 1
2
deg(KC)+l(KC−D),

that is,

l(D)− l(KC −D) = degD − 1

2
(degKC).

We conclude by setting deg(KC) = 2g−2: it is clear from the statement of the theorem that g is
automatically an integer (since every other term in the formula is), and non-negativity follows
from the fact that replacing D = KC in the statement we obtain l(KC)− l(0) = 2g− 2− g+1,
that is, g = l(KC)− l(0) + 1 = l(KC) ≥ 0.

3.2.2 The multiplicative group: the idèles

Recall from Definition 2.4.5 the group of idèles Ik of k. We shall presently regard Ik as a
topological group, with the topology coming from its structure as a restricted product.

Exercise 3.2.23 (Two topologies on Ik). Check that the restricted product topology of Ik is
strictly finer than the subspace topology that Ik inherits from Ak.

Definition 3.2.24 (Map to ideals). For every idèle a = (av)v we define φ(a) as the fractional

ideal of Ok given by φ(a) =
∏

p̸∈S∞
p
vp(ap)
v , where we identify the set of finite places of k to the

set of (non-zero) prime ideals of Ok.

Remark 3.2.25. The map a 7→ φ(a) is a homomorphism with kernel IS∞ (the idèles that are
units at all finite places).

Following the general structure of our analysis, we now fix a measure on Ik and describe its
quasi-characters.

Definition 3.2.26 (Idèlic Haar measure). We take as Haar measure on the idèles the product∏
v dαv of the local multiplicative measures dαv of Definition 3.1.22.

By Theorem 2.4.14, the quasi-characters of Ik =
∏′

v(k
×
v , uv) are of the form c(a) =

∏
v cv(av),

where – for almost all v – the character cv belongs to u⊥v , that is to say, cv(uv) = {1} (such a
character, as already mentioned, is said to be unramified).

We embed k× into Ik by sending α ∈ k× to the idèle α = (α, α, . . . , α, . . .). As was the case
with the additive group, the most interesting questions about Ik concern the ‘position’ of k×

inside it.
The next result is well-known (in fact, we have already met it as Theorem 2.3.8), but we

give a proof in our language.

Theorem 3.2.27 (Product formula). The following hold.

1. Let α ∈ k×. The ideal φ(α) is the principal ideal (α).
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2. For every α ∈ k× we have

∥α∥ =
∏
v

∥α∥v = 1.

Proof. 1. This is almost tautological: for any finite place p of k we have vp(φ(α)) = vp(αp) =
vp(α), so the (fractional) ideals φ(α) and (α) have the same prime factorisation, hence
they are equal.

2. Let D be the additive fundamental domain of Definition 3.2.7. The point is that αD is
another additive fundamental domain, hence one expects D and αD to have the same
volume. Since µ(αD) = ∥α∥µ(D) by Lemma 3.2.3, this should imply ∥α∥ = 1. We now
make this precise.

Notice first that
⊔

ξ∈k(ξ+αD) =
⊔

ξ∈k(αξ+αD) =
⊔

ξ∈k α(ξ+D) is still a disjoint union,

and that this union covers
⊔

ξ∈k α(ξ +D) = α
(⊔

ξ∈k(ξ +D)
)
= αAk = Ak.

Now

µAk
(αD) =

∑
ξ∈k

∫
αD∩(ξ+D)

dµAk
(x) =

∑
ξ∈k

∫
(−ξ+αD)∩D

dµAk
(x)

ξ 7→−αξ
=

∑
ξ∈k

∫
(αξ+αD)∩D

dµAk
(x) =

∫
⊔ξ((αξ+αD)∩D)

dµAk
(x)

=

∫
D

dµAk
(x) = µAk

(D).

Using µAk
(αD) = ∥α∥µAk

(D) (Lemma 3.2.3) and the fact that µAk
(D) ̸= 0 (Theorem

3.2.8(2)), the proof is complete.

Definition 3.2.28 (Idèles of norm 1). We let J denote the kernel of the map

Ik → R+

a 7→ ∥a∥.

Let v0 be an (arbitrarily chosen) archimedean place of k. Denote by T the subgroup of idèles
that are trivial away from v0, and that are positive real numbers in the component k×v0 (which
can be either R× or C×). For a positive real number t, we also denote by t the unique idèle in
T with absolute value t (notice that, when kv0

∼= C, the identification is that t represents the
idèle (1, 1, . . . , 1,

√
t, 1, . . .)).

Remark 3.2.29. Tate writes that it is ‘aesthetically disturbing and not really necessary’ to
make this arbitrary choice of T . What I think he means is that one could take as T a canonical
subgroup of Ik isomorphic to R+, given by the image of the map that sends t ∈ R+ to the idèle
that is 1 at each finite place and is equal to t (respectively,

√
t) at each real (respectively,

complex) place. However, Tate’s choice of T is more convenient for certain calculations, so we
will make peace with it.

The following lemma is obvious:

Lemma 3.2.30. We have I = J × T .
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We will write idèles as a = ∥a∥ · b, where ∥a∥ ∈ T and b = a/∥a∥ ∈ J .
Since T is isomorphic to a copy of (R>0, ·), its Haar measure is (proportional to) dt

t
. More-

over, the Haar measure(s) on a product are products of Haar measures on the factors, so, if we
choose dt

t
as our Haar measure on T , this determines a unique measure db on J such that our

already-defined measure da is equal to dbdt
t
. Fubini’s theorem then yields the equalities∫

I

f(a) da =

∫ ∞

0

(∫
J

f(tb)db

)
dt

t
=

∫
J

(∫ ∞

0

f(tb)
dt

t

)
db (3.13)

for any f ∈ L1(Ik).

Multiplicative fundamental domain

The product formula (Theorem 3.2.27) implies that k× is contained in J . Our next objective
is to describe the relative position of k× inside of J , and in particular to find a fundamental
domain for J/k×.

Definition 3.2.31. We set JS∞ = J ∩ IS∞ . Thus, JS∞ is the group of idèles of norm 1 that
are units at all finite places. We further introduce the set S ′

∞ = S∞ \ {v0} of the infinite places
of k different from our chosen place v0, and the function

l : JS∞ →
∏

v∈S′
∞
R

b 7→ (log ∥bv∥v)v∈S′
∞
.

Lemma 3.2.32. l is a continuous, surjective homomorphism.

Proof. That l is a homomorphism is obvious from the elementary properties of log. Continuity
is equally easy. To see that it is surjective, simply notice that, given any point (tv)v∈S′

∞
∈ RS′

∞ ,
we can certainly find (bv)v∈S′

∞ such that log ∥bv∥v = tv for all v ∈ S ′
∞. We extend this to an idèle

in JS∞ by choosing bv0 ∈ k×v0 in such a way that
∏

v∈S∞
∥bv∥v = 1, at which point the idèle with

finite components equal to 1 and infinite components equal to the bv maps to (tv)v∈S′
∞
∈ RS′

∞

under l, as desired.

We now describe the intersection k× ∩ JS∞ .

Lemma 3.2.33. The following hold

1. k× ∩ JS∞ = O×
k ;

2. k× ∩ ker l = µ(k), the (finite cyclic) group of roots of unity in k.

Proof. 1. By definition, an idèle in JS∞ is a unit at all finite places. If it also an element of
k, then it is a unit of Ok.

2. It is a well-known theorem of Kronecker that the units of Ok that are of absolute value
1 under all complex embeddings are precisely the roots of unity in k, see Exercise 3.2.34.
Notice that, given α ∈ k×∩ker l, we know that ∥α∥v = 1 for all finite v and for all v ∈ S ′

∞.
The product formula (Theorem 3.2.27) then implies that also ∥α∥v0 is equal to 1.
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Exercise 3.2.34. Let α ∈ O×
k have absolute value 1 under all complex embeddings of k. Prove

that α is a root of unity.
Hint. Let αn be any power of α. The coefficients of the minimal polynomial of αn over Q

are bounded (since they are combinations with constant coefficients of σi(α
n) = σi(α)

n, which
are of absolute value 1). The degrees of these characteristic polynomials are also bounded.
Thus, the numbers {αn}n∈N are roots of finitely many polynomials; in particular, the set {αn}
is finite. Hence, there exist m,n such that αm = αn.

Recall now Theorem 1.3.21. Together with its proof, it shows the following. Let r =
r1 + r2 − 1 and ε1, . . . , εr be a system of generators5 for the free part of O×

k . The images
l(ε1), . . . , l(εr) form a full-dimensional lattice inside Rr. In particular, the l(εi) form an R-basis
of Rr. Thus, for every b ∈ JS∞ , one can write uniquely

l(b) =
r∑

i=1

xil(εi) (3.14)

for some xi ∈ R. By analogy with the additive case (see Definition 3.2.7), it is natural to
consider the ‘fundamental parallelotope’

P =

{
r∑

i=1

xil(εi)
∣∣ xi ∈ [0, 1)

}
. (3.15)

This is not (yet) the good fundamental domain for the multiplicative action, for reasons that
we will explain below, but is closely related to it. For this reason, it is useful to know the
measure of P , which we compute in the next lemma.

