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Definition 1.1. We say that a graded Lie algebra g is non-degenerate if ∀n > 0 the pairing

g−n × gn → C
(a, b) 7→ λ([a, b])

is nondegenerate for generic λ, that is, a Zariski-open of g×0 .

2 20.02.2018 - Universal enveloping algebra

2.1 The case of Lie algebras

Recall that a Lie algebra representation is a linear map

φ : g→ End(V )

such that φ([a, b]) = φ(a)φ(b)− φ(b)φ(a).
The subrepresentation generated by v ∈ V is

〈v〉 = Span{v; av|a ∈ g; abv|a, b ∈ g} = Span
{
a1 · · · asv

∣∣ a1, . . . , as ∈ g
}

2.2 The case of associative algebras

Recall that for an associative (unitary) algebra A, a representation is an associative algebra homo-
morphism φ : A→ End(V ) such that φ(ab) = φ(a)φ(b). If v ∈ V is a vector, the subrepresentation
generated by v is simply 〈v〉 = Av.

2.3 The universal enveloping algebra

Since the situation with associative algebras is much easier, we’d like to reduce to this case. In
particular, we want an associative algebra U(g) such that

{representations of g} ←→ {representations of U(g)} .

Theorem 2.1. There exists a unique pair (U(g), i) such that:

1. U(g) is a unitary associative algebra;

2. i : g→ U(g) is a Lie algebra homomorphism (where U(g) has its natural Lie structure given
by [a, b] = ab− ba);

3. the following universal property holds: for every Lie algebra homomorphism φ : g→ A, there
exists a unique φ̂ such that the following diagram commutes

g

i

��

φ
// A

U(g)
φ̂

∃!
==

1



Such a pair is called the universal enveloping algebra of g.

Remark 2.2. The universal property of U(g) implies that any representation φ : g → End(V )
factors via U(g).

Proof. 1. Existence: we explicitly construct a pair (U(g), i) as in the statement.

• Start with the tensor algebra T (g).

• Consider the bilateral ideal J = 〈a⊗ b− b⊗a− [a, b]
∣∣ a, b ∈ g〉 and set U(g) = T (g)/J .

• Define i via the natural map g ↪→ T (g)→ U(g).

• Let us prove that i is a Lie algebra homomorphism. We have

i(a)i(b)− i(b)i(a) = ab− ba = a⊗ b− b⊗ a = [a, b] = i([a, b]).

• We now show that (U(g), i) satisfies the universal property. Let φ : g → A be a Lie
algbera homomorphism from g to a unitary associative algebra A. With reference to
the following diagram,

g� _

��

φ
// A

T (g)

����

φ̃

88

U(g)

φ̂

@@

φ̃ exists by the universal property of the tensor algebra, so (since U(g) = T (g)/J) it
suffices to show that φ̃ factors via T (g)/J , i.e. that φ̃(a ⊗ b − b ⊗ a − [a, b]) = 0; and
this is obvious, because by assumption φ([a, b]) = φ(a)φ(b)− φ(b)φ(a), so

φ̃(a⊗ b− b⊗ a− [a, b]) = φ(a)φ(b)− φ(b)φ(a)− φ([a, b]) = 0

as desired.

2. Uniqueness: general nonsense.

3 Verma module

Definition 3.1. A highest weight representation V of weight λ ∈ g×0 is a g-module such that
there exists vλ ∈ V such that:

1. avλ = 0 for every a ∈ g>0;

2. hvλ = λ(h)vλ ∀h ∈ g0;

3. vλ generates V .

The Verma module Mλ is the universal representation of highest weight λ.

Construction of the Verma module. One sets

Mλ =
U(g)

U(g)
(
g>0 + Span

{
h− λ(h)

∣∣ h ∈ g0

}) ,
and takes the universal vector vλ to be 1λ = 1. The universal property follows immediately from
the universal property of the universal enveloping algebra.
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Remark 3.2. Notice that U(g) a g-module via i (that is: given B ∈ U(g) and a ∈ g, the action
is given by a ·B = i(a)B, where the product is taken in U(g)).

Theorem 3.3 (Poincaré-Birkhoff-Witt). Let e1, . . . , en be a basis of g. A basis of U(g) is given
by ei1 · · · eis , i1 ≤ i2 ≤ · · · ≤ is. In particular, i : g→ U(g) is injective.

Remark 3.4. Let a1, . . . , am be a basis of g<0, h1, . . . , hr be a basis of g0, and b1, . . . , bn be a
basis of g>0. It follows from the PBW theorem that Mλ is generated by {

∏
s ais} (terms with

b’s vanish in the quotient, while the h’s are scalars in the quotient); applying PBW again, this is
nothing but U(g<0).

Proof (of the PBW theorem). In order to establish that M = {
∏
eij
∣∣ i1 ≤ i2 ≤ . . . ≤ in} is a

basis, we need to prove:

1. M is a generating set. Clearly all monomials form a generating set, so it suffices to prove:
an arbitrary monomial ej1 · · · ejt belongs to Span(M). We prove this by induction on (t,N),
where t is the number of factors in ej1 · · · ejt and N is #{(p, q) : p < q, ip > iq}. If N = 0 or
t = 1 we’re done. Suppose N ≥ 1: then there must be a p such that ip > ip+1. Then

ej1 · · · ejpejp+1 · · · et = ej1 · · · ejp+1ejp · · · et + ej1 · · · [ejp , ejp+1 ] · · · et

Both terms lie in Span(M): the first one because we’ve reduced N , the second one because
we’ve reduced t1.

2. The elements of M are linearly independent. Let V be a vector space with basis {vi1,...,is
∣∣

1 ≤ i1 ≤ · · · ≤ is ≤ n}. We’d like to define a linear map f : T (g) → V such that
f(ei1 ⊗ · · · ⊗ eis) = vi1,...,is whenever i1 ≤ i2 ≤ · · · ≤ is. This implies what we want. We
require that f satisfies

f(ej1 ⊗ · · · ⊗ ejp ⊗ ejp+1
⊗ · · · ⊗ ejt)

= f(ej1 ⊗ · · · ⊗ ejp+1
⊗ ejp ⊗ · · · ⊗ ejt) + f(ej1 ⊗ · · · ⊗ [ejp , ejp+1

]⊗ · · · ⊗ ejt)

It is quite clear that these conditions define f uniquely (if it exists), because (up to ex-
changing terms and replacing them with commutators) we can assume that the indices are
increasing, and f is defined on products with increasing indices. To show that f exists, we
prove by induction on (t,N) as above that the value of f on a monomial does not depend
on the order of the exchange moves performed to reduce a monomial to one in increasing
order. This is true, but not exciting: consider two pairs jp > jp+1 and jq > jq+1 (for now
assume p < p+ 1 < q < q + 1); omitting the ⊗ symbol for brevity, we find

f(ej1 · · · ejpejp+1
· · · ejqejq+1

· · · ejt) =

= f(ej1 · · · ejp+1
ejp · · · ejq+1

ejq · · · et) + f(ej1 · · · ejp+1
ejp · · · [ejq , ejq+1

] · · · et)
= f(ej1 · · · ejp+1

ejp · · · ejq+1
ejq · · · et) + f(ej1 · · · [ejp , ejp+1

] · · · ejq+1
ejq · · · et)

+f(ej1 · · · ejp+1
ejp · · · [ejq , ejq+1

] · · · et) + f(ej1 · · · [ejp , ejp+1
] · · · [ejq , ejq+1

] · · · et)

All the terms are well-defined by induction, so making similar transformations in reverse we
find that swapping the pair (p, p + 1) or the pair (q, q + 1) first leads to the same result.
This leaves us with the case p+ 1 = q, which is left as an exercise for the dedicated reader.
Crucial remark: to prove this case one needs that [·, ·] satisfies the Jacobi identity.

1To be precise, I guess one should write [ep, ep+1] as a linear combination of basis vectors...
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4 21.02.2018 – Applications of the PBW theorem

4.1 Character of the Verma module

Remark 4.1. Suppose g is equipped with a Z-grading, that is g ∼=
⊕

n∈Z gn with [gm, gn] ⊆ gm+n.
Then U(g) admits a natural Z-grading, given by declaring that a monomial a1 · · · as, where ai has
degree ai in g, has degree

∑
ni in U(g). This works because the tensor algebra T (g) is naturally

graded, and the ideal we quotient by is generated by relations that are homogeneous in the degree.

Definition 4.2. Let V be a representation of highest weight λ ∈ g×0 , and write V = U(g)vλ =
U(g<0)vλ. We obtain

V =
⊕
n∈Z

U(g)[n]vλ =
⊕
n≥0

U(g<0)[−n]vλ,

which we write as V =
⊕

n≥0 V [−n]. We then define

chq(V ) =
∑
n≥0

dimV [−n] · qn.

Theorem 4.3. The character of the Verma module Mλ is given by

∞∏
j=0

1

(1− qj)dim gj
.

Proof. Fix bases e1, . . . , eN of g>0, h1, . . . , hr of g0, f1, . . . , fN of g<0. We assume the grading to
be nondegenerate (so that the positive and negative parts of the algebra are dual to each other,
hence of the same dimension N), and we pick our bases to be homogeneous, that is ei, fi ∈ g±δ(i)
(ei is homogeneous of degree δ(i), fi is homogeneous of degree −δ(i)). We obtain:

chq(Mλ) =
∑
n≥0

dimMλ[−n] qn =

=
∑
n

dimU(g<0)[−n] qn

=
∑
n≥0

#

{
n1, . . . , nN ≥ 0

∣∣ ∑
`

δ(`)n` = n

}
qn

=
∑

n1,...,nN≥0

qδ(1)n1+···+δ(N)nN

=

N∏
i=1

1

1− qδ(i)

=

∞∏
j=0

1

(1− qj)dim gj

Remark 4.4. Recall that the PBW theorem implies that a basis of U(g) is given by the set of
monomials fi1 · · · fishk1 · · ·hkpeji · · · ejt , with i1 ≤ · · · ≤ is, k1 ≤ · · · ≤ kp, j1 ≤ · · · ≤ jt. From this
one obtains

U(g) = U(g)g>0 ⊕ U(g≤0)

= U(g)g>0 ⊕ g<0U(g≤0)⊕ U(g0)

= U(g)g>0 ⊕ g<0U(g≤0)⊕ S(g0),

where U(g0), since g0 is abelian, is nothing but the symmetric algebra S(g0). Let now λ ∈ g×0 .
Extend λ to S(g0) → C. The previous decomposition then allows us to extend λ to U(g), by
declaring that it acts trivially on U(g)g>0 ⊕ g<0U(g≤0) and as itself on S(g0).
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4.2 An invariant bilinear form

Remark 4.5. Let n > 0: then U(g)[n] ⊂ U(g)g>0 (because I need at least one positive factor in
order to have positive degree). Similarly, U(g)[−n] ⊆ g<0U(g), and therefore λ acts as zero on
U(g)[n] and on U(g)[−n]; in other words, λ is concentrated in degree 0.

Remark 4.6. We have defined

M+
λ =

U(g)

U(g)
(
g>0 ⊕ {h− λ(h)

∣∣ h ∈ g0}
) ∼= U(g<0)1+

λ ;

we called it Mλ, but we now add a superscript + to remind ourselves that these are highest weight
representations. We could equally well have defined the lowest weight Verma module,

M−λ =
U(g)

U(g)
(
g<0 ⊕ {h− λ(h)

∣∣ h ∈ g0}
) ∼= U(g>0)1−λ .