Lemma 3.2.35. ∫
l−1(P )

db =
2r1(2π)r2√

|dk|
R,

where

R =

∣∣∣∣det (log ∥εi∥v)1≤i≤r
v∈S′

∞

∣∣∣∣
is the regulator of k.

Proof. Let Q be unit cube Q = {(xv)v∈S′
∞ : 0 ≤ xv < 1 ∀v ∈ S ′

∞} and let X =
∏

v∈S′
∞
R be

the real vector space in which P,Q live. Since l is a surjective homomorphism, we have (see
Exercise 3.2.36)

µIk(l
−1(P ))

µIk(l
−1(Q))

=
µX(P )

µX(Q)
.

By definition, there is a linear map taking Q to P whose matrix has the l(εi) as columns, so
the above ratio is equal to the absolute value of the determinant of this matrix, that is, R. It
remains to show that ∫

l−1(Q)

db =
2r1(2π)r2√

|dk|
.

5this means that the classes of ε1, . . . , εr in O×
k /{roots of unity} ∼= Zr form a basis
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By definition, l−1(Q) is the set of b ∈ JS∞ that satisfy 1 ≤ |b|v < e for v ∈ S ′
∞. Consider the

(more canonical) set Q∗ given by

Q∗ = {a ∈ IS∞ : 1 ≤ ∥a∥v < e ∀v ∈ S∞}

(notice the change from S ′
∞ to S∞). Fubini’s theorem gives∫

Q∗
da =

∫
J

(∫
t:tb∈Q∗

dt

t

)
db =

∫
l−1(Q)

(∫
t:1≤∥tb∥v0<e

dt

t

)
db

=

∫
l−1(Q)

(∫ e∥b∥−1
v0

∥b∥−1
v0

dt

t

)
db =

∫
l−1(Q)

db,

where we have used:

1. tb ∈ l−1(Q) if and only if b ∈ l−1(Q) and 1 ≤ ∥tb∥v0 < e (recall that t is an idèle whose
only non-unitary component is along v0);

2. the integral
∫ e∥b∥−1

v0

∥b∥−1
v0

dt
t

can be evaluated exactly: it gives log(e∥b∥−1
v0
) − log(∥b∥−1

v0
) =

log(e) = 1.

Thus, the claim of the lemma is equivalent to the fact that∫
Q∗
da =

2r1(2π)r2√
|dk|

.

Now, Q∗ is a product set: it can be written as IS∞ ×
∏

v∈S∞{av : 1 ≤ ∥av∥v < e}. By (2.7), its
measure is therefore given by∏

v∈S∞

∫
{av :1≤∥av∥<e}

dµk×v
×
∏

v finite

∫
uv

dµk×v
.

We compute the factors in this product:

1. if v is real, ∫
{av :1≤∥av∥v<e}

dµk×v
=

∫
(−e,−1]∪[1,e)

dt

t
= 2

∫ e

1

dt

t
= 2.

2. if v is complex,∫
{av :1≤∥av∥v<e}

dµk×v
=

∫
{z∈C:1≤|z|<

√
e}

dz

|z|2
=

∫ √
e

1

2rdr

r2

∫ 2π

0

dϑ = 2π.

For this calculation, one needs to pay attention to the fact that ∥z∥ = |z|2, where | · | is
the usual complex norm. This justifies both the appearance of

√
e and the denominator

r2.

3. for v finite, by definition µk×v
(u) is N(dkv)

−1/2.
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Putting everything together we obtain that the measure of Q∗ (hence of l−1(Q)) is

2r1(2π)r2
∏

v finite

N(dkv)
−1/2 = 2r1(2π)r2|dk|−1/2,

where the last equality is obtained using Theorem 2.3.20.

Exercise 3.2.36. Let f : G → H be a surjective homomorphism of locally compact abelian
groups and let X1, X2 be measurable subsets of H, with 0 < µH(X2) <∞. Prove that

µG(f
−1(X1))

µG(f−1(X2))
=
µH(X1)

µH(X2)
.

Hint. Prove that X 7→ µG(f
−1(X)) is a Haar measure on H, and rescale by the correct

factor.

Definition 3.2.37 (Multiplicative fundamental domain). Let h be the class number of k and
let b1, . . . , bh ∈ J be chosen so that the corresponding ideals φ(b1), . . . , φ(bh) represent all the
ideal classes. Let w be the number of roots of unity in k. Let l be the logarithmic map of
Equation (3.14) and P be the fundamental parallelotope of Equation (3.15). Define

E0 = {b ∈ l−1(P ) : 0 ≤ arg(bv0) <
2π

w
} ⊆ JS∞

and
E := E0b1 ∪ E0b2 ∪ · · · ∪ E0bh.

We call E the multiplicative fundamental domain for J mod k×.

Theorem 3.2.38 (Properties of the multiplicative fundamental domain). 1. The union

E0b1 ∪ E0b2 ∪ · · · ∪ E0bh

appearing in the definition is disjoint.

2. J =
⊔

α∈k× αE (so that E deserves its name: it is a set of representatives for J mod k×).

3. ∫
E

db =
2r1(2π)r2hR√

|d|w
.

Proof. 1. It suffices to observe that φ(E0bi) = φ(bi) since E0 is by definition a subset of JS∞ ,
which is in the kernel of φ by Lemma 3.2.33.

2. To show that the union is disjoint, it suffices to prove that if we have a solution to

αe1 = e2

with e1, e2 ∈ E and α ∈ k×, then α = 1. Suppose that ei is in E0bi for i = 1, 2: applying φ
we then obtain (α)φ(b1) = φ(b2), hence (since the ideal classes φ(bi) are distinct) b1 = b2.
Write ei = cibi with ci ∈ E0. After simplifying a factor b1 = b2, we are left with showing
that the equation αc1 = c2 with c1, c2 ∈ E0 and α ∈ k× has solutions only for α = 1.



3.2. THE GLOBAL THEORY 139

Applying again φ shows φ(α)φ(c1) = φ(c2), where the principal ideals φ(c1), φ(c2) are
trivial, since ci ∈ E0 ⊆ JS∞ . Hence φ(α) is not just principal, but also trivial, and α is a
unit of O×

k . Writing α = ζ
∏r

j=1 ε
nj

j and applying the homomorphism l we then obtain∑
j

njl(εj) = l(α) = l(c2)− l(c1).

Now observe that the nj are integers, while the coefficients of l(c2) − l(c1) in the basis
l(ε1), . . . , l(εr) lie in the open interval (−1, 1). Hence, the nj are all 0, and α = ζ is a
root of unity in E0. It is also a root of unity in k×, hence its order divides w. On the
other hand, by definition, 0 ≤ argαv0 <

2π
w
, which implies αv0 = ζv0 = 1. Thus, the

archimedean embedding v0 sends α to 1, and therefore α = 1 as desired.

To show that the union is all of J we reason essentially in the same way. Start with any
idèle b ∈ J . There is a unique i ∈ {1, . . . , r} such that bb−1

i represents a principal ideal,
say αO for some α ∈ k×. The idèle bb−1

i α−1 is then an element of J representing the
trivial ideal, so it is in JS∞ . Apply l and write

l(bb−1
i α−1) =

r∑
j=1

(nj + xj)l(εj),

with nj ∈ Z and xj ∈ [0, 1). The idèle

bb−1
i α−1

r∏
j=1

ε
−nj

j

is in l−1(P ). To land in E0 we need to adjust the argument of the v0-component so
that it lies in the interval [0, 2π

w
). There is a (unique) choice of root of unity ζ such

that the v0-component of ζ−1
(
bb−1

i α−1
∏r

j=1 ε
−nj

j

)
satisfies the desired inequality on the

argument. The idèle bb−1
i ζ−1α−1

∏r
j=1 ε

−nj

j is then in E0, which means that we have

b ∈
(
ζα
∏r

j=1 ε
nj

j

)
biE0 ⊆ k×biE0 ⊆ k×E, as desired.

3. By definition we have the equalities

E =
h⊔

j=1

E0bj, l−1(P ) =
⊔
ζ∈µw

E0ζ,

which (together with Lemma 3.2.35) imply∫
E

db = h

∫
E0

db,
2r1(2π)r2√

|dk|
R =

∫
l−1(P )

db = w

∫
E0

db.

Combining these equations gives the claim.

Corollary 3.2.39 (Position of k× inside J). The subgroup k× is discrete in J (hence in Ik).
The quotient J mod k× is compact.



140 CHAPTER 3. TATE’S THESIS

Proof. As in Corollary 3.2.9: E has non-empty interior (so, up to translation, contains 1 in its
interior) and is contained in a compact set.

Remark 3.2.40. Let Ẽ be another fundamental domain for the multiplicative action (for
example, Ẽ = E−1). Arguing as in the proof of Theorem 3.2.27(2), one sees that if f(x) : Ak →
C satisfies f(ξx) = f(x) for all ξ ∈ k×, then

∫
Ẽ
f(a) da =

∫
E
f(a) da.

The quasi-characters of Ik/k
×

Just like in Section 3.2.1 we worked with functions on Ak invariant under translation by k
(because we were secretly interested in functions on Ak/k), we now consider functions (in
fact, quasi-characters) of Ik that trivial on k×. We shall work exclusively with such (quasi-
)characters: we will call them (quasi-)characters of Ik/k

×, but we will always treat them as
functions defined on Ik and k×-periodic.

Remark 3.2.41. Let c be a quasi-character of Ik/k
×. The restriction of c to J is a character

(that is, it takes values in S1), because ∥c(J)∥ = ∥c(J mod k×)∥ is a continuous image of a
compact set, but it is also a group, so it is a compact subgroup of R>0. The only such subgroup
is {1}.

Suppose moreover that c is a quasi-character of Ik/k
× that is trivial on J . We claim that

c is of the form c(a) = ∥a∥s for some complex number s uniquely determined by c. Indeed, c
factors via Ik/J = T ∼= R×, and the quotient map is precisely a 7→ ∥a∥. We are thus reduced
to describing the characters of R×, which we have already done in Exercise 3.1.14.

Definition 3.2.42 (Exponent of a quasi-character of Ik/k
×). Let c be a quasi-character of

Ik/k
×. By the previous remark, ∥c(a)∥ = ∥a∥s for some s ∈ C. Since ∥c(a)∥ is real and

positive, s is a real number σ. We call this σ the exponent of c.

Note that a quasi-character of Ik/k
× is a character if and only if its exponent is 0.

3.2.3 Global zeta functions

We now develop the global analogue of the local zeta functions of Section 3.1.3. We begin by
introducing the analogue of the class of functions of Definition 3.1.24 in the global setting.

Definition 3.2.43 (Class of z-functions, global case). We denote by z be the class of all
functions f : Ak → C that satisfy

1. f(x) ∈ V1(Ak) (that is, f(x) and its Fourier transform are in L1(Ak) and f(x) is contin-
uous) and f̂(x) is continuous.

2. the series
∑

ξ∈k f(a(x + ξ)) and
∑

ξ∈k f̂(a(x + ξ)) are convergent for every idèle a and
adèle x. The convergence is uniform in (a, x) ranging over any (fixed) subset of the form
K ×D, where D is the additive fundamental domain and K is a compact subset of Ik.

3. f(a)∥a∥σ and f̂(a)∥a∥σ are in L1(Ik) for σ > 1.

Remark 3.2.44. We have not asked that f be continuous on Ik. However, Exercise 3.2.23
shows that the topology on Ik is finer than the subspace topology, hence f |Ik is automatically
continuous (both for the subspace topology, which is obvious, and for the restricted product
topology).
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It should be clear that properties (1) and (2) in Definition 3.2.43 are precisely the hypotheses
needed to apply the Riemann-Roch theorem 3.2.21. On the other hand, property (3) is what
is needed to mimic the definition of the local zeta functions:

Definition 3.2.45 (ζ-function, global case). Let f ∈ z. We introduce the function ζ(f, c) of
quasi-characters c of Ik/k

×, defined for all quasi-characters of exponent greater than 1, by

ζ(f, c) =

∫
Ik

f(a)c(a)da.

We call such a function a ζ-function of the global field k.

Notice the complete analogy with the local case: these global ζ functions are essentially
Fourier transforms on the multiplicative group of idèles, just like the local ones were defined
as Fourier transforms on k×. As was the case in Section 3.1.3, we are interested in working
with equivalence classes of quasi-characters. The local definition of equivalence is that two
characters are equivalent if the coincide on the units; its global counterpart is the following:

Definition 3.2.46 (Equivalence class of quasi-character). Let c1, c2 be two quasi-characters of
Ik/k

×. We say that they are equivalent if they coincide on J . The equivalence class of the
quasi-character c is the set of all quasi-characters of the form c(a)∥a∥s for s ∈ C.

All the considerations of Section 3.1.3 now apply: ζ(f, c) can be considered ‘locally’ (that is,
on each equivalence class of quasi-characters) as a function of a complex variable s, and – when
regarded as such – it is a holomorphic function in the domain of quasi-characters of exponent
greater than 1 (see Lemma 3.1.27).

The next, and most important, step is now to establish the functional equation and analytic
continuation of these global ζ functions.

Theorem 3.2.47 (Analytic continuation and functional equation of the global ζ-functions).
Let k be a number field with standard invariants (r1, r2) (signature), hk, Rk (class number and
regulator), dk (discriminant) and wk (number of roots of unity). Let f be a function of class z
and define the constant

κ :=
2r1(2π)r2hkRk√

|dk|wk

,

which (by Theorem 3.2.38(3)) gives the volume of the multiplicative fundamental domain E.
The ζ-function ζ(f, c) may be extended by analytic continuation to the domain of all quasi-
characters. The extended function is meromorphic and has poles only at the quasi-characters
c(a) = 1 and c(a) = ∥a∥, where it has simple poles with residues −κf(0) and +κf̂(0). Moreover,
ζ(f, c) satisfies the functional equation

ζ(f, c) = ζ(f̂ , ĉ),

where ĉ(a) = ∥a∥c(a)−1, as in the local theory.

Remark 3.2.48. The reader might find it strange that these ζ functions also have a pole
at 0, whereas the global zeta functions we are used to from Chapter 1 (say, the Dedekind
zeta functions) only have a pole at s = 1. Two remarks are in order: the first and most
important one is that Tate’s global ζ functions are analogues of the ‘completed’ ζ functions
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(see e.g. Remark 1.1.10 or the definition of ΛK in Theorem 1.3.33), and not of the Dedekind
zeta functions themselves. The second is that a functional equation of the form Λ(s) = Λ(1−s)
as in Theorem 1.3.33 certainly implies that any pole at s = 1 should also show up at s = 0.

Before showing the theorem we state and prove some auxiliary lemmas. We begin with the
following simple observation, which can be shown much in the spirit of Lemma 3.2.14:

Lemma 3.2.49. Let f : J → C be a continuous function such that f(x) = f(αx) for every
x ∈ J, α ∈ k×. Then, for any two fundamental domains E,E ′ for J/k× having the same
measure6 we have

∫
E
f(b)db =

∫
E′ f(b)db.

Proof. The function f induces a function on the quotient J/k×, and both integrals equal∫
J/k×

f(b)db, where the Haar measure on the quotient is normalised so that vol(J/k×) =

vol(E) = vol(E ′).

Remark 3.2.50. In fact, the lemma is true (with the same proof) under the slightly weaker
assumptions that f is measurable, satisfies f(x) = f(αx), and that the induced function f :
J/k× → C is in L1(J/k×). Note that a continuous function on the compact set J/k× is
automatically bounded and hence in L1.

Our next lemma is a consequence of the Riemann-Roch theorem (Theorem 3.2.21) and will
be the crucial ingredient in the proof of Theorem 3.2.47.

Lemma 3.2.51. For a fixed t ∈ T define

ζt(f, c) =

∫
J

f(tb)c(tb) db.

For all quasi-characters c of Ik/k
× we have

ζt(f, c) + f(0)

∫
E

c(tb) db = ζ1/t(f̂ , ĉ) + f̂(0)

∫
E

ĉ

(
1

t
b

)
db.

Proof. Recall from Theorem 3.2.38 that J =
⊔

α∈k× αE. We start by writing

ζt(f, c) + f(0)

∫
E

c(tb) db =
∑
α∈k×

∫
αE

f(tb)c(tb) db+ f(0)

∫
E

c(tb) db.

Using the translation-invariance of the Haar measure and writing b = αb, we rewrite this as∑
α∈k×

∫
E

f(αtb)c(αtb) db+ f(0)

∫
E

c(tb) db.

Now use the fact that c(α) = 1 since c is trivial on k× and the uniform convergence of the sum∑
α∈k× f(αtb) (property (2) in Definition 3.2.43, applied to the relatively compact subset E) to

further rewrite the above as

ζt(f, c) + f(0)

∫
E

c(tb) db =

∫
E

(∑
α∈k×

f(αtb)

)
c(tb) db+

∫
E

f(0)c(tb) db

=

∫
E

(∑
ξ∈k

f(ξtb)

)
c(tb) db.