Definition 4.7. For any A = a1 . . . ak ∈ U(g) we set

s(A) = (−1)kak · · · a1.

Proposition 4.8. There exists a unique g-invariant bilinear form
(
·
∣∣ ·) : M−−λ × M+

λ → C
such that (1−−λ, 1

+
λ ) = 1. Here g-invariant means (au|v) + (u|av) = 0, for all a ∈ g and for

all u ∈ M−λ, v ∈ Mλ. Furthermore, under this pairing, M−−λ[n] is orthogonal to everything but

M+
λ [−n].

Proof. (
ei1 · · · eis1−−λ

∣∣ fj1 · · · fjt1+
λ

)
= (−1)s(1−−λ

∣∣ eis · · · ei1fj1 · · · fjt1+
λ );

using our previous decomposition of U(g), write eis · · · ei1fj1 · · · fjt ∈ U(g) as Aiei + fjBj +
p(h1, . . . , hr). A term Aiei kills 1+

λ ; a term fjBj can be taken back to the left hand side of the
scalar product, and it kills 1−−λ. Finally, p(h1, . . . , hr)1

+
λ = p(λ(h1), . . . , λ(hr))1

+
λ . The bilinear

form is therefore given by (A1−−λ|B1+
λ ) = λ(s(A)B)(1−−λ|1

+
λ ) = λ(s(A)B).

Exercise 4.9. Check that this bilinear pairing is well-defined, that is, independent of the repres-
entation of basis vectors as A1−−λ, B1+

λ .

Remark 4.10. λ 7→ (A1−−λ, B1+
λ ) is polynomial in λ.

Theorem 4.11. Suppose g is nondegenerate. Then ∀n ≥ 0 the pairing

(·
∣∣ ·) : M−−λ[n]×M+

λ [−n]→ C

is nondegenerate for λ in a Zariski-open (which may depend on n).

Remark 4.12. By assumption, since ∀n > 0 the pairing gn × g−n → C is nondegenerate (for
generic λ), we also obtain that (for generic λ) the pairing

g0<·≤n × g−n≤·<0 → C

is nondegenerate. Hence we can fix dual bases e1, . . . , ek and f1, . . . , fk, and the induced pairing
on symmetric algebras S•(g0<·≤n), S•(g−n≤·<0)→ C is also nondegenerate. We normalize in such
a way that the sets {

en1
1 . . . e

nj
k

}
,

{
fn1

1 · · · f
nk
k

n1! · · ·nk!

}
form dual bases; the pairing that achieves this duality is given by

(a1 · · · as
∣∣ b1 · · · bt) = δs,t

∑
σ∈Ss

λ([a1, bσ(1)]) · · ·λ([as, bσ(s)]);
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the presence of
∑
σ∈Ss explains the need for the factorials in the denominator. The pairing

(·
∣∣ ·)0

λ,n : Ss(g>0)[n]× Ss(g<0)[−n]→ C

is nondegenerate for the same λ as before.

Proof. Fix n ≥ 0 and consider

(·
∣∣ ·) : U(g>0)[n]× U(g<0)[−n]→ C,

where we have replaced M−−λ[n] with U(g>0)[n], and similarly for M+
λ [−n] (i.e. ’we omit the 1±±λ’).

We want to show that it is nondegenerate; we do it the good old way of writing down the matrix
and computing the determinant. The generic entry of the matrix is

(
ei1 · · · eis1−−λ

∣∣ fj1 · · · fjt1+
λ

)
,

where
∑
δ(im) = n and

∑
δ(jm) = n. Now the determinant of this gigantic matrix is a polynomial

in the λ(hj); to show that it’s generically nonzero, it suffices to show that it’s not identically zero.
In order to do this, we compute the term of highest degree and show that it doesn’t vanish. For
a single term (

1−−λ
∣∣ eis · · · ei1fj1 . . . fjt1+

λ

)
,

the number of λ’s is the number of h’s that are obtained by swapping the e’s and the f ’s. In
particular, there are at most min{s, t} factors λ, and for s = t the term of degree s is∑

σ∈St

λ([ei1 , fjσ(1)]) · · ·λ([eis , fjσ(s)]).

Permuting bases if necessary, we can assume that our matrix is organized in blocks, where the
block in position (s, t) is formed by those basis elements with given values of s and t. In block (s, t),
all the entries are polynomials in λ of degree at most min{s, t}. It follows that the determinant
of the matrix is of the form

n∏
s=1

det
(
·
∣∣ ·)0

λ,n

∣∣
Ss(g>0)[n]×Ss(g<0)[−n]→C + lower degree terms,

which is nonzero for generic λ for what we’ve seen before. Notice that the term of maximal
degree essentially comes from the generalized diagonal, and has degree 1 dim(s = 1) + 2 dim(s =
2) + · · ·

Remark 4.13. Consider again
(
·
∣∣ ·)

λ
: M−−λ ×M

+
λ → C. Consider the left- and right- kernels of

this form,
J+
λ ⊂M

+
λ , J−λ ⊂M

−
−λ

• Generically, J±λ are zero, but for special λ they could be nontrivial.

• As the form is invariant, J±λ is a submodule of M±, and in fact it is a proper submodule,
because 1 pairs nontrivially with 1 on the other side.

• J+
λ =

⊕
J+
λ [n], that is, J+

λ is graded (because the form is of degree 0)

Theorem 4.14. 1. J+
λ ⊂ M+

λ is a proper maximal submodule, so V +
λ = M+

λ /J
+
λ is an

irreducible representation of highest weight λ

2. J+
λ is the unique maximal proper submodule that is graded. In general, there might well be

other maximal proper submodules that are not graded.

3. If there exists L ∈ g such that [L, ·] = degree (that is [L, a] = na for all a ∈ g[n]), then J+
λ

is the unique maximal proper submodule of M+
λ . More precisely, all submodules are graded.

Remark 4.15. Part (3) of the theorem applies to the Virasoro algebra; we shall show that (for
the Heisenberg algebra) there are in fact other maximal proper submodules.
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5 27.02.2018 – The kernel of the natural pairing (·
∣∣ ·)λ

5.1 Previously...

1. A Lie algebra g is said to be graded if

g ∼=
⊕
n∈Z

gn

where g0 is abelian and gn is finite-dimensional for every n ∈ Z. It is nondegenerate if the
pairing

g−n × gn → C
(a, b) 7→ λ([a, b])

is nondegenerate for λ generic.

2. The Verma module of highest weight λ is

M+
λ =

U(g)

U(g)
(
g>0 + {h− λ(h)

∣∣ λ ∈ g0}
) ;

similarly, we have M−−λ.

3. We have seen that there exists a unique pairing (·|·) : M−−λ ×M
+
λ → C that is g-invariant,

nondegenerate and normalized in such a way that (1−−λ|1
+
λ ) = 1. It is defined by

(A1−−λ|B1+
λ ) = λ(s(A) ·B),

where s is the antipode s(a1 . . . as) = (−as)(−as−1) · · · (−a1).

4. λ can be extended to a map g→ C by setting λ(g>0) = 0 and λ(g<0) = 0; it can be further
extended to U(g) by writing

U(g) = (g<0U(g) + U(g)g>0)⊕ U(g0),

observing that U(g0) = S(g0), and setting λ to be trivial on (g<0U(g) +U(g)g>0) and to be
the obvious polynomial map on S(g0).

Remark 5.1. One can define a pairing on all of U(g) by the formula (A|B)λ = λ(s(A)B).
This pairing factors through

J+
λ = U(g) (g>0 + {h− λ(h)|h ∈ g0})

on the right, and similarly it factors through the analogous J−λ on the left.

5. We have also proven the following theorem:

Theorem 5.2. If g is nondegenerate, for every n ≥ 0 the pairing M−−λ[n]×M+
λ [n]→ C is

nondegenerate for a Zariski-open set of λs. This open set may depend on n.

Corollary 5.3. The pairing
M−−λ ×M

+
λ → C

is nondegenerate for λ sufficiently generic (i.e. lying in the intersection of all the previous
Zariski opens).

5.2 Properties of (·
∣∣ ·)λ

Define
J+
λ := right kernel of (·

∣∣ ·)λ ⊆M+
λ .
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5.2.1 Basic observations

1. J+
λ is a submodule of M+

λ (because (·
∣∣ ·)λ is g-invariant)

2. J+
λ is graded: J+

λ =
⊕

n≥0 J
+
λ [−n] (because (·

∣∣ ·)λ is of degree 0)

3. J+
λ is a proper submodule, because 1+

λ 6∈ J
+
λ

4. As a consequence, V +
λ := M+

λ /J
+
λ is a (nonzero) graded g-module. This is still a highest-

weight representation; we shall show that it is irreducible.

5.2.2 Structure theorem

Theorem 5.4. The following hold:

1. J+
λ is a maximal proper submodule, i.e. V +

λ is irreducible.

2. J+
λ is the unique maximal proper graded submodule of M+

λ . (In particular, since highest
weight representations are graded, V +

λ is the unique irreducible representation of highest
weight λ).

3. In general, there can be other maximal proper submodules of M+
λ .

4. If there exists L ∈ g such that [L, ·] = degree, then all submodules U ⊂ M+
λ are graded,

hence J+
λ is the unique maximal proper submodule of M+

λ .

Corollary 5.5. For generic λ, the Verma module M+
λ = V +

λ is irreducible.

Proof. We know that for generic λ the natural pairing (·
∣∣ ·)λ is nondegenerate, hence J+

λ = (0).

Proof of Theorem 5.4. 1. Let W be a g-submodule of M+
λ such that J+

λ ⊂ W ( M+
λ . We

want to prove that W = J+
λ . Let w ∈ W ; we can write w = w0 + w−1 + · · · + w−m, where

each wi belongs to M+
λ [−i]. Suppose by contradiction that we can find a w in W \ J+

λ ; we
choose such a w with m minimal. Notice that must have m ≥ 1, for otherwise w would be
a (nonzero) multiple of 1+

λ , from which it would follow that W = M+
λ , contradicting our

assumption that W is a proper submodule.

For every a ∈ gj , where j > 0, we know that W contains aw = aw0 + aw−1 + · · · + aw−m.
The term aw−i has degree j− i, so it is zero whenever j− i > 0; in particular, aw has degree
−(m− j), so by minimality of m we have aw ∈ J+

λ . As J+
λ is graded, we have in particular

aw−n ∈ J+
λ for every a ∈ g>0. We now show that w−m ∈ J+

λ , that is,(
ei1 · · · eis1−−λ

∣∣ w−m) = 0 ∀i1, . . . , is.

Indeed, if s = 0 the claim follows from the fact that w−m is in degree −m while 1−−λ is in
degree 0. But if there is at least one ei (which we can assume is in g>0), then – using the
invariance and moving e1 to the other side – we obtain(

ei2 · · · eis1−−λ
∣∣ ei1w−m) = 0

as desired (we have used ei1w−m ∈ J+
λ ). Hence w−m ∈ J+

λ , and (since w−m belongs to
J+
λ ⊆W ) by difference we obtain that w0+w−1+. . .+w−(m−1) belongs to W . By minimality

of m again, this implies that w0 + w−1 + . . . + w−(m−1) belongs to J∗λ, and therefore that

w = (w0 + w−1 + . . .+ w−(m−1)) + (w−m) is also an element of J+
λ .

2. Let W =
⊕

nW [−n] ( M+
λ be a proper graded submodule. We shall show that W ⊆ J+

λ .
Notice that J+

λ ⊆ J+
λ + W ; since J+

λ and W are both graded and both trivial in degree 0,
their sum J+

λ +W is again a proper, graded submodule of M+
λ . By part 1, i.e. the maximality

of J+
λ among all proper submodules, this implies J+

λ +W = J+
λ , that is W ⊆ J+

λ .
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4. The usual argument with Vandermonde determinants shows that every submodule is graded.
There is a subtlety: if adL = [L, ·] is the degree, then (a) L is in degree 0, because
[L,L] = 0, and (b) the action of L on a vector u = u0 + u−1 + · · ·+ u−n is

Lu = (0 + λ(L))u0 + (−1 + λ(L))u−1 + · · ·+ (−n+ λ(L))u−n,

because LA1+
λ = [L,A]1+

λ +ALλ+ = deg(A)A1+
λ + λ(L)A1+

λ .

3. Let us oonsider the Heisenberg algebra and the Verma module M+
0,0. We have seen in an

exercise2 that
M+

0,0 = C[a−1, a−2, a−3, . . .],

where am acts as 0 for all m ≥ 0, while a−m acts naturally on the polynomial algebra
(∀m > 0); K also acts trivially. One similarly obtains thatM−00 = C[a1, a2, a3, . . .] with trivial
action of a−n for n ≥ 0 and of K. The pairing between P (a1, a2, . . .) and Q(a−1, a−2, . . .)
is given by P (0)Q(0); it follows that J+

0,0 = 〈a−1, a−2, a−3, . . .〉 (polynomials that vanish at
0); for any value of the variables, we have another maximal subdmoule given by 〈a−1 −
α−1, a−2 − α−2, · · · 〉.

5.3 Category O
Definition 5.6. A g-module M is an object of category O if:

1. it is graded (over C), that is:

(a) M =
⊕

d∈CM [d];

(b) for every n we have gn ·M [d] ⊆M [d+ n];

2. the degrees are bounded above, that is, there exists C ∈ R such that M [d] 6= 0 ⇒ <(d) ≤ C,
where <(d) denotes the real part of the complex number d;

3. the degrees d for which M [d] 6= 0 belong to a finite number of Z<0-strings (where a Z<0-string
is a set of the form {d+ n

∣∣ n ∈ Z<0}, where d is a fixed complex number)

Example 5.7. The following are objects in category O:

1. M+
λ ;

2. graded submodules of M+
λ ;

3. V +
λ .

Proposition 5.8. The irreducible modules in category O are precisely the V +
λ for λ ranging over

g×0 . Moreover, these modules are pairwise non-isomorphic.

Definition 5.9. Given M ∈ |O|, a singular vector of M of weight µ ∈ g×0 is an element
v ∈ V \ {0} such that

1. a · v = 0 ∀a ∈ g>0;

2. h · v = µ(h)v ∀h ∈ g0.

Notice that these are precisely the first two conditions in the definition of a highest weight repres-
entation. We shall write Mg>0

µ for the set of singular vectors of weight µ in M .

2which I did not write down...
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Remark 5.10. 1. If v ∈M is singular of weight µ, writing v =
∑
vd with vd ∈M [d] we have

that every vd is either zero or singular of weight µ. Equivalently,

Mg>0
µ
∼=
⊕
d∈C

Mg>0
µ [d].

2. There is a correspondence

Mg>0
µ

∼= Homg(M+
µ ,M)

v 7→
(
M+
µ → M

1+
µ 7→ v

)
3. In V +

λ the only singular vectors are the multiples of 1+
λ :(

V +
λ

)g>0

µ
= δλ,µC1+

λ .

Indeed, take a singular vector v of weight µ in V +
λ . By irreducibility, the submodule generated

by v is V +
λ , hence v (which we might assume to be homogeneous) must be of degree 0

(otherwise it could not generate the weight-0 part of V +
λ ). It follows that v is a multiple of

1+
λ , which is singular of weight λ (and of no other weight).

Definition 5.11. A degree of a module M ∈ |O| is a complex number d such that M [d] 6= (0).

Proof of Proposition 5.8. 1. First we show that V +
λ and V +

µ are not isomorphic for λ 6= µ. A

putative isomorphism V +
λ → V +

µ would carry singular vectors to singular vectors, hence 1+
λ

to (a scalar multiple of) 1+
µ . Clearly this can only happen when λ = µ.

2. Let M ∈ |O| be any module. Let d̂ be a degree such that <(d̂) is maximal (among the

degrees). The abelian Lie algebra g0 acts on M [d̂], and (since we are over C and all the
operators in g0 commute) this action admits a common eigenvector v. Let µ : g0 → C be
the weight of this action, that is, h · v = µ(h)v for all h ∈ g0. We show that v is a singular
vector of weight µ: condition (2) in the definition is satisfied by construction, and condition

(1) follows from the fact that for every a ∈ gn with n > 0 we have a · v ∈M [d̂+ a] = (0) (by

maximality of <(d̂)). By our previous remarks, this gives a nonzero graded homomorphism
φ : M+

µ → M . If M is irreducible, this homomorphism is surjective (otherwise we would
have found a nontrivial proper submodule), so φ factors through the quotient by the maximal
proper graded submodule, which is J+

λ . It follows that M ∼= M+
λ /J

+
λ = V +

λ as desired.

Example 5.12. Let us take again g = sl2 = Ce ⊕ Ch ⊕ Cf , where [h, e] = 2e, [h, f ] = −2f ,
[e, f ] = h. The three direct summands are the graded pieces of degree 1, 0,−1 respectively. Pick
a weight λ ∈ g×0

∼= C. What does M+
λ look like? We have

M+
λ =

U(g)

U(g)(e, h− λ)
= C[f ] · 1+

λ ,

because if we eliminate e and h from all monomials all that is left are monomials in f . Likewise,
one finds M−−λ = C[e]1−−λ. Let’s now describe the pairing (·

∣∣ ·)λ : M+
λ ×M

−
−λ → C:

(em1−−λ
∣∣ fn1+

λ )λ = (−1)m(1−−λ
∣∣ emfn1+

λ )

= δm,n(−1)n(1−−λ
∣∣ enfn1+

λ )

By induction one shows efn1+
λ = n(λ − n + 1)fn−11+

λ for all n ≥ 0; from this, it follows easily
that enfn1+

λ = (
∏n
i=1 i(λ− i+ 1)) 1+

λ = n!(λ)(λ− 1) . . . (λ− n+ 1), from which we finally obtain

(em1−−λ
∣∣ fn1+

λ )λ = δm,n(−1)nn! · λ(λ− 1) · · · (λ− n+ 1)

Hence:

10



1. if λ 6∈ Z≥0, all these pairings are nonzero, and since the graded pieces M+
λ [n] are 1-

dimensional this proves that the pairing is nondegenerate. In this case M+
λ is irreducible.

2. if λ ∈ Z≥0, then J+
λ = Span

{
fn
∣∣ n ≥ λ+ 1

}
. It follows that V +

λ =
M+
λ

J+
λ

= 〈1, f, . . . , fλ〉,
which is the (λ+ 1)-dimensional representation of sl2 we had already considered in the first
lecture.

6 28.02.2018 – Unitary structures

6.1 Unitary structure on g

Idea (from physics). The vector space V is supposed to be the (Hilbert) space of states, and
therefore is equipped with a positive-definite Hermitian inner product. The elements a ∈ g are the
physical observables; a good observable should be self-adjoint with respect to this inner product,
i.e. A† = A.

Example 6.1. g = sl2 comes into play because of the isomorphism sl2 ∼= so3 and because we’re in-
terested in the observable ’angular momentum’. One takes as fundamental observables/generators
of the Lie algebra the three operators Lx, Ly, Lz (components of angular momentum along the
three axes); in the unique 2-dimensional representation of sl2 (1/2-spin representation), one typ-
ically takes these to be represented by the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
.

Definition 6.2. A unitary structure on g is an operator † : g → g (usually denoted a 7→ a†)
that satisfies:

1. (a†)† = a

2. [a, b]† = [b†, a†]

3. (λa)† = λa†

4. † induces an isomorphism gn → g−n

Example 6.3. All of our standard examples of Lie algebras possess such an anti-involution:

1. sl2: one sets e† = f, f† = e, h† = h;

2. gln: one can take A† to be the conjugate transpose of A;

3. Heisenberg: a†n = a−n, K† = K;

4. Virasoro: L†n = L−n, C† = C;

5. Kac-Moody ĝ: (atn)† = a†t−n

Remark 6.4. The operator † satisfies †2 = 1, so g decomposes as the direct sum of two (real)
subspaces g+, g− on which † acts as the identity (resp. as minus the identity). Multiplying by i
exchanges g+, g−. It follows that g = g− ⊕ ig− = g− ⊗R C. Notice that g− is a Lie subalgebra:

[a, b]† = [b†, a†] = [−b,−a] = [b, a] = −[a, b].

11



6.2 Unitary structure on a representation V

Let V be a g-module in category O.

Definition 6.5. A unitary structure on V is a Hermitian product(
·
∣∣ ·) : V × V → C

such that

1. (au
∣∣ v) = (u

∣∣ a†v);

2.
(
·
∣∣ ·) is positive definite.

Remark 6.6. The (almost) universal convention in physics is that Hermitian products should be
linear in their right argument and anti-linear in their left one.

Problem 6.7. Given λ ∈ g×0 , consider the g-module M+
λ (or any representation of highest weight

λ, that is, a quotient of M+
λ ; in particular, we’re interested in V +

λ ).

1. Does this g-module admit a Hermitian product for which † is the adjunction map3?

2. is this Hermitian product nondegenerate?

3. is it positive definite? That is, is it a unitary structure?

Remark 6.8. Part (3) is much harder; we’ll see a complete answer in the case of the Virasoro
algebra.

Definition 6.9. A weight λ ∈ g×0 is said to be real if, writing g0 = g+
0 ⊕ g−0 , one has λ(g+

0 ) ⊆ R
(and therefore λ(g−0 ) ⊆ iR).

Proposition 6.10. 1. A necessary condition for question (1) to have a positive answer is that
λ be a real weight.

2. When λ is real, there exists a contravariant Hermitian product on V , and it is unique up to
scalars. We normalize it by (1+

λ

∣∣ 1+
λ ) = 1.

3. This Hermitian product is nondegenerate if and only if V is the unique irreducible repres-
entation of highest weight λ (V = V +

λ ).

Remark 6.11. The g+-eigenspace is the subspace of self-adjoint operators, which should cor-
respond to physical observables. Therefore it is reassuring that their weight should be a real
number!

Proof. 1. Consider
(v
∣∣ 1+

λ );

if v ∈ V [−n], this vanishes because v ∈ U(g<0)1+
λ , hence (v

∣∣ 1+
λ ) = (1+

λ

∣∣ u+1+
λ ) with

u+ ∈ U(g>0), and this is zero because u+1+
λ = 0. Moreover, if (1+

λ

∣∣ 1+
λ ) = 0, then

(
·
∣∣ ·) ≡ 0

(proof: (u
∣∣ v) = (A1+

λ

∣∣ v) = (1+
λ

∣∣ A†v). Now 1+
λ is orthogonal to anything that does not

live in degree 0, so A†v can be replaced by some multiple of 1+
λ ). Hence we can assume that

(1+
λ

∣∣ 1+
λ ) = 1. Now pick any a ∈ g+

0 :

(a1+
λ

∣∣ 1+
λ ) = (1+

λ

∣∣ a†1+
λ ) = (1+

λ

∣∣ a1+
λ ) = (1+

λ

∣∣ λ(a)1+
λ ) = λ(a);

on the other hand,
(a1+

λ

∣∣ 1+
λ ) = (λ(a)1+

λ

∣∣ 1+
λ ) = λ(a),

so (for every a ∈ g+
0 ) we must have λ(a) = λ(a), i.e. λ is real, as claimed.