(3.16)

6this property is in fact automatic: one can show it as in the proof of Theorem 3.2.27.
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We are now in a position to apply Theorem 3.2.21 to the inner sum, which yields

ζt(f, c) + f(0)

∫
E

c(tb) db =

∫
E

(∑
ξ∈k

f̂

(
ξ

tb

))
1

∥tb∥
c(tb) db.

We now observe that b 7→ 1/b is an involution of the abelian group J , hence sends the Haar mea-
sure to itself (indeed, let g be this automorphism. Then g∗ db = γ db for some constant γ > 0,
hence db = g∗g∗ db = γ2 db and γ = 1). We also recall that E−1 is another multiplicative funda-

mental domain (Remark 3.2.40), and observe that the function g(tb) =
(∑

ξ∈k f̂
(

ξ
tb

))
1

∥tb∥c(tb)

satisfies g(ηtb) = g(tb) for all η ∈ k×, so that
∫
E
f(a) da =

∫
E−1 f(a) da (see Lemma 3.2.49).

Combining these observations, we arrive at the representation

ζt(f, c) + f(0)

∫
E

c(tb) db =

∫
E

(∑
ξ∈k

f̂

(
ξb

t

))
∥b∥
∥t∥

c(t/b) db =

∫
E

(∑
ξ∈k

f̂

(
ξ
1

t
b

))
ĉ(b/t) db.

On the other hand, we can restart from Equation (3.16) and replace f → f̂ , t → 1/t, c → ĉ to
obtain

ζ1/t(f̂ , ĉ) + f̂(0)

∫
E

ĉ(b/t) db =

∫
E

(∑
ξ∈k

f̂

(
ξ
1

t
b

))
ĉ(b/t) db.

Comparing the last two equations yields the lemma.

Lemma 3.2.52. Let c be a quasi-character of Ik/k
× and let t ∈ T . We have∫

E

c(tb) db =

{
κts, if c(a) = ∥a∥s

0, if c is non-trivial on J

Proof. Hopefully, this should be familiar by now: the condition c(a) = ∥a∥s is equivalent to c
being trivial on J , see Remark 3.2.41. Since E is a fundamental domain for J mod k× (Theorem
3.2.38), the integral in the statement is simply∫

J mod k×
c(tb) db = c(t)

∫
J mod k×

c(b) db.

Furthermore, c(b) is a character on J mod k× (Remark 3.2.41 again), so we are integrating a
character on a compact group: the result is either the measure of that compact group, if the
character is trivial, or 0, if it is not. In the former case, we also need to apply Theorem 3.2.38(3)
and observe that ∥t∥ = t since t is essentially a positive real number (hence c(t) = ∥t∥s = ts).

Proof of Theorem 3.2.47. Using Fubini’s theorem, for c of exponent greater than 1 we can write
the integral over Ik = J × T that defines ζ(f, c) as

ζ(f, c) =

∫
Ik

f(a)c(a) da =

∫ ∞

0

(∫
J

f(tb)c(tb) db

)
dt

t
=

∫ ∞

0

ζt(f, c)
dt

t
,

where

ζt(f, c) =

∫
J

f(tb)c(tb) db
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as in Lemma 3.2.51. We split the integral from 0 to ∞ as

ζ(f, c) =

∫ 1

0

ζt(f, c)
dt

t
+

∫ ∞

1

ζt(f, c)
dt

t
.

Notice that (using Fubini in reverse) we have∫ ∞

1

ζt(f, c)
dt

t
=

∫
a∈I

∥a∥≥1

f(a)c(a) da.

By assumption (property (3) in Definition 3.2.43), the integral over all of I converges (abso-
lutely) for c of exponent greater than 1. But if the exponent of c′ is smaller than the exponent of
c we have |f(a)c′(a)| ≤ |f(a)c(a)| for ∥a∥ ≥ 1, so convergence of the integral

∫
a∈I

∥a∥≥1
f(a)c(a) da

for c implies convergence for c′. Since the integral converges for c of exponent greater than 1, it
converges for all c. Consider then

∫ 1

0
ζt(f, c)

dt
t
. We rewrite this integral using Lemmas 3.2.51

and 3.2.52. Consider first the case when c is non-trivial on J . Then, Lemmas 3.2.51 and 3.2.52
together imply ζt(f, c) = ζ1/t(f̂ , ĉ), hence∫ 1

0

ζt(f, c)
dt

t
=

∫ 1

0

ζ1/t(f̂ , ĉ)
dt

t
.

On the other hand, if c is trivial on J then it is of the form c(a) = ∥a∥s for some s ∈ C, and
Lemmas 3.2.51 and 3.2.52 yield∫ 1

0

ζt(f, c)
dt

t
=

∫ 1

0

(
ζ1/t(f̂ , ĉ) + f̂(0)

∫
E

ĉ

(
1

t
b

)
db− f(0)

∫
E

c(tb) db

)
dt

t

=

∫ 1

0

(
ζ1/t(f̂ , ĉ) + f̂(0)

∫
E

∥1
t
b∥1−s db− f(0)κts

)
dt

t

=

∫ 1

0

(
ζ1/t(f̂ , ĉ) + f̂(0)κts−1 − f(0)κts

) dt

t
.

Now observe that t 7→ t−1 preserves the Haar measure on R>0, yielding∫ 1

0

ζ1/t(f̂ , ĉ)
dt

t
=

∫ ∞

1

ζt(f̂ , ĉ)
dt

t
.

By the same argument used above, this integral is analytic for all c.
Carrying out the (trivial) integration of ts−1, ts (assuming ℜs > 1), we have thus obtained

ζ(f, c) =

∫ ∞

1

ζt(f, c)
dt

t
+

∫ ∞

1

ζt(f̂ , ĉ)
dt

t
+ 1c=∥·∥s · κ

(
f̂(0)

s− 1
− f(0)

s

)
for all quasi-characters of exponent greater than 1. The first two summands in this expression
are analytic for all c, while the last two terms (when c = ∥ · ∥s) clearly have meromorphic
continuation to C. They also let us read off the poles and residues of ζ(f, c) directly.

Finally, the functional equation follows trivially: if c is not of the form c(a) = ∥a∥s, the
expression above is unchanged under the substitution (f, c) ↔ (f̂ , ĉ). When c(a) = ∥a∥s, the
dual character is ĉ(a) = ∥a∥1−s, so the substitution (f, c) ↔ (f̂ , ĉ) also replaces s ↔ 1 − s,
which shows the desired invariance.
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3.3 Hecke L-functions, reprise

Following Tate, in the development of the global theory we have worked with (quasi-)characters
of Ik that are trivial on k× ⊂ Ik. We have not fully motivated this choice yet. In this section
we try to give some background for why this choice is natural, and how characters of Ik/k

×

relate to our previous definition of Hecke L-functions (Definition 1.4.9).
This is a good time for the following definition:

Definition 3.3.1 (Hecke character, idèlic version). A Hecke (quasi-)character of k is a
quasi-character of Ik that is trivial on k×.

Remark 3.3.2. Following the general use, in this section we shall simply write Hecke characters
even when we mean Hecke quasi-characters.

Hecke had an ideal-theoretic definition of his characters that is however substantially less
easy to work with than the previous one. The interested reader can find it in [Wik23a]; we shall
essentially re-derive Hecke’s formulas for his characters below, where however they will not be
taken as the definition, but purely as a consequence of the general theory (see Remark 3.4.2).

To each Hecke character we can attach an L-function in a way that looks different from
Definition 1.4.9. We will discuss below the relationship between the two.

Definition 3.3.3 (Hecke L-function). Given an (idèlic) Hecke character χ, let S be the set
of finite places of k at which χ is ramified (=not unramified). We define the corresponding
L-function as

L(s, χ) =
∏
p̸∈S

(
1− χ(p)

(Np)s

)−1

,

for ℜs sufficiently large to make the product converge (when χ is of exponent 0 – that is, when
χ is a character in the strict sense of the word – the product converges at least over {ℜs > 1}).

In the previous formula, the symbol χ(p) is taken to mean the character χ evaluated at any
idèle b(p) that is trivial at all v ̸= p and such that b(p)p is a uniformiser at p.

Remark 3.3.4. By assumption, χ is unramified at all places v ̸∈ S. Any two choices of
uniformisers at p differ by a unit in up, and since χ is unramified at p (=trivial on up) we obtain
that χ(p) is well-defined.

Connecting Definitions 1.4.9 and 3.3.3 is not at all trivial, and largely depends on class
field theory. Developing class field theory would require a substantial effort, so we keep this
discussion to a minimum. The following theorem condenses many results in class field theory
in a form that is suitable for our application:

Theorem 3.3.5 (Class field theory for number fields). Let k be a number field and denote by
kab the maximal abelian extension of k (inside a fixed algebraic closure). There is a canonical
surjective map ϑ : Ik → Gal(kab/k) that satisfies:

1. ϑ is trivial on k×.