3such a Hermitian product is said to be contravariant
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2. We start by considering the form
(
·
∣∣ ·) on all of U(g) given by (A

∣∣ B) = λ(A†B). We prove
that this form is Hermitian. We have

(B
∣∣ A) = λ(B†A) = λ((A†B)†) = λ(A†B) = (A

∣∣ B),

which is what we need to show and where we have used the following lemma. Now we notice
that U(g)(g>0 + {h − λ(h)

∣∣ h ∈ g0}) is in the kernel of this Hermitian product, which

therefore descends to a Hermitian product on M+
λ . Uniqueness follows easily from the fact

that † is coincides with the adjunction map.

3. If A is in the kernel of this Hermitian product, then λ(B†A) = 0 ∀B, which is equivalent
to λ(s(B)A) = 0 ∀B, so A1+

λ is also in the kernel J+
λ of (·

∣∣ ·)λ. It follows that the kernel

of
(
·
∣∣ ·) on M+

λ is J+
λ , and the proof is complete.

Lemma 6.12. λ(X†) = λ(X).

Proof. Write U(g) = (g<0U(g) +U(g)g>0)⊕ S(g0). Since † exchanges g<0U(g), U(g)g>0 and λ is
zero on both of these, we only need to consider X ∈ S(g0). Write X =

∑
I multi-index aIh

I ; since
we can choose the hi to be a basis of g+

0 over R (recall that g+
0 generates g0 over C), the claim

now follows easily:

λ(X) =
∑

I multi-index

aIλ(h)I

and
λ(X†) =

∑
I multi-index

aIλ(h)
I

= λ(X).

In all these computations, hI :=
∏n
i=1 h

Ii
i and λ(h)I :=

∏
i λ(hi)

Ii .

Consider the Virasoro algebra. We have g0 = 〈L0, C〉, L†0 = L0, C† = C, and a real weight λ
is determined by its values (h, c) on L0 and on C. The questions are:

1. for which (c, h) is Mc,h 6= Vc,h? That is, for which weights is the Verma module degenerate?

2. For which (c, h) is the Hermitian form induced on Vc,h positive definite?

We show that there is at least one pair (c, h) for which Vc,h is positive definite; we start with an
analogous observation for the Heisenberg algebra. This is the Sugawara construction:

Example 6.13. The Heisenberg Lie algebra A admits an irreducible representation on the Fock
space Bµ = C[x1, x2, . . .], where:

1. the action of an is ∂
∂xn

;

2. the action of a−n is nxn;

3. the action of a0 is through µ;

4. the action of K is trivial.

The claim is that (for µ real) B is a unitary representation. Let’s compute the Hermitian product
explicitly: (

xm1
1 · · ·xmss

∣∣ xn1
1 · · ·x

nt
t

)
=
(
(a−1/1)m1 · · · (a−s/s)ms

∣∣ xn1
1 · · ·x

nt
t

)
=

1∏
imi

(
1
∣∣ ( ∂

∂x1

)m1

· · ·
(

∂

∂xs

)ms
xn1

1 · · ·x
nt
t

)
=
δs,tδm1,n1

· · · δms,ns∏
imi

(
1
∣∣ m1!m2! · · ·ms!1

)
=
δs,t
∏
i δmi,nini!∏
imi
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This means that, up to rescaling, the monomial basis is orthonormal, and therefore Bµ is unitary.
Notice that the conditions s = t,m1 = n1, etc, all come from the fact that if they are not satisfies,
then either one variable or one derivation is left, and since the adjoint of a variable is a derivation
in both cases we end up with an expression that involves the derivative of a constant, that is, zero.

We now try to find a unitary representation of the Virasoro algebra:

Example 6.14. A = C[t±1 ⊕ CK, where an = tn. Then W = C[t±1] ∂∂t , which acts on A by
derivations. We then constructed W oA (the semi-direct product), with bracket

[f(t)
∂

∂t
, g(t)] = f(t)g′(t).

Recall that we have a basis Ln of W given by Ln = −tn+1 ∂
∂t , with commutator [Lm, Ln] =

(m− n)Lm+n. The commutators [Ln, am] are given by−mam+n. K is central.
We have also defined the Virasoro algebra Vir = C[t±1] ∂∂t ⊕ CC. Finally, one can construct

VirnA, with commutation rules

1. [Lm, Ln] = (m− n)Lm+n + δm+n,0
m3−m

12 C;

2. [am, an] = mδm+n,0K;

3. [Ln, am] = −mam+n;

4. C,K central.

Question: can we extend the action of A on Bµ to an action of either W nA or VirnA? That is:
we want to construct operators Ln : Bµ → Bµ, for n ∈ Z, such that:

1. [Ln, am] = −mam+n;

2. [Lm, Ln] = (m−n)Lm+n+δm+n,0
m3−m

12 C for some C (for C = 0 we get an action of W nA,
for C 6= 0 one of VirnA)

3. L†n = L−n, where † is the adjoint with respect to the Hermitian product on Bµ we constructed
above.

The first remark is that if Ln exists, then it is uniquely determined by condition (1) up to an
additive constant (that is, a constant times the identity). This follows from Schur’s lemma: if
L′n, L

′′
n both satisfy condition (1), then (for all m)

[L′n − L′′n, am] = 0,

so (since Bµ is an irreducible representation of the Heisenberg algebra), by Schur’s lemma we
obtain that L′n − L′′n is a scalar. We now construct the operators Ln as

Ln =
1

2

∑
j∈Z

a−jaj+n.

We have

[am, Ln] =
1

2

∑
j

[am, a−jaj+n]

=
1

2

∑
j

[am, a−j ]aj+n +
1

2

∑
j

a−j [am, aj+n]

=
1

2

∑
j

mδm,jaj+n +
1

2

∑
j

a−jmδm,−j−n

=
1

2
mam+n +

1

2
am+nm = mam+n,
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which is what we want. Similarly, one obtains [Lm, Ln] = (m− n)Lm+n. Notice that these would
be the commutation rules of the Witt algebra. In fact, we should have obtained the Virasoro
algebra:

Problem. These operators (at least, L0) make no sense! We should specify what the infinite
sums mean. If n 6= 0, a−j and aj+n commute, so we can assume that the terms with positive
index are on the right; these act as derivatives, and therefore only a finite number of them will
act on any given polynomial. Thus the operators Ln with n 6= 0 can be given a meaning, but

L0 =
µ2

2
+

1

2

∑
j>0

jxj
∂

∂xj
+

1

2

∑
j>0

j
∂

∂xj
xj ,

and the rightmost sum is divergent.
Solution. One introduces the normal ordered product:

: aiaj : =

{
aiaj , if i ≤ j
ajai, if j ≤ i

and re-defines Ln to be

Ln =
1

2

∑
j∈Z

: a−jaj+n :

Now these operators are well-defined (in the physics lingo, we’ve put all the destruction operators
on the right). But we need to recompute the commutators! The commutator [am, Ln] is the same
as before, because : a−jaj+n : differs from a−jaj+n by a commutator, which is a multiple of K.
As K is central, this poses no problem. Now, however, we need to recompute [Lm, Ln], which is
trickier. We do a regularization procedure: we truncate sums to j ∈ [−N,N ] for some large N ,
and take the limit N →∞ only at the end. Let’s do this4:

[Lm, Ln] =
1

2

N∑
j=−N

[Lm, : a−jaj+n :]

=
1

2

N∑
j=−N

[Lm, a−jaj+n] (: a−jaj+n : and a−jaj+n differ at most by a central element)

=
1

2

N∑
j=−N

([Lm, a−j ]aj+n + a−j [Lm, aj+n]) (by the Leibniz rule for the commutator)

=
1

2

N∑
j=−N

(jam−jaj+n + (−j − n)a−jaj+n+m) (by the commutation rule [Lr, as] = −sar+s)

=
1

2

N−m∑
i=−N−m

(m+ i)a−iam+n+i +
1

2

N∑
j=−N

(−j − n)a−jaj+n+m (setting j = m+ i).

We now make some remarks. If ar and as commute, : aras := aras independently of what r, s are.
Furthermore, if r < s then : aras := aras, so if we want to replace normal products with ordered
products we only need to worry about expressions of the form a−rar with r negative (these being
the only operators that do not commute and for which the first index is larger than the second).
For these,

a−rar =: a−rar : +[a−r, ar] =: a−rar : −rK,

and since K acts as 1 on Bµ we can simply write a−rar =: a−rar : −r. Consider for example the

4from here on I redid the computations myself; any mistakes are entirely due to me
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first sum:

1

2

N−m∑
i=−N−m

(m+ i)a−iam+n+i

=
1

2

−1∑
i=−N−m

(m+ i)(: a−iam+n+i : +δm+n,0[a−i, ai]) +
1

2

N−m∑
i=0

(m+ i)(: a−iam+n+i :)

=
1

2
δm+n,0

−1∑
i=−N−m

(m+ i)[a−i, ai] +
1

2

N−m∑
i=−N−m

(m+ i)(: a−iam+n+i :)

Now, however, we know that the sum of normally ordered operators is well-defined and independent
of N for N large enough (indeed, the operators with positive indices act as derivations, so only
finitely many of them survive when applied to a given polynomial), so (in the limit N →∞) the
previous sum can be further rewritten as

1

2
δm+n,0

−1∑
i=−N−m

(m+ i)[a−i, ai] +
1

2

∞∑
i=−∞

(m+ i) : a−iam+n+i :

Similarly, the second sum we need to compute becomes5

1

2
δm+n,0

−1∑
i=−N

(−j − n)[a−j , aj ] +
1

2

∞∑
j=−∞

(−j − n) : a−jam+n+j :

The two infinite sums combine to give

1

2

∞∑
j=−∞

(m+ j − j − n) : a−jam+n+j := (m− n)Lm+n,

while the finite ones give

1

2
δm+n,0

−1∑
i=−N−m

(m+ i)[a−i, ai] +
1

2
δm+n,0

−1∑
j=−N

(−j − n)[a−j , aj ]

=
1

2
δm+n,0

 −1∑
i=−N−m

(m+ i)(−i) +

−1∑
j=−N

(−j − n)(−j)


=

1

2
δm+n,0

− −1∑
i=−N−m

(m+ i)(i) +

−1∑
j=−N

(j −m)(j)

 ,

where in the last line we have used that n = −m because of the δm+n,0 factor. Now this finally
involves only numbers (as opposed to operators), and a straightforward computation leads to

1

2
δm+n,0

−1∑
i=−N−m

(m+ i)[a−i, ai] +
1

2
δm+n,0

−1∑
j=−N

(−j − n)[a−j , aj ] = δm+n,0
m3 −m

12
.

Putting everything together we have shown

[Lm, Ln] = (m− n)Lm+n + δm+n,0
m3 −m

12
;

thus, as desired, this is a representation of the Virasoro algebra, with central charge C equal to 1.
5this is not quite precise, of course: there is equality only when we apply the operators to any given polynomial,

and N is large enough
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Remark 6.15. The representation Bµ we constructed is not a quotient of a Verma module. How-

ever, 1 is a singular vector: Ln>01 = 0, L0(1) = µ2

2 ≥ 0, C(1) = 1. Hence the subrepresentation
generated by 1 is of highest weight and unitary: for all µ and for c = 1 we have constructed the
unitary representation we wanted.