2. let L/k be a finite Galois extension of k with abelian Galois group, so that there is a

canonical surjection Ik
ϑ−→ Gal(kab/k)

π−→ Gal(L/k). Let p be a place of k that is unramified
in L, and define a corresponding idèle7 b(p) as in Definition 3.3.3. Then, the Artin symbol

7by abuse of notation, the idèle b(p) is usually denoted simply by p. From now on, we adopt this convention.
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(
L/k
p

)
(which is well-defined, because the extension is abelian) coincides with π(ϑ(b(p))).

3. with the same notation as in the previous part, for every prime q of k, π(ϑ(uq)) is the
inertia group at (any place lying over) q for the extension L/k.

With this (hard) theorem in hand, it is not too difficult to reconnect Definitions 1.4.9 and
3.3.3. Fix a finite Galois extension L/k with group G and a character χ : G → C×. The
character χ factors via the abelianisation of G, hence it factors via χ̃ : Gal(F/k) → C×, where
F/k is the maximal abelian sub-extension of L/k. By Theorem 1.4.12, the L-functions of χ
and χ̃ coincide, hence we can and do assume that L = F is abelian over k and that χ̃ = χ. The
character χ now gives an idèlic Hecke character χHecke, defined simply as the composition

χHecke = χ ◦ π ◦ ϑ,

where ϑ is the map of Theorem 3.3.5 and π is the canonical projection Gal(kab/k) → Gal(L/k).
The two Hecke L-functions are now easily seen to have the same local factors:

1. both L-functions have trivial local factors at primes v ∈ S. This is true by definition
for the L-function of Definition 3.3.3, and is easy to check for the (Artin) L-function of
Definition 1.4.9: we simply need to show that V Ip is trivial, and this follows immediately
from part (3) of Theorem 3.3.5 together with the construction of the set S in Definition
3.3.3.

2. both L-functions have the same local factor at primes p ̸∈ S. We have to check that

χHecke(p) = χ

((
L/k

p

))
,

and this is a consequence of Theorem 3.3.5(2) (simply use the definition χHecke(p) =
χ(π(ϑ(p)))).

Thus, we see that Definition 1.4.9 captures a large part of the class of Hecke L-functions,
but not all of them: essentially, in Definition 1.4.9 we were only considering those characters
that factor via the Galois group Gal(kab/k) and (in particular) have finite image (so that they
further factor via the Galois group of some finite abelian extension L/k). Hecke’s original
definition is more general. However, we will see below (Example 3.4.4) that in the case k = Q
both definitions are essentially the same, and reduce to Dirichlet’s L-functions.

3.4 Characters of the idèles

We now describe the equivalence classes of (quasi-)characters of Ik that are trivial on k
×, where

k is a number field. We begin by noticing that each equivalence class of quasi-characters of Ik
contains a character. If c is a quasi-character of Ik, then c|J is a quasi-character of a compact
group, hence a character. In particular, the restriction of |c| to J is trivial. This implies that
|c| is a quasi-character of the group Ik/J ∼= R>0 (recall that J is the kernel of the norm map
Ik → R>0 sending a to ∥a∥), and as such, |c(a)| = ∥a∥s for some s ∈ C. Since |c(a)| is a real
number, s is also a real number. The quasi-character c lies in the same equivalence class as the
character c(a) · ∥a∥−s. From now on, we shall therefore only work with characters.
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By Theorem 2.4.14, any character of Ik is a product

c(a) =
∏
v

cv(av)

of local characters cv, where all but finitely many cv are trivial on uv. We say that c is
unramified at v if and only if cv|uv is trivial.

We fix a finite set S of places (containing all the archimedean ones) such that cv is trivial
on uv for every v ̸∈ S (which we say concisely as ‘c is unramified outside S’). We start by
observing that, for v ̸∈ S, the characters cv ‘factor via the group of ideals prime to S’, in the
following precise sense.

Definition 3.4.1. We let φS be the map

φS : Ik → F(S) := {fractional ideals I
∣∣ v(I) = 0 ∀v ∈ S, v finite}

a = (av)v 7→
∏

v ̸∈S p
v(av)
v .

It is a homomorphism (with respect to the natural product structure on the set on the right)
with kernel IS.

Define now c∗(a) =
∏

v ̸∈S cv(av). Since cv(av) only depends on the v-adic valuation of av,
the character c∗ factors via φS. We write

c∗(a) = χ(φS(a))

for some character χ of F(S). On the other hand, by Theorem 3.1.16, each character cv for
v ∈ S can be written as

cv(av) = c̃v(ãv)∥av∥itvv ,

where for each av ∈ K×
v we have written av = ∥av∥ · ãv for some ãv of norm 1 (and c̃v is a

character of uv). We have thus expressed our character c in the form

c(a) =
∏
v∈S

c̃v(ãv) ·
∏
v∈S

∥av∥itvv · χ(φS(a)).

Thus, the choice of c amounts to the choice of the following data:

1. the characters c̃v of uv, for v ∈ S;

2. the real numbers tv;

3. a character χ of the group F(S),

subject to the condition that c(α) = 1 for all α ∈ k×. We now make this condition more
explicit.

Suppose that |S| = m+1 and fix a system of generators8 ε1, . . . , εm for the group of S-units
of k (see Theorem 1.3.25). Also denote by ε0 a generator of the finite group of roots of unity
in k×, so that ⟨ε0, . . . , εm⟩ = O×

k,S. Notice that every ε ∈ O×
k,S = k× ∩ IS satisfies φS(ε) = (1),

8a system of generators is a set of elements in O×
k,S whose images in O×

k,S/torsion form a basis of this
free abelian group.
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and so χ(φS(a)) = 1. The condition that c be trivial on O×
k,S implies in particular c(ε0) = 1,

hence ∏
v∈S

c̃v(ε0) = 1. (3.17)

Notice that ∥ε0∥v = 1 for all v ∈ Ωk.
Suppose now that we have fixed a family c̃v for v ∈ S that satisfies condition (3.17). The

equality c(εi) = 1 for i = 1, . . . ,m is satisfied if and only if (for some determination of the
logarithms) we have

∏
v∈S

c̃v(ε̃i,v)∥εi,v∥itvv = 1 ⇔
∑
v∈S

tv log ∥εi,v∥v = i log

(∏
v∈S

c̃v(εv)

)
, (3.18)

which is a linear system of m equations in the m+ 1 unknowns tv. One can show (it is part of
Theorem 1.3.25) that the matrix of the linear system (3.18) has maximal rank, hence the space
of solutions is non-empty (and more precisely is 1-dimensional). We can be even more explicit:
since for every S-unit ε and every place v ̸∈ S we have ∥ε∥v = 1, it follows from Theorem 2.3.8
(which we have now proved as Theorem 3.2.27) that

0 = log 1 = log
∏
v

∥ε∥v =
∑
v

log ∥ε∥v =
∑
v∈S

log ∥ε∥v.

In particular,
∑

v∈S log ∥εi,v∥v = 0 for all i = 1, . . . ,m, so a generator for the kernel of the
matrix corresponding to the linear system (3.18) is the vector all of whose coordinates are
equal to 1. Thus, given a solution {tv}v∈S, all other solutions are of the form {tv + t}v∈S for
some t ∈ R.

Finally, for a given choice of (c̃v)v∈S satisfying (3.17) and a choice of (tv)v∈S satisfying (3.18),
what conditions should χ satisfy? The choice is very constrained (often unique): for all α ∈ k×

we must have
1 = c(α) =

∏
v∈S

c̃v(α)∥α∥itvv · χ(φS(a)),

which means that χ(φS(a)) is uniquely determined by the formula

χ(φS(a)) =
∏
v∈S

c̃v(α)
−1∥α∥−itv

v . (3.19)

Remark 3.4.2. Equations (3.17), (3.18) and (3.19) essentially give Hecke’s original description
of the Hecke characters.

Exercise 3.4.3. Let f : k× → F(S) be the map sending each element x ∈ k× to the
ideal obtained from (x) by deleting all primes in S from its factorisation (formally, if (x) =∏

p∈S p
vp(x) ·

∏
p̸∈S p

vp(x), then f(x) =
∏

p̸∈S p
vp(x)).

1. Prove that f is a homomorphism, and therefore its image is a subgroup of F(S).

2. Show that the image of f is a subgroup of finite index of F(S). Prove that this index is
at most h, the class number of k.

Using the notation of the previous exercise, we have proved that χ is uniquely determined
on the subgroup f(k×). In order to determine χ, we must choose one of the (finitely many)
extensions of χ|f(k×) to F(S).



3.4. CHARACTERS OF THE IDÈLES 149

Example 3.4.4 (Dirichlet characters as idèlic Hecke characters of Q). Take k = Q. We claim
that the idèles Ik decompose as the direct product

Ẑ× ×Q× × R×
>0; (3.20)

this is essentially a reflection of the fact that Z has unique factorisation. More precisely, given
any idèle (av)v∈ΩQ = ((ãpp

ep)p prime, t) with t ∈ R×, ãp ∈ Z×
p , and ep = 0 for almost all p,

introduce the rational number r := sgn(t)
∏

p p
−ep. It is then clear that ra is an idèle that

lies in
∏

p Z×
p × R>0; from this, the decomposition (3.20) follows easily. Moreover, under this

isomorphism, Q× ⊂ IQ corresponds to the direct factor {1}×Q××{1}. Thus, a quasi-character

of IQ trivial on Q× is simply a quasi-character of Ẑ× × R×
>0, hence is the product of a quasi-

character of Ẑ× and a quasi-character of R×
>0.

1. We claim that every continuous quasi-character χ of Ẑ× factors via a finite quotient.
This follows from Exercise 3.1.18: if U is a sufficiently small neighbourhood of 1 in C×

(containing no non-trivial subgroups), χ−1(U) is open. On the other hand, χ(χ−1(U))
is a subgroup contained in U , so it is trivial. It follows that kerχ contains the open
neighbourhood of the identity χ−1(U), and therefore is open in Ẑ×. Since every open

subgroup of Ẑ× has finite index, the claim follows. In particular, χ is a character (and
not just a quasi-character), because it factors via a quasi-character of a finite group, and
every quasi-character of a finite group is a character.

Finally, it is easy to see that the subgroups of the form {x ∈ Ẑ× : x ≡ 1 (mod m)} form a

fundamental system of neighbourhoods of the identity in Ẑ×, as m varies in N. We obtain

that every quasi-character of Ẑ× factors via a quotient Ẑ×

{x∈Ẑ×:x≡1 (mod m)}
∼= (Z/mZ)×.

Thus, there is a bijection between the characters of Ẑ× and the pairs (m, χ̃) where χ̃ is a
primitive character modulo m.

2. The quasi-characters of R>0 are easy to describe: we have seen in Exercise 3.1.14 that
they are all of the form t 7→ ts with s ∈ C.

We can then write every Hecke character of Q as

χ((av)v∈ΩQ) = χ̃(πm(av)) · |a∞|s,

where χ̃ is a primitive character modulo m and πm is the composition of the isomorphism
IQ ∼= Ẑ× × Q× × R×

>0 with the canonical projection Ẑ× → (Z/mZ)×. It is easy to see from
the definition that χ is ramified precisely at the primes dividing m. Moreover, as b(p) (see
Definition 3.3.3) we can take the idèle (1, 1, . . . , p, 1, . . .) with p in the position corresponding
to the factor Qp. The L-function of the character χ is therefore∏

p∤m

(1− χ((bp))p
−s)−1 =

∏
p∤m

(1− χ̃(p mod m))p−s)−1 = L(s, χ̃),

where L(s, χ̃) is the Dirichlet L-function of the character χ̃ from Definition 1.1.23. Since we
have already checked that Dirichlet L-functions are Artin L-functions (Proposition 1.4.6), we
see that for k = Q all our many definitions of (abelian) L-functions coincide.
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3.5 Recovering the classical theory

Our purpose in this section is to prove the main analytic results we have assumed in Chapter
1, namely the functional equation and analytic continuation for Dedekind ζ-functions (Theo-
rem 1.3.33) and Hecke L-functions (Theorem 1.4.11), and the analytic class number formula
(Theorem 1.5.35). We will of course do this by showing that the (completed) ζ functions, and
suitable completed Hecke L-functions, are global ζ functions in the sense of Tate.

Before treating the general case in detail, we sketch the special case of the Dedekind zeta
functions, starting with the case k = Q of the Riemann zeta function. Below we will check (in
much greater generality) that all the results we invoke can indeed be applied, in the sense that
the necessary technical assumptions (e.g., convergence of certain integrals) are all satisfied.

3.5.1 The Riemann zeta function

The ground field is k = Q. We take c to be the trivial character of Ik, and define a function f
on the adèles by setting

f(x) =
∏
p

fp(xp) · f∞(x∞),

where fp is the characteristic function of Zp ⊂ Qp and f∞ is t 7→ e−πt2 (cf. Section 3.1.4). One
can show that f is of class z. We compute the Fourier transform of f as

f̂(y) =
∏
v

f̂v(y) = f∞(y) ·
∏
p

fp(y) = f(y),

where we have used the results of Section 3.1.4, that show f̂p = fp for each prime p and

f̂∞ = f∞. Theorem 3.2.47 now implies

ζ(f, ∥ · ∥s) = ζ(f, ∥ · ∥1−s).

Finally, we express ζ(f, ∥ · ∥s) as a product of local factors as∏
v

ζ(fv, ∥ · ∥s) = π−s/2Γ
(s
2

)∏
p

(1− p−s)−1 = π−s/2Γ
(s
2

)
ζ(s).

Thus, Theorem 3.2.47 gives us the functional equation and analytic continuation for the ζ
function, together with the information that the residue at s = 1 is κf̂(0) = 1. It also finally
justifies Remark 1.1.10, in the sense that the function π−s/2Γ

(
s
2

)
ζ(s) naturally appears as a

global ζ function of the field Q.

3.5.2 Dedekind ζ functions

The case of Dedekind zeta functions is not much harder. We take c = 1 and fv to be the
‘standard’ function considered in Section 3.1.4 for the trivial character. Explicitly,

fv(ξ) =


e−π∥ξ∥2v , v real

e−2π∥ξ∥v , v complex

1Ov , v finite and unramified in k

1d−1
v
(ξ), v finite and ramified
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Note that for all but finitely many v we have fv = 1uv . The Fourier transform is
∏

v f̂v, where

f̂v(ξ) =


fv(ξ), v real

fv(ξ), v complex

fv(ξ), v finite and unramified in k

(Ndv)
1/21Ov(ξ), v finite and ramified.

Write
ΓR(s) = π−s/2Γ(s/2), ΓC(s) = (2π)1−sΓ(s) (3.21)

for the local ζ functions ζ(fv, ∥ · ∥s) at the archimedean places (we get different functions
according to whether v is real or complex).

The ζ function corresponding to f is∏
v

ζ(fv, ∥ · ∥s) = ΓR(s)
r1Γr2

C

∏
v finite

ζ(fv, ∥ · ∥s)

= ΓR(s)
r1Γr2

C

∏
v finite

(Ndv)
s−1/2

1− (Npv)−s

= ΓR(s)
r1ΓC(s)

r2|dk|s−1/2ζk(s),

where we used Equation (3.9) and Theorem 2.3.20.

On the other hand, we now determine the ζ function of f̂ , ∥̂ · ∥s = ∥ · ∥1−s. Let S0 be the
set of finite places of k that are ramified over Q. The desired ζ function is given by

ζ(f̂ , ∥ · ∥1−s) =
∏
v

ζ(f̂v, ∥ · ∥1−s)

= ΓR(1− s)r1ΓC(1− s)r2
∏

v finite,v ̸∈S0

(1− (Npv)
−(1−s))−1

∏
v∈S0

(1− (Npv)
−(1−s))−1

= ΓR(1− s)r1ΓC(1− s)r2
∏

v finite

(1− (Npv)
−(1−s))−1 = |dk|s−1/2ζ(f, ∥ · ∥1−s)

where we used Theorem 3.1.42. (Notice that the product
∏

v finite(1− (Npv)
−(1−s))−1 does not

converge for ℜs > 1; what we mean is that we already know analytic continuation of both sides
of the equation, and this equality is true wherever both sides are defined. Also pay attention
to the change of variables s→ 1− s, which changes |dk|s−1/2 to |dk|1/2−s.)

Using Theorem 3.2.47, which gives ζ(f, ∥ · ∥s) = ζ(f̂ , ∥ · ∥1−s), we obtain

ζ(f, ∥ · ∥s) = ζ(f̂ , ∥ · ∥1−s) = |dk|s−1/2ζ(f, ∥ · ∥1−s).

Multiplying by |dk|1/2−s/2 on both sides we obtain

|dk|(1−s)/2ζ(f, ∥ · ∥s) = |dk|s/2ζ(f, ∥ · ∥1−s),

that is, the function

Λ̃k(s) := |dk|(1−s)/2ζ(f, ∥ · ∥s) = |dk|s/2ΓR(s)
r1ΓC(s)

r2ζk(s)

satisfies analytic continuation and the functional equation Λ̃k(s) = Λ̃k(1− s).
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It is easy to check that Λ̃k(s) = (2π)r2Λk(s), where Λk(s) is the completed ζ function
appearing in Theorem 1.3.33: indeed, the ‘fudge factors’

|dk|s/2ΓR(s)
r1ΓC(s)

r2

multiply out to give

|dk|s/2ΓR(s)
r1Γr2

C = |dk|s/2π−r1s/2Γ(s/2)r1(2π)r2−r2sΓ(s)r2

= |dk|s/2(2π)r2
1

πs/2(r1+2r2)
Γ(s/2)r1Γ(s)r2

= |dk|s/2(2π)r2
1

πns/22r2s
Γ(s/2)r1Γ(s)r2

= (2π)r2
(

|dk|
4r2πn

)s/2

Γ(s/2)r1Γ(s)r2 ,

where we used r1 + 2r2 = n. Theorem 3.2.47 tells us that the residue at 1 of ζ(f, ∥ · ∥s) is
κf̂(0) = κ

∏
v∈S0

(Ndv)
1/2 = κ|dk|1/2.