7 19.03.2018 – The Fermionic space and gl∞

Problem. Given h, c ∈ R, is the irreducible representation of highest weight Vh,c (of the Virasoro
algebra) unitary?

We’ve seen the Sugawara construction, to get a unitary representation of Vir on Bµ. 1 ∈ Bµ
is a singular vector of weight (h = µ2/2, c = 1).

Remark 7.1. 1. V unitary implies V completely reducible (given a subrepresentation, one can
take the orthogonal complement).

2. V unitary and of highest weight is irreducible. Indeed, there is a surjective map V → Vλ,
with kernel say K. Then Vλ is isomorphic to K⊥ (because Vλ ∼= V/K ∼= K⊥), hence
V = K ⊕ Vλ; since 1 (the highest weight vector) must lie in Vλ, this implies V = Vλ.

3. the tensor product of two unitary representations is unitary

4. λ1, λ2 ∈ h∗ unitary weights (i.e. Vλ1 , Vλ2 unitary); then λ1 + λ2 is unitary, because one can
just consider Vλ1 ⊗ Vλ2 . More precisely, one can take the subrepresentation of Vλ1 ⊗ Vλ2

generated by vλ1
⊗ vλ2

: this is Vλ1+λ2
, which is then unitary since it is a subrepresentation

of a unitary representation. In fact, it is also of highest weight λ1 + λ2.

5. As a consequence of the previous remark and of the Sugawara construction, all weights with
integral c (and positive h) are unitary.

Exercise 7.2. (variant of Sugawara’s construction) Fix λ ∈ R and define

L(λ)
n =

1

2

∑
j∈Z

a−jaj+n + iλnan, n 6= 0

L
(λ)
0 =

∑
j>0

a−jaj+n +
λ2 + µ2

2

as operators on the Fock space Bµ. Prove that the following hold:

• [Lλn, am] = −mam+n + iλm2δm+n,0

• [L
(λ)
m , L

(λ)
n ] = (m− n)Lm+n + δm+n,0

m3−m
12 (1 + 12λ2)

The conclusion is that this is a unitary representation with central charge 1+12λ2, and the singular

vector 1 has weight (h, c) =

(
λ2 + µ2

2
, 1 + 12λ2

)
.

Remark 7.3. As a consequence of the previous exercise, we find that all pairs (h, c) such that
h ≥ c−1

24 , c ≥ 1 correspond to unitary representations. Taking tensor products we can then prove

that pairs with h ≥ {c}24 are unitary.

Remark 7.4. All unitary pairs (h, c) lie in the quadrant h ≥ 0, c ≥ 0. Indeed, let Vh,c be unitary.
Then ∀n > 0 we have

0 ≤ 〈L−nvhc
∣∣ L−nvhc〉 = 〈vhc

∣∣ LnL−nvhc〉 = 〈vhc
∣∣ ([Ln, L−n] + L−nLn)vhc〉

= 〈vhc
∣∣ [Ln, L−n]vhc〉 = (2nh+

n3 − n
12

c)〈vhc
∣∣ vhc〉,

which taking n = 1 implies h ≥ 0, and taking n� 1 implies c ≥ 0.
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Remark 7.5. Combining the various remarks and constructions we’ve seen so far, we know which
weights are unitary with the exception of those pairs (c, h) with 0 ≤ c < 1 and of those with c > 1

that do not satisfy the inequality h ≥ {c}24 .

7.1 Virasoro action on the free Fermion

Definition 7.6. The free Fermion algebra (or Clifford algebra) is Cδ (where δ ∈ {0, 1/2})
defined as follows:

• Cδ is the associative algebra generated by symbols ψn for n ∈ δ + Z.

• the (anti)commutation rules are given by

{ψm, ψn} := ψmψn + ψnψm = δm+n,0

When δ = 0 we say that we are in the Ramond sector; when δ = 1/2 we say that we are in the

Neveau-Schwarz sector. Notice that for δ = 0 we have an element ψ0 that satisfies ψ2
0 =

1

2

Definition 7.7. The fermionic Fock space is

F = Fδ =
∧

(ξn, n ∈ δ + Z≥0) ,

that is, the algebra of polynomials on infinitely many anticommuting variables.

There is an action of the Clifford algebra on F given as follows: ψn acts as ∂
∂ξn

for n > 0, ψ−n

acts as multiplication by ξn for n > 0, and ψ0 = 1√
2

(
ξ0 + ∂

∂ξ0

)
Remark 7.8. The derivatives are defined in such a way that ∂

∂ξ2
(ξ2ξ3) = ξ3, but ∂

∂ξ2
(ξ1ξ2) = −ξ1.

With this definition,

(ψnψ−n + ψ−nψn)(p(ξi)) =
∂

∂ξn
(ξnp) + ξn

∂p

∂ξn
= p− ξn

∂p

∂ξn
+ ξn

∂p

∂ξn
= p,

so that indeed {ψn, ψ−n} = 1. Moreover,

ψ2
0 =

1

2

(
ξ0 +

∂

∂ξ0

)(
ξ0 +

∂

∂ξ0

)
=

1

2

(
ξ0

∂

∂ξ0
+

∂

∂ξ0
ξ0

)
=

1

2

{
ξ0,

∂

∂ξ0

}
=

1

2
,

where we have used ξ2
0 = 0 (which is certainly true in the exterior algebra) and

(
∂
∂ξ0

)2

= 0.

Remark 7.9. F is a unitary representation with respect to the unique scalar product for which
{ξi1 · · · ξis

∣∣ i1 < . . . < is} is an orthonormal basis. With this choice of scalar product, adjunction
is given by ψ†n = ψ−n.

Theorem 7.10. There is a representation of Vir on Fδ given by

Ln =
1

2

∑
j∈δ+Z

j : ψ−jψj+n : +δn,0
1− 2δ

16

where the ordered product is given by

: ψmψn :=

{
ψmψn,m ≤ n
−ψnψm,m > n

The following commutation rules hold:
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• [ψm, Ln] =
(
m+ n

2

)
ψm+n;

• [Lm, Ln] = (m− n)Lm+n + m3−m
24 δm+n,0.

Proof. Let’s check the first commutation rule.

[ψm, Ln] =

ψm, 1

2

∑
j∈δ+Z

j : ψ−jψj+n : +
1− 2δ

16
δn,0


=

ψm, 1

2

∑
j∈δ+Z

j : ψ−jψj+n :

 because numbers commute with everything

=

ψm, 1

2

∑
j∈δ+Z

jψ−jψj+n

 because an ordered product
and a product differ at most by a number

=
1

2

∑
j∈δ+Z

j(ψmψ−jψj+n − ψ−jψj+nψm)

=
1

2

∑
j∈δ+Z

j({ψm, ψ−j}ψj+n − ψ−j{ψj+n, ψm})

=
1

2

∑
j∈δ+Z

j(δj,mψj+n − ψ−jδj+n,−m)

=
1

2

∑
j∈δ+Z

(mψm+n + (m+ n)ψm+n)

=
(
m+

n

2

)
ψm+n.

The second commutation rule is left as an exercise (and is supposed to be harder, because it
involves the central charge – so one needs to regularize...).

Remark 7.11. Notice that 1−2δ
16 = 0 when δ = 1/2.

7.1.1 Consequences of the theorem

One checks that the adjoint of Ln is

L†n =
1

2

∑
j

j : ψ−j−nψj : +δn,0
1− 2δ

16

=
1

2

∑
j

(−j) : ψjψ−j−n : +δn,0
1− 2δ

16

=
1

2

∑
i

i : ψ−iψi−n : +δn,0
1− 2δ

16
= L−n,

so the action is unitary (with respect to the scalar product defined in remark 7.9).

Remark 7.12. There is a well-defined notion of parity for the elements in F : one has Fδ =
F+
δ ⊕F

−
δ , where F+

δ (resp. F−δ ) is the subspace of polynomials of even (resp. odd) degree. Notice
that the Virasoro operators are of even degree (they’re essentially quadratic, up to a constant
term), so F±δ are subrepresentations. Each of them contains a singular vector: 1 is a singular
vector in F+

δ and ξδ is a singular vector in F−δ .
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Remark 7.13. What is the weight of these representations? The central charge is certainly 1
2 ,

because that’s the coefficient of m3−m
12 δm+n,0. As for h, we find it as the eigenvalue of L0 acting

on 1 (resp. ξ0, resp. ξ1/2): in the three cases, it is given by

L0 · 1 =
1− 2δ

16
, L0 · ξ0 =

1

16
ξ0, L0 · ξ1/2 = 2 · 1

2
· 1

2
ψ−1/2ψ1/2ξ1/2 =

1

2
ξ1/2,

that is, h = 1−2δ
16 , h = 1

16 , h = 1
2 . So:

• F+
0 ⊃ V 1

2 ,
1
16

, F−0 ⊃ V 1
2 ,

1
16

• F+
1/2 ⊃ V 1

2 ,0
, F−1/2 ⊃ V 1

2 ,
1
2
.

7.2 gl∞

Definition 7.14.

gl∞ = {M matrix on Z× Z : M has a finite number of nonzero coefficients} =
⊕
i,j∈Z

CEi,j .

gl∞ has a defining representation on V =
⊕

n∈Z Cvn, where the action is Eijvn = δjnvi. From
V , one obtains many representations of gl∞ by considering V ⊗n, Sn(V ),

∧n
(V ), etc. However,

we don’t like these representations very much, because they tend not to be highest weight repres-
entations. On the other hand, gl∞ is an algebra of the kind we’ve considered in this course: for
example, gl∞ is graded, gl∞ =

⊕
j∈Z g[j], where

g[j] = {matrices with nonzero entries only on the j-th diagonal}

There is a corresponding triangular decomposition gl∞ = g>0 ⊕ g<0 ⊕ h, where g>0 (resp. g<0)
is the subspace of upper- (resp lower-) triangular matrices, and h is the subspace of diagonal
matrices.

Definition 7.15. A representation of highest weight λ ∈ h∗ is a representation V such that there
exists vλ ∈ V with the following properties:

• g>0vλ = 0;

• hvλ = λ(h)vλ ∀h ∈ h;

• V = U(g)vλ.

Remark 7.16. The representation V =
⊕

n∈Z Cvn of gl∞ introduced above is not a representation
of highest weight (there is no singular vector).

To construct highest weight representations we introduce the following object:

Definition 7.17.

∞/2∧
V = Span

{
vi0 ∧ vi1 ∧ vi2 ∧ · · ·

∣∣ i0 > i1 > i2 > · · · , ik+1 = ik − 1 for k � 0
}

It is a representation of gl∞ with the action given by

A(vi0 ∧ vi1 ∧ vi2 ∧ · · · ) = A(vi0) ∧ vi1 ∧ vi2 ∧ · · ·+ vi0 ∧A(vi1) ∧ vi2 ∧ · · ·+ vi0 ∧ vi1 ∧A(vi2) ∧ · · ·

This action is well-defined, because A has only finitely many nonzero coefficients (hence it acts as
0 on vn for n� 0).