From the above we have

ζk(s) =
(
|dk|s−1/2ΓR(s)

r1ΓC(s)
r2
)−1

ζ(f, ∥ · ∥s).

The factor
(
|dk|s−1/2ΓR(s)

r1ΓC(s)
r2
)−1

is regular at s = 1, and its value is

(|dk|1/2π−r1/2Γ(1/2)r1)−1 = |dk|−1/2.

Thus, the residue of ζk(s) at 1 is

|dk|−1/2Ress=1 ζ(f, ∥ · ∥s) = |dk|−1/2 · κ|dk|1/2 = κ.

We have proven Theorems 1.1.18 and 1.5.35!

3.5.3 The general case: L-functions of characters

Our final task is to discuss the analytic properties of Dirichlet L-functions, and more generally
Hecke L-functions (taken as in Definition 3.3.3 – we have already checked that these contain
all the Hecke L-functions of Definition 1.4.9).

Idèlic character

We have discussed the characters of Ik in Section 3.4. With notation as in that section, fix a
character

c(a) =
∏
v∈S

c̃v(ãv) ·
∏
v∈S

∥av∥itvv · χ(φS(a)) (3.22)

where c̃v, tv and χ satisfy conditions (3.17), (3.18) and (3.19).
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Choice of the adèlic function

For each v ∈ S, let fv(xv) be the function used in Section 3.1.4 to compute the function
ρ(cv∥·∥sv) corresponding to the character cv. For v ̸∈ S, let fv(xv) be the characteristic function
of Ov. We set

f(x) =
∏
v∈S

fv(xv).

We claim, and we will show below, that f(x) is a function of class z. We begin by noticing that
each function fv(xv) is in V1(kv) by the direct computations of Section 3.1.4, and that fv = 1Ov

for almost all v. Lemma 2.4.22 yields that f is in V1(Ak), and that the Fourier transform of
f(x) is f̂(x) =

∏
v f̂v(xv). We have thus shown that f(x) satisfies condition 1 in Definition

3.2.43.

Fourier transform

We have already seen that the Fourier transform of f(x) is

f̂(x) =
∏
v

f̂v(xv).

For v ̸∈ S and v unramified in k, the Fourier transform of fv = 1Ov is given by fv itself, as
shown by Equation (3.8). For v ̸∈ S but ramified in k, we have

f̂v = (Ndv)
−1/21d−1

v

by a simple direct calculation. Moreover, since each local factor fv is one of the standard
functions of Section 3.1.4, the Fourier transforms f̂v are in V1(k×v ), and in fact, f̂v∥ · ∥σ is in
L1 for every σ > 0 (for v ̸∈ S, this follows from the explicit expression above; for v ∈ S, notice
that all the standard functions fv considered in Section 3.1.4 are of class z for the local field
kv).

We will only need to know this: the Fourier transform f̂ is a product of local functions f̂v,
almost all of which agree with the corresponding fv(x), and all of which satisfy f̂v∥·∥σ ∈ L1(k×v )
for σ > 1.

The ζ-function

The function |f(a)| · ∥a∥σ =
∏

v (|fv(av)| · ∥av∥σv ) is a product of local functions, and all but
finitely many of these are equal to 1 on uv by definition. We can then use Theorem 2.4.20 to
check that |f(a)| · ∥a∥σ is in L1(Ik). It suffices to verify that the infinite product

∏
v∈Ωk

∫
k×v

|fv(av)|∥av∥σv dµkv×(av)

converges. By the choice of standard functions in Section 3.1.4, each single function |fv(av)|∥av∥σv
is in L1(k×v ) for all σ > 1, so it suffices to check that the product of

∫
k×v

|fv(av)|∥av∥σ dµkv×(av)
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over all but finitely many v converges. In particular, we can consider the product∏
v ̸∈S

v unramified in k

∫
k×v

|fv(av)|∥av∥σv dµk×v
(xv) =

∏
v ̸∈S

v unramified in k

∫
Ov\{0}

∥av∥σv dµk×v
(av)

=
∏
v ̸∈S

v unramified in k

1

1− (Npv)−σ
,

where the last equality uses Equation (3.9) and the fact that Ndv = 1 for v unramified in k.
This infinite product converges for σ > 1 by the classical calculation in Proposition 1.4.5. We
already observed that the Fourier transform of f is a product of local functions, and all but
finitely many factors coincide with those of f . From this, it follows easily that f̂ is continuous
and that f̂(a)∥a∥σ is also in L1 for every σ > 1. We have thus checked that f satisfies the third
condition in Definition 3.2.43.

We now verify condition 2 in Definition 3.2.43, that is, we show that the sum∑
ξ∈k

f(a(x+ ξ))

is uniformly convergent for (a, x) ∈ C ×D, where C is a compact subset of Ik. As before, the
argument for

∑
ξ∈k f̂(a(x+ ξ)) is completely analogous, so we only treat the case of f .

Lemma 3.5.1. Let f and C be fixed. There is a fractional ideal A of Ok such that, for all
a ∈ C and x ∈ D, we have f(a(x+ ξ)) = 0 unless ξ is in A.

Proof. Let v be a finite place. By definition, fv vanishes outside of a compact subset Bv of kv,
and we can take Bv = Ov for all but finitely many v. Thus, f(a(x + ξ)) can only be non-zero
if a(x + ξ) belongs to

∏
v Bv. Equivalently, x + ξ has to belong to

∏
v a

−1
v Bv (which is still a

compact set), and ξ has to belong to k ∩
∏

v (−xv + a−1
v Bv). We claim that the intersection

k∩
∏

v (−xv + a−1
v Bv) is contained in a fractional ideal A ofOk independent of x and a (provided

that these elements lie in D and C, respectively). To prove this, we notice that:

1. for each v, the v-valuation of elements in −xv + a−1
v Bv is bounded below, uniformly as

x varies in D and a in C. This follows from the compactness of Bv, of C and of D,
which implies the compactness of −D + C−1Bv, combined with the fact that v (being
continuous) is bounded on any compact subset of k×v .

2. for all but finitely many v, all elements in −xv + a−1
v Bv are v-integral (for any choice

of x ∈ D and a ∈ C). To see this, recall from Lemma 2.4.10 that a compact subset of
Ik =

∏′
v(k

×
v , uv) is contained in a product of compact subsets Cv, where all but finitely

many Cv are equal to uv. Moreover, by definition, the elements in D are v-integral for all
finite v. Thus, if v is any place for which Bv = Ov (all but finitely many) and Cv = uv
(all but finitely many), then −xv + a−1

v Bv ⊂ Ov + uvOv ⊆ Ov.

Combining the previous two statements, we obtain that ev = min{0, v(−xv + a−1
v bv) : x ∈

D, a ∈ C, bv ∈ Bv} is a well-defined integer, equal to 0 for almost all v. Thus, A :=
∏

v finite p
ev
v

is a well-defined fractional ideal of k, which by construction contains k ∩
∏

v(−xv + a−1
v Bv).

This concludes the proof of the lemma.
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Let A be the ideal given by the lemma. Like all fractional ideals of a number field, it
is a free Z-module of finite rank n = [k : Q]. Let ω1, . . . , ωn be a Z-basis of A. The series∑

ξ∈k f(a(x+ ξ)) can then be rewritten as a sum over ξ ∈ A, hence as

∑
(c1,...,cn)∈Zn

f

(
a

(
x+

n∑
i=1

ciωi

))
.

By definition, f(x) =
∏

v fv(xv), and all the non-archimedean factors are bounded by 1 in
absolute value (see Equation (3.7)). Each archimedean factor is also bounded (though not
necessarily by 1), see Equations (3.4) and (3.5). Thus, it suffices to show that

∑
(c1,...,cn)∈Zn

∏
v archimedean

fv

(
av

(
xv +

n∑
i=1

ciωi

))
(3.23)

converges uniformly. The product
∏

v archimedean fv (av (xv +
∑n

i=1 ciωi)) is bounded above by
a function on Rn of the form w 7→ p(w) exp(ca,x + da,x∥w∥ − Ba,x∥w∥2), where p(w) is a
polynomial, ca,x, da,x are numbers depending continuously on a, x, and Ba,x is a non-singular
matrix depending continuously on a, x. Since av, xv are bounded (lying respectively in the
compact C and in the relatively compact set D) and av is also bounded away from zero (for
the same reason), it is easy to see that w 7→ p(w) exp(ca,x − Ba,x∥w∥2) is bounded above by
a function g(w) (independent of a, x) of the same form, for which the sum converges (see
Exercise 3.5.2; notice that we are summing over a full-rank lattice of Rn, so as max |ci| → ∞,
also ∥

∑
ciωi∥ tends to infinity). This completes the verification that our function f lies in class

z.