Remark 7.18. There is a handy pictorial representation of the basis vectors: if we draw the line
Z in decreasing order, a basis vector is a choice of finitely many points on this line, plus a (right)
half-line. This looks very much like Dirac’s sea: all negative spots are filled, except for finitely
many exceptions, and all positive states are empty, except for finitely many. The action of Ei,j
moves a particle from state j to state i if possible (i.e. if state j is nonempty and i is empty), and
otherwise is zero.
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8 20.03.2018 – Bosonic-Fermionic correspondence

We decompose
∧∞/2

V as
⊕

m∈Z
∧∞/2,m

V , where

∞/2,m∧
V = {vi0 ∧ · · · ∧ vin ∧ · · ·

∣∣ i0 > i1 > · · · , ik = m− k ∀k � 0}

We define in particular ψm = vm ∧ wm−1 ∧ wm−2 ∧ · · · ∈
∧∞/2,m

V .
Finally, we define a hermitian scalar product on Λ∞/2,m by declaring that the basis vi0 ∧ · · · ∧

vin ∧ · · · is orthonormal.

Proposition 8.1. The natural action of gl∞ on Λ∞/2,m equips this space with the structure of a
unitary highest weight representation with highest weight vector ψm and highest weight

ωm(Eii) =

{
1, if i ≤ m
0, otherwise

Proof. Highest weight vector. To show that ψm is a highest weight vector we need to show
that Eijψm = 0 for all i < j (in other words, that all upper-triangular matrices kill ψm). The
action of Eij tries to move particle in state j to state i; however, either there is no particle in state
j (hence Eij kills ψm), or there is already a particle in state i, hence again Eij kills ψm.

Highest weight. A diagonal matrix Eii, applied to ψm, sends it to{
ψm, if i ≤ m
0, otherwise

Irreducibility. Given any nonzero state, acting with Eij I can move particles to the lowest
empty state and produce (a multiple of) ψm. Once I have ψm, acting with Eij I can get any other
state (moving particles to excited states).

Unitarity. Adjunction is given by E†ij = Eji; as already remarked, the scalar product is such
that the basis vi0 ∧ · · · ∧ vin ∧ · · · is orthonormal.

Corollary 8.2. All weights of the form

λ = (· · · a, a, · · · , a, a+ n1, a+ n1 + n2, · · · , a+ n1 + n2 + . . .+ nk, b, b, · · · , b, · · · ),

where a ∈ R, ni ∈ N and b =
∑k
i=1 ni, are unitary.

Proof. The weight in question can be written as

λ = (· · · , a, a, a, · · · ) +

k∑
i=1

(· · · , 0, 0, · · · , 0, ni︸︷︷︸
mi−th spot

, ni, ni, · · · )

= a(· · · , 1, 1, 1, · · · ) +

k∑
i=1

niωmi ,

so it appears in the representation Ca ⊗ V n1
ωm1
⊗ · · · ⊗ V nkωmk , where Ca is the 1-dimensional repres-

entation on which A ∈ gl∞ acts as aTr(A).
To realize a unitary representation of weight λ one can then take

Vλ = U(gl∞) · vλ ⊂ Ca ⊗ V n1
ωm1
⊗ · · · ⊗ V nkωmk ,

with highest weight vector vλ = 1⊗ v⊗n1
ωm1
⊗ · · · ⊗ v⊗nkωmk
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Exercise 8.3. If Vλ is a unitary representation of gl∞, then λ = (· · · , a, a, a, · · · , b, b, b, b, · · · ).

Definition 8.4. We let a∞ be the algebra of matrices on Z× Z that have nonzero elements only
on finitely many diagonals. Formally,

a∞ =

A ∣∣ A =
∑

n∈I⊂N
I finite

∑
j∈Z

cnjEj,j+n


Remark 8.5. • One of the advantages of working with a∞ is that this new algebra contains

the identity matrix.

• In a∞ everything works well except that it doesn’t make sense to take traces.

8.0.1 Construction of a∞

We now construct a central extension a∞ of a∞ that acts on Λ∞/2.

One checks without difficulty that, for n 6= 0, when a matrix A =
∑
j∈Z cjEj,j+n acts on a

state we find a finite sum. Indeed, say that n < 0: then we try to act by moving particles from
state j to state j+n (which, in our graphical representation, lies to the left of j). Then for j � 0
there is no particle to move, so the corresponding summand is zero, while for j � 0 there are
particles both in j and in j+n, so the corresponding summand is again zero. A similar argument
applies for n > 0.

Unfortunately, for n = 0, when A acts on a state v we find

A(v) =

 ∑
j occupied

cj

 v,

which is divergent in general. We modify the action of Eii as follows: we introduce a new repres-
entation ρ̃ given by

ρ̃(Eij) =


Eij , if i 6= j

Eii, if i = j > 0

Eii − 1, if i = j ≤ 0

With this definition, when A is diagonal we have

ρ̃(A)(v) =

 ∑
j>0 occupied

cj −
∑

j≤0 empty

cj

 v,

which is at least finite. Of course there is the problem of deciding whether ρ̃ is a Lie algebra
action. Unfortunately (or fortunately...) it isn’t! Let’s check this. It will be useful to notice that

ρ̃(Eij) = Eij − δi,j1i≤0,

where 1i≤0 is 1 if i ≤ 0 and 0 otherwise. For simplicity we write δi,j≤0 for the last term.
Since ρ̃(Eij) differs from Eij at most by a scalar (which is central), we obtain

[ρ̃(Eij), ρ̃(Ehk)] = [Eij , Ehk] = δjhEik − δikEhj ;

we should check that this is the same as ρ̃([Eij , Ehk]). We compute

ρ̃([Eij , Ehk]) = δjhEik − δikEhj + δi,kδj,h≤0 − δj,hδi,k≤0
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which is in general different from [ρ̃(Eij), ρ̃(Ehk)]. The error term is

α =


1, if i = k > 0, j = h ≤ 0

−1, if i = k ≤ 0, j = h > 0

0, otherwise

However, this is not too bad: it differs from the correct expression by a central element, so this
can be repaired by taking a central extension of a∞. We define

a∞ = a∞ ⊕ C

with commutator
[A,B]

∼
= AB −BA+ tr(A12B21 −A21B12),

where A11, A12, A21, A22 are the sub-matrices on indices Z>0 × Z>0, Z≤0 × Z>0, Z≤0 × Z>0,
Z≤0 × Z≤0. There is a number of properties one should check: let me just list them.

• A12, A21, B12, B21 are in gl∞

• α(A,B) := tr(A12B21 −A21B12) is a 2-cocycle (necessary to get a central extension)

• α(A,B), evaluated on the elementary matrices Eij , gives back the expression δi,kδj,h≤0 −
δj,hδi,k≤0 with the opposite sign (because it should cancel with our previous α)

8.0.2 Remarks on a∞

Let Tn =
∑
j∈ZEj,j+n be the matrix whose only nonzero coefficients are on the n-th diagonal,

which is all filled with 1.
All matrices T i belong to a∞; in a∞, T iT j = T jT i = T i+j , but it is not clear that T i, T j

should commute in a∞. Let’s check:

[Tm, Tn] =
∑
i∈Z

∑
j∈Z

[Ei,i+m, Ej,j+m]
∼

=
∑
i,h∈Z

(−δi,h+n>0δi+m,h≤0 + δi,h+n≤0δi+m,h≥0)

Now δi,h+n>0δi+m,h≤0 can be nonzero only if m + n = 0 (since h + n = i, h = i + m), and the
previous expression becomes

δm+n,0

∑
i∈Z

(−δ0<i≤−m + δ−m<i≤0) = mδm+n,0

As a consequence, the Heisenberg algebra A embeds in a∞, with an corresponding to Tn (and
K corresponding to 1). We know that A acts on the bosonic Fock space Bµ, in such a way that

a0 acts as µ. On the other hand, T 0 = id (which corresponds to a0) acts on
∧∞/2,m

as a scalar
(because it’s central, even in a∞). How does id act on ψm?

id ·ψm =

 ∑
j>0 full

1−
∑

j≤0 empty

1

ψm = mψm

In particular, if µ = m is integral, a0 ↔ id acts in the same way on Bm and on
∧∞/2,m

V .
Moreover, Bm is the unique irreducible representation of highest weight m (in fact, the Verma

module is irreducible: Mm = Vm). On the other hand we know that ψm ∈
∧∞/2,m

is a singular
vector of weight (m, 1) (weights for a0,K). Even better:
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Proposition 8.6.
∧∞/2,m

is irreducible as a representation of A ⊂ a∞; it has a singular vector,
hence it is a representation of highest weight.

Proof. There is a map σ : Bm → Fm induced by the universal property of the Verma module.
Since Bm is irreducible, σ is injective; we now show that it’s also surjective.

Define a degree:

• on Bm = C[x1, x2, . . .] =
⊕

k Bm[k]: the degree of xn1
1 · · ·xnss is 1 · n1 + 2 · n2 + . . . + sns.

The operator an = ∂
∂xn

is of degree −n, while a−n is of degree +n.

• on Fm: the basis vector vi0∧vi1∧vi2∧· · · has degree (i0−m)+(i0−(m−1))+(i2−(m−2))+· · ·
(this is a finite sum since ik = m− k for k � 0). The operator an is likewise of degree −n.

To check that σ is surjective, it suffices to show that Bm[n] and Fm[n] have the same dimension:

• dimBm[k] = {n1 ≥ 0, . . . , ns ≥ 0
∣∣ n1 +2n2 + · · ·+sns = k} = p(k), the number of partitions

of k

• (i0 −m) + (i1 − (m − 1)) + . . . + (i2 − (m − 2)) = k: notice that i0 −m ≥ i1 − (m − 1) ≥
i2 − (m− 2) ≥ ... (indeed, these are the ’distances of a particle from the lowest state it can
occupy’, and on a drawing it’s clear that these are decreasing). Hence we’re writing k as
sum of non-increasing numbers, and these are again precisely the partitions of k.

Corollary 8.7. There is an isomorphism Bm ∼= Fm :=
∧∞/2,m

, which is usually called the
boson-fermion correspondence.

8.0.3 Action of the Clifford algebra on the Fermionic space

Let
C` = {v̂i, v̌i

∣∣ i ∈ Z}
be the algebra defined by the relations

v̂iv̂j + v̂j v̂i = 0

v̌iv̌j + v̌j v̌i = 0

v̂iv̌j + v̌j v̂i = δij

This is essentially the algebra C1/2 from yesterday, up to renumbering.

There is a natural action of C` on
∧∞/2

, given by declaring v̂i to be the creation operator for
particles in state i and v̌i to be the corresponding destruction operator. In symbols:

v̂i(vi0 ∧ vi1 ∧ vi2 ∧ · · · ) = vi ∧ vi0 ∧ vi1 ∧ vi2 ∧ · · ·

(where in particular v̂i(...) = 0 if state i is already occupied), and

v̌i(vi0 ∧ vi1 ∧ · · · ) =

{
(−1)kvi0 ∧ vi1 ∧ · · · ∧ v̂ik ∧ · · · , if i = ik

0, if i is empty

Exercise 8.8. Check that this is a representation of C`.

Remark 8.9. C` does not act on
∧∞/2,m

, because it does not preserve the number of particles.

It does, however, act on F =
∧∞/2

V =
⊕

m∈Z Fm. Since we have isomorphisms Fm ∼= Bm, we
are tempted to introduce

B =
⊕
m∈Z

Bm,

which is isomorphic to F as a representation of the Heisenberg algebra A.
One can easily represent the elementary matrices Eij via the creation/destruction operators

v̂i/v̌j : one has
Eij = v̂iv̌j − δi,j≤0.
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The last sentence in the previous remark leads to defining

Definition 8.10. The ordered product of two operators in C` is

: v̂iv̌j :=

{
v̂iv̌j , if i 6= j or i = j > 0

−v̌j v̂i, if i = j ≤ 0

Notice that {v̂i, v̌i} = 1, so −v̌j v̂i is precisely v̂iv̌i − 1.

Definition 8.11. In order to keep track of which Bm we are working with, since every Bm is
C[x1, . . . , xs, . . .], we write B as

B =
⊕
m∈Z

umC[x1, . . . , xs, . . .] = C[u±1, x1, . . . , xs, . . .].

Here u is a dummy variable which keeps track of the number of particles/occupied states.

Remark 8.12. The fermionic-bosonic correspondence is such that ψm on the fermionic side
corresponds to um on the bosonic side. Given this, there is a unique map (isomorphism) of
representations of the Heisenberg algebra from F to B.

Question 8.13. The description of the previous remark is not completely satisfactory:

• can we write σ in more explicit terms?

• on F we have an action of a number of algebras (a∞, C`...): how does C` act (via σ) on B?
In formulas, we have

σv̂iσ
−1 : B → B

and
σv̌jσ

−1 : B → B.

These are linear operators on polynomials: there should be a concrete way of describing
them!

9 21.03.2018 – Vertex operators

9.1 From yesterday

We have constructed the total Bosonic space

B = C[z±1, x1, x2, . . .],

which admits an action of the Heisenberg algebra A defined by the rules

• an = ∂
∂xn

, n > 0

• a−n = nxn

• a0 = z ∂
∂z (this acts as multiplication by the degree in z)

• K = 1

On the other hand we also have the fermionic space

F =

∞/2∧
V

on which a∞, C`,A all act. The action of C` is given by

v̂i = vi∧, v̌i =
∂

∂vi
,
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and it induces an action of an via Tn (n-th shift), or – explicitly in terms of v̂i, v̌j –

an =
∑
j∈Z

: v̂j ˇvj+n.

Finally, we have constructed an isomorphism σ : F → B, and we finished the lecture wondering
how to carry the action of C` over to B. Concretely, we asked:

1. Given ψ = vi0 ∧ vi1 ∧ ... ∈ F , what is σ(ψ) ∈ B?

2. What do σv̂iσ
−1 ∈ End(B) look like? Same question for σv̂jσ

−1 ∈ End(B)

9.2 Vertex operators

We consider the generating function

X(u) =
∑
i∈Z

v̂iu
i ∈ End(F )[[u, u−1]]

Definition 9.1. A quantum field is X(u) ∈ End(F )[[u, u−1]] such that the evaluation X(u)(f)
lies in F ((u)) (Laurent series in u) for every f ∈ F .

We likewise introduce the generating function for the destruction operators,

X∗(u) =
∑
i∈Z

v̌iu
−i,

which is also a quantum field.

Theorem 9.2. We have
σX(u)σ−1 =: e

∫
a(u)du : z

and
σX∗(u)σ−1 = z−1 : e−

∫
a(u)du :

These two expressions are denoted by Γ(u) (resp. Γ∗(u)) and are known as vertex operators.

Remark 9.3. In the previous theorem, a(u) is the generating function of the operators an:

a(u) =
∑
n∈Z

anu
−n−1 : B → B((u)),

and the integral is the formal one,∫
a(u)du = −

∑
n∈Z\{0}

an
u−n

n
+ a0 log(u).

Now we don’t quite know what log(u) means, but for sure exp(log(u)) = u. Finally, we need to
discuss the meaning of the ordered exponential: write∫

a(u)du = −
∑
n>0

an
n
u−n +

∑
n>0

a−n
n
un + a0 log u = −

∑
n>0

1

n

∂

∂xn
u−n +

∑
n>0

xnu
n + a0 log u.

The ordered exponential is then defined by putting the exponential of the destruction operators
on the right and the exponential of the creation operators on the left (and a0 is central, so we can
put it wherever):

: e
∫
a(u)du := ua0e

∑
n>0 xnu

n

e−
∑
n>0

1
n

∂
∂xn

u−n

Notice that when I hit a vector in Bm with the operator Γ(u) the factor z shifts the vector to
Bm+1, so that ua0 acts as um+1. The generating series of the destruction operators is likewise

u−a0e−
∑
n>0 xnu

n

e
∑
n>0

1
n

∂
∂xn

u−n

Since there are only finitely many derivatives that can act nontrivially on a given polynomial, Γ
and Γ∗ are themselves quantum fields.
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Lemma 9.4. We have the following commutation relations:

1. (a) [Tn, X(u)] = unX(u)

(b) [Tn, X∗(u)] = −unX∗(u)

2. (a) [an,Γ(u)] = unΓ(u)

(b) [an,Γ
∗(u)] = −unΓ∗(u)

Proof. Parts (1) and (2) are conceptually different, in that the former says something about the
Fermionic space while the latter concerns the Bosonic space. On the other hand, parts (a) and
(b) of (1) and of (2) are completely analogous.

•

[Tn, X(u)] =

∑
i∈Z

: v̂iv̌i+n : ,
∑
j∈Z

v̂ju
j


=

∑
i∈Z

v̂iv̌i+n ,
∑
j∈Z

v̂ju
j


=
∑
i,j∈Z

(v̂iv̌i+nv̂j − v̂j v̂iv̌i+n)uj

=
∑
i,j∈Z

(v̂iv̌i+nv̂j + v̂iv̂j v̌i+n)uj

=
∑
i,j∈Z

v̂i{v̌i+n, v̂j}uj

=
∑
i,j∈Z

v̂iδi+n,ju
j

=
∑
i∈Z

v̂iu
i+n = X(u)un

where the first equality follows as usual from the fact that the ordered product differs from
the usual product by a central element.

•
[an,Γ(u)] =

[
an, : e

∫
a(u)du : z

]
=: e

∫
a(u)du : z[an,

∫
a(u)du]

Here we use two facts: one, [an, ·] satisfies Leibniz’s rule, hence [an, exp(B)] = B[An, B
′].

Two, this is not (in general) true for non-commuting operators, but the advantage here is
that [an, ·] is a number, hence commutes with everything and can be pulled out from the
series and put on the right. Now, at least for n 6= 0,

[an,

∫
a(u)du] =

∑
i 6=0

[an, ai]
u−i

i
=
∑
i 6=0

nδn+i,0
u−i

−i
= un.

The only problem is with a0, which commutes with all ai but not with z. Hence

[a0,Γ(u)] = [a0, : e
∫
a(u)du : z] =: e

∫
a(u)du : [a0, z] =: e

∫
a(u)du : (a0z − za0) =: e

∫
a(u)du : z

because z sends Bm to Bm+1, so (on an element v ∈ Bm) a0z acts as (m+ 1)z, while −za0

acts as −zm.
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Corollary 9.5. Conjugating with σ we obtain

[an, σX(u)σ−1] = unσX(u)σ−1;

since we also have
[an,Γ(u)] = unΓ(u)

we deduce that
[an, σX(u)σ−1Γ(u)−1] = 0 ∀n ∈ Z,

where the inverse of Γ(u) is not really defined, but we don’t care too much. In any case, what we
want to deduce is that σX(u)σ−1Γ(u)−1 a scalar, and in fact equal to one; we do this below.

Exercise 9.6. Decide whether Γ(u) is invertible as a formal power series.

More formally, σX(u)σ−1 and Γ(u) have the same commutation rules, so

σX(u)σ−1 = C(u)Γ(u)

with C that commutes with the Heisenberg algebra. In particular, C(u) acts as a scalar, possibly
depending on u, on every Bm (because each Bm is an irreducible A-module of countable dimension,
so that Schur’s lemma applies). The claim is that C(u) acts as 1 on every Bm, independently of
u. In order to show this, we compare

〈zm+1
∣∣ σX(u)σ−1zm〉 with 〈zm+1

∣∣ Γ(u)zm〉.

We have:

〈zm+1
∣∣ σX(u)σ−1zm〉 = 〈ψm+1

∣∣ X(u)ψm〉

= 〈vm+1 ∧ vm ∧ wm−1 ∧ wm−2 ∧ ...
∣∣ ∑

i

v̂iu
ivm ∧ wm−1 ∧ wm−2 ∧ ...〉

Since the standard basis is orthonormal, the only summand on the right that contributes to the
scalar product is the one corresponding to v̂m+1; thus this scalar product evaluates to um+1.

On the other hand,

〈zm+1
∣∣ Γ(u)zm〉 = 〈zm+1

∣∣: e∫ a(u)du : zzm〉

= 〈zm+1
∣∣ ua0e∑n>0 xnu

n

e−
∑
n>0

1
n

∂
∂xn

u−nzzm〉

Since
∂zm+1

∂xn
= 0, so e−

∑
n>0

1
n

∂
∂xn

u−nzzm = zm+1. On the other hand,

e
∑
n>0 xnu

n

= 1 + polynomials in the xi,

and all polynomials in xi are orthogonal to zm+1, so they do not count6. Thus this scalar product
evaluates to

〈zm+1
∣∣ ua0zm+1〉 = 〈zm+1

∣∣ um+1zm+1〉 = um+1.

From the equality of these scalar products we deduce C(u) ≡ 1, which is what we needed to
show.

Exercise 9.7. Let X(u), Y (u) be quantum fields such that [an, X(u)] = unX(u) and [an, Y (u)] =
unY (u) for all n ∈ Z. Prove or disprove: for all n ∈ Z, there exists cm(u) such that Y (u)|Bm =
cm(u)X(u)|Bm , or X(u)|Bm = cm(u)Y (u)|Bm

6equivalently: replace this exponential with its adjoint on the left. The adjoint is a certain exp
∑

n>0
1
n

∂
∂xn

,

which acts as 1 on zm+1
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9.3 Schur polynomials

Definition 9.8. The elementary Schur polynomials are the polynomials Sk(x1, x2, . . .) ∈
Q[x1, x2, . . .] defined by the generating series

e
∑∞
j=1 xjz

j

=

∞∑
k=0

Sk(x)zk.

In particular, Sk(x) = 0 for k < 0.

Example 9.9. It is useful to write the exponential as

1 + (x1z + x2z
2 + x3z

3 + . . .) +
1

2
(x1z + x2z

2 + x3z
3 + . . .)2 +

1

6
(x1z + x2z

2 + x3z
3 + . . .)3 + · · ·

From this expression one easily obtains

• S0(x) = 1 (evaluate the series at z = 0)

• S1(x) is the coefficient of z in the exponential, hence it is x1.

• S2(x) = x2 + 1
2x

2
1

• S3(x) = x3 + x1x2 + 1
6x

3
1

Definition 9.10. A partition Λ = (λ1, λ2, λ3, . . .) is a collection of non-increasing natural num-
bers such that λi = 0 for all sufficiently large i. Given a partition Λ, the Schur polynomial SΛ(x)
is the determinant of

Sλ1
(x) Sλ1+1(x) Sλ1+2(x) Sλ1+3(x) · · · · · ·

Sλ2−1(x) Sλ2
(x) Sλ2+1(x) Sλ2+2(x) · · · · · ·

Sλ3−2(x) Sλ3−1(x) Sλ3
(x) Sλ3+1(x) · · · · · ·

...
...

...
...

. . . · · ·

0 0 0 0 1
. . .