Exercise 3.5.2. Complete the argument for the uniform convergence of (3.23).

Conclusion: analytic continuation and functional equation

Let c̃ be a quasi-character of exponent greater than 1. Applying Theorem 2.4.20, we obtain
that the ζ function ζ(f, c̃) =

∫
Ik
f(a)c̃(a) dµIk(a) decomposes as the product

∏
v

(∫
k×v

fv(av)c̃v(av) dµk×v
(av)

)
=
∏
v

ζ(fv, c̃v) (3.24)

of the local ζ functions of the quasi-characters c̃v. In particular, if c is our fixed character (of
exponent 0)

c(a) =
∏
v

cv(av) =
∏
v∈S

cv(av) · χ(φS(a)),

we can apply the decomposition (3.24) to the quasi-character c̃ = c∥·∥s for every s with ℜs > 1.

As a next step, we notice that for every v ̸∈ S and ℜs > 1 we can explicitly compute the
integral defining ζ(fv, cv∥·∥sv). To do this, notice first that every av ∈ Ov can be written uniquely
as πi

vãv with i ∈ N and ãv ∈ uv. By definition, cv is unramified, so cv(av) = cv(π
i
v) = cv(πv)

i

only depends on i, the valuation of av. Furthermore, cv(πv) is by definition χ(pv), where pv is
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the prime ideal corresponding to the valuation v. We may now compute

ζ(fv, cv∥ · ∥sv) =
∫
Ov\{0}

cv(av)∥av∥sv dµk×v
(av)

=
∞∑
i=0

µk×v
(πi

vuk)(Npv)
−isχ(pv)

i

=
∞∑
i=0

µk×v
(uk)(Npv)

−isχ(pv)
i

= (Ndv)
−1/2

(
1− χ(pv)

(Npv)s

)−1

.

(We take this chance to mention that this is basically the same computation necessary to check
Theorem 3.1.42.) Thus,

ζ(f, c∥ · ∥s) =
∏
v∈S

ζ(fv, cv∥ · ∥sv) ·
∏
v ̸∈S

(
(Ndv)

−1/2

(
1− χ(pv)

(Npv)s

)−1
)

=
∏
v∈S

ζ(fv, cv∥ · ∥sv) ·
∏
v ̸∈S

(Ndv)
−1/2 · L(s, c),

where L(s, c) is the Hecke L-function of the idèlic character c in the sense of Definition 3.3.3.
To justify the appearance of L(s, c), notice that

L(s, c) =
∏
v ̸∈S

(
1− c(pv)

(Npv)s

)−1

=
∏
v ̸∈S

(
1− χ(pv)

(Npv)s

)−1

= L(s, χ),

because by definition the Hecke L-function L(s, c) only depends on c(b(p)), where p ranges over
the primes at which c is unramified. The explicit description (3.22) shows immediately that
c(b(p)) = χ(b(p)). We have thus shown that L(s, c) can be represented as

L(s, c) =
∏
v∈S

ζ(fv, cv∥ · ∥sv)−1
∏
v ̸∈S

(Ndv)
−1/2 · ζ(f, c∥ · ∥s).

Theorem 3.2.47 shows that ζ(f, c∥·∥s) has meromorphic continuation to C, with poles at s = 0, 1
if c is trivial. Remark 3.1.46 shows that the factor

∏
v∈S ζ(fv, cv∥ · ∥sv)−1 is everywhere analytic,

and (Ndv)
−1/2 is clearly a constant. Thus, we obtain analytic continuation to C as soon as c is

not the trivial character; when c is the trivial character, we still need to check that the pole at
s = 1 is not cancelled by the local zeta factors, while the pole at s = 0 does cancel out. This
follows easily from the explicit expressions for the local zeta functions. In particular, the local
ζ function at any archimedean place is of one of the two forms given in Equation (3.21): both
these functions are regular and nonvanishing at s = 1, while they have a pole at s = 0. Their
inverses thus vanish at s = 0, and cancel out the pole of ζ(f, ∥ · ∥s). As for the situation at
s = 1, it suffices to check that none of the local zeta functions computed in Section 3.1.4 has a
pole at s = 1, which is easily seen to be the case. This completes the proof of Theorem 1.4.11.

Finally, for the sake of completeness we also briefly discuss the functional equation satisfied

by the Hecke L-functions. We can write the ζ function for the dual pair (f̂ , ĉ∥ · ∥s) = (f̂ , c−1∥ ·
∥1−s) as

ζ(f̂ , ĉ∥ · ∥s) =
∏
v∈S

ζ(f̂v, ĉv∥ · ∥sv)
∏
v ̸∈S

χ(dv)(Ndv)
−s · L(1− s, χ−1)
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for ℜs < 0. The global functional equation of Theorem 3.2.47 then yields

ζ(f, c∥ · ∥s) = ζ(f̂ , ĉ∥ · ∥s) ⇐⇒∏
v∈S

ζ(fv, cv∥ · ∥sv) ·
∏
v ̸∈S

(Ndv)
−1/2 · L(s, χ) =

∏
v∈S

ζ(f̂v, ĉv∥ · ∥sv)
∏
v ̸∈S

χ(dv)(Ndv)
−s · L(1− s, χ−1).

Dividing both sides by
∏

v∈S ζ(f̂v, ĉv∥ · ∥sv)
∏

v ̸∈S χ(dv)(Ndv)
−s we finally obtain the functional

equation ∏
v∈S

ρ(cv∥ · ∥sv) ·
∏
v ̸∈S

(
χ(dv)(Ndv)

s−1/2
)
· L(s, χ) = L(1− s, χ−1),

where – using the local functional equations ζ(fv, cv∥ · ∥sv) = ρ(cv)ζ(f̂v, ĉv∥ · ∥sv) of Theorem
3.1.35 – we have rewritten the ratios

ζ(fv, cv∥ · ∥sv)
ζ(f̂v, ĉv∥ · ∥sv)

in terms of ρ-factors. Recall that these functions have been explicitly computed in Section 3.1.4
and only depend on the character cv, not on the choice of fv. Replacing each ρ-factor with its
explicit expression yields the classical functional equation for Hecke L-functions.
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Exam questions
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Here are some questions I asked during exams:

1. Let K be the splitting field over Q of x3 − 2, let G be the Galois group of K over Q, and
let ρ be the standard (2-dimensional) representation of G. Determine the behaviour of
L(s, ρ) around s = 1 (does it have a zero, a pole, or neither?) and, if L(1, ρ) exists and
is nonzero, determine its value in terms of arithmetic quantities.

2. Let K1, K2 be two number fields such that ζK1(s) = ζK2(s). Prove that [K1 : Q] = [K2 :
Q]. If at least one among K1, K2 is Galois over Q, prove that K1 = K2.

3. For a prime number p ̸= 3, 7, define

ap := #{x ∈ F×
p : x3 ≡ 7 (mod p)}.

Prove that ap is the p-th Dirichlet coefficient of the ζ function of the field K = Q( 3
√
7)

(that is: writing ζK(s) as the Dirichlet series
∑

n≥1
bn
ns , one has bp = ap for all primes

p ̸= 3, 7). Let L be the Galois closure of K/Q and let G be the Galois group of L/Q:
describe a representation ρ of G such that L(s, ρ) = ζK(s).

4. Let K be a number field and write ζK(s) =
∑

n≥1
an
ns . Suppose that, for all primes p ≡ 1

(mod 5), the coefficient ap is equal to 4. Prove that K = Q(ζ5).

Hint.

a) Prove that [K : Q] ≥ 4.

b) Prove that there exists a prime p ≡ 1 (mod 5) that is totally split in K.

c) Deduce that [K : Q] = 4.

d) Conclude by comparing the primes that split completely in K and Q(ζ5).

5. Let K = Q(i,
√
5).

a) Express the residue of ζK(s) at s = 1 in terms of L-functions of Dirichlet characters.

b) Prove that a fundamental unit of OQ(
√
5) is also a fundamental unit of OK [during

the exam we admitted this, but you should still think about it! If you want a hint,
consider the norm from K to Q(

√
5) of a fundamental unit of K].

c) Taking for granted that h(Q(i)) = 1 and h(Q(
√
−5)) = 2, compute h(K).
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