 ,

which makes sense because all but finitely many rows of this matrix have a 1 on the main diagonal
and 0 to the left of it. In other words, the determinant of this infinite matrix can be defined as
being the determinant of the topmost t× t block, where t = min{j : λj = 0}.

Lemma 9.11.
Sk(x) = hk(y1, . . . , yN ),

where xj =
yj1+···+yjN

j and hk(y) is the sum of all monomials of degree k on N variables.

Proof. We compare the generating functions:∑
k≥0

hk(y)zk =
∑
k≥0

∑
ki≥0

k1+···+kN=k

yk11 · · · y
kN
N zk

=
∑
k≥0

∑
ki≥0

k1+···+kN=k

yk11 · · · y
kN
N zk1+···+kN

=
∑
ki≥0

(zy1)k1 · · · (zyN )kN

=

N∏
i=`

1

1− y`z
.
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On the other hand, we have ∑
k≥0

Sk(x)zk = e
∑
j≥1 xjz

j

;

evaluating at xj =
yj1 + · · ·+ yjN

j
we find

exp

∑
j≥1

N∑
`=1

(y`z)
j

j

 = exp

 N∑
`=1

∑
j≥1

(y`z)
j

j

 = exp

(
−

N∑
`=1

log(1− y`z)

)
=

N∏
`=1

1

1− y`z
.

Theorem 9.12. We study the bosonic-fermionic correspondence for F0. Given a basis vector
ψ = vi0 ∧ vi1 ∧ vi2 ∧ ..., consider the partition Λ = (i0, i1 + 1, i2 + 2, . . .): we have

σ(ψ) = SΛ(x)

For the proof we need the following fact:

Exercise 9.13. For every n× n matrix A we have

(ΛnA)(e1 ∧ e2 ∧ · · · ∧ en) = det(A)e1 ∧ e2 ∧ · · · ∧ en
and

〈ej1 ∧ · · · ∧ ejk
∣∣ (ΛkA)(ei1 ∧ · · · ∧ eik)〉 = detAJI ,

where AJI is the k × k minor with rows j1, . . . , jk and columns i1, . . . , ik.

Proof. We compute the generating series (in the new variables yi)〈
1
∣∣ exp

∑
j≥1

ajyj

SΛ(x)

〉
;

notice the fundantamental fact that exp(y∂/∂x)p(x) = p(x+ y) for every polynomial p(x) (Taylor
series expansion). Since aj = ∂

∂xj
, the scalar product is therefore given by〈

1
∣∣ SΛ(x1 + y1, . . . , xn + yn, . . .)

〉
= SΛ(y1, . . .).

It now suffices to compute 〈
1
∣∣ exp

∑
j≥1

ajyj

σ(ψ)

〉
,

which – in the fermionic space – reads〈
v0 ∧ v−1 ∧ v−2 ∧ · · ·

∣∣ exp

∑
j≥1

T jyj

 (vi0 ∧ vi1 ∧ vi2 ∧ · · · )

〉
.

Now the exponential acts as a group element, so the previous scalar product is〈
v0 ∧ v−1 ∧ v−2 ∧ · · ·

∣∣ exp

∑
j≥1

T jyj

 vi0 ∧ exp

∑
j≥1

T jyj

 vi1 ∧ exp

∑
j≥1

T jyj

 vi2 ∧ · · ·

〉
and

exp

∑
j≥1

T jyj

 =

∞∑
k=0

Sk(y)T k =


S0(y) S1(y) S2(y) · · ·

0 S0(y) S1(y) · · ·
0 0 S0(y) · · ·
...

...
...

. . .

 .

The claim now follows from the linear algebra exercise: the scalar product is the determinant
of the submatrix given by the first rows and by the columns indexed by i0, i1, . . ., which is by
definition SΛ(y).
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10 26.03.2018 – Unitary representations of the Virasoro al-
gebra

10.1 Two questions

Given c, h ∈ R≥0,

• is Mc,h
∼= Vc,h? That is, is the Verma module irreducible? In this case, we shall say that

Mc,h is nondegenerate

• is Vc,h unitary?

So far we have seen the following:

• there exists a unique Hermitian form

(·
∣∣ ·)c,h : Mc,h ×Mc,h → C

such that (L−nu
∣∣ v) = (u

∣∣ Lnv) and (1c,h
∣∣ 1c,h) = 1

• the kernel of (·
∣∣ ·)c,h is Jc,h (Mc,h, the unique maximal submodule of Mc,h

• Mc,h[m] is orthogonal to Mc,h[n] for m 6= n

In particular:

• Mc,h is nondegenerate iff for all n the determinant dn(c, h) = det
(
·
∣∣ ·) |Mc,h[n]×Mc,h[n] is

nonzero;

• if Vc,h is unitary, then dn(c, h) ≥ 0 ∀n ≥ 0

10.2 Aims for today

1. Prove the Kac determinant formula, which computes dn(c, h)

2. Construct all the unitary representations

10.3 An example: formulas for dn for small n

• n = 0. There is a unique vector, 1c,h, which by definition has norm 1. Hence d0(c, h) = (1
∣∣

1) = 1.

• n = 1. M [1] = 〈L−11〉, so

d1(c, h) =
(
L−11

∣∣ L−11
)

= (
∣∣ L1L−11) = (1

∣∣ (2L0 + L−1L1)1) = (1
∣∣ 2L01) = 2h

In particular, one can only have unitary representations for h > 0 (which is something we
already knew), and the determinant is zero iff h = 0.

• n = 2. Mc,h[2] = 〈L−21, (L−1)21〉. We need to compute the determinant of a 2 × 2 matrix
whose entries are(
(L−1)21

∣∣ (L−1)21
)

= 2(1
∣∣ L1L0L−11)+(1

∣∣ L1L−1L1L−1) = 4h(h+1)+(2h)2 = 4h(2h+1),

(L−21
∣∣ L−21) = (1

∣∣ L2L−21) = (1
∣∣ (4L0 + c/2)1) = 4h+

c

2
and

(L−2

∣∣ (L−1)21) = (1
∣∣ L2(L−1)21) = 6h.

Thus d2(c, h) = det

(
4h+ c

2 6h
6h 4h(2h+ 1)

)
= 4h

(
8h2 + hc− 5h+ c

2

)
. Since we already

know h ≥ 0, this gives a nontrivial condition on (c, h) which corresponds to lying ‘outside’ a
certain hyperbola, which passes through (1/2, 1/16), (1/2, 1/2) and (0, 5/8).
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Remark 10.1. dn = 0 ⇒ dn+1 = 0. Indeed, the Verma module is irreducible iff it contains a
nontrivial singular vector v, and the determinant dn is zero iff M [n] contains a vector which lies
in the representation generated by v. Acting with L−1 on such vectors, we obtain vectors that lie
both in M [n+ 1] and in the representation generated by v, therefore forcing dn+1 to be zero.

10.4 Kac’s formula

Theorem 10.2.
dn(c, h) = Kn

∏
r,s≥1
rs≤n

(h− hr,s(c))p(n−rs),

where

Kn =

n∏
r,s=1

(s!(2r)s)m(r,s),

hr,s(c) =
1

48

[
(13− c)(r2 + s2) +

√
(c− 1)(c− 25)(r2 − s2)− 24rs− 2 + 2c

]
p(n− rs) = #{partitions of n− rs}

m(r, s) = #{partitions of n in which r appears exactly s times}

10.4.1 Some consequences of Kac’s theorem

The first remark one might make is that the formula seems to involve some square root of a
polynomial in c, but they will have to somehow cancel out since dn(c, h) is (essentially by definition)
polynomial in c and h.

Define

ϕr,s(h, c) =

{
h− hr,r, if r = s

(h− hr,s)(h− hs,r), if r 6= s

and observe that
dn(c, h) = Kn

∏
r≤s

ϕr,s(h, c)
p(n−rs)

since p(n− rs) is symmetric in r, s. One has

ϕr,r(c, h) = h+
1

24
(c− 1)(r2 − 1)

and

ϕr,s(h, c) =

(
h− (r − s)2

4

)2

+
h

24
(r2+s2−2)(c−1)+

1

576
(r2−1)(s2−1)(c−1)2+

1

48
(r−s)2(rs+1)(c−1)

This expression is horrible, but clearly positive for h > 0 and c > 1.
This implies, in particular, that for any such pair (c, h) the determinant does not vanish. As

a consequence, all the Mc,h are nondegenerate for h > 0, c > 1, which in turn implies that all
these modules are unitary (all the eigenvalues are positive in at least one point, because we have
constructed at least one unitary representation. By continuity of the determinant, this implies
that all eigenvalues are positive for every Mc,h). In particular, this ’fills in’ the small triangles for
which we did not know whether Mc,h was unitary or not.

Furthermore, since the set of unitarity is closed, this implies that all the representations with
h = 0, c ≥ 1 and all those with c = 1, h ≥ 0 are unitary.
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The discrete series In the strip h ≥ 0, 0 ≤ c ≤ 1 the unitary representations are all degenerate,
and are given by

c = cm = 1− 6

(m+ 2)(m+ 3)
m ≥ 0

h = hrs(c) =
((m+ 3)r − (m+ 2)s)2 − 1

4(m+ 2)(m+ 3)
for some 1 ≤ s ≤ r ≤ m+ 1.

Example: representations in the discrete series

• m = 1, c = 0. If m = 0, the only possible choice for r, s is (0, 0), which gives h = 0

• m = 1, c = 1/2. With m = 1, we must choose {r, s} in {(1, 1), (1, 2), (2, 2)}, and the
corresponding values of h are 0, 1/2, 1/16.

10.4.2 Proof of Kac’s formula

Step 1. Asymptotic expansion of dn(c, h). We study dn(c, h) as a polynomial in h; in particular,
we are interested in its leading term. We have

dn(c, h) = det
(
〈L−i1 · · ·L−is1

∣∣ L−j1 · · ·L−jt1〉)i,j ,
where the matrix is indexed by i = (i1 ≥ i2 ≥ · · · ≥ is) and j = (j1 ≥ j2 ≥ · · · ≥ jr), both
partitions of n. Now a single scalar product is

〈L−i1 · · ·L−is1
∣∣ L−j1 · · ·L−jt1〉 = 〈1

∣∣ LisLi1L−j1 · · ·L−jt1〉;
now we need to commute all the various L past each other, and every time we commute two
adjacent L the number of L’s go down by 1. In particular, the maximum number of h’s is produced
if every Li is commuted only once with its L−i

7. The conclusion is that there is a maximal degree
M , that appears on the diagonal and (potentially) in some coefficients above the diagonal, but
certainly in no coefficient below it8. From this, we obtain that

dn(c, h) =
∏

i1≤···≤is
i1+···+is=n

〈L−i1 · · ·L−is1
∣∣ L−i1 · · ·L−is1〉+ terms of lower degree in h

Reparametrizing partitions as (n1, . . . , nk) with n1 + 2n2 + . . .+ knk = n, we have to compute∏
n1≥0,...,nk≥0

n1+2n2+...+knk=n

〈Ln1
−1 · · ·L

nk
−k1

∣∣ Ln1
−1 · · ·L

nk
−k1〉

up to terms of non-maximal order in h. As already observed, the only way for the maximal number
of h to appear is for every Li to commute with L−i (because [Lm, Ln] produces Lm+n, which acts
as h if m+n = 0, but which needs to be commuted past the other L otherwise). Hence the leading
term is ∏

n1≥0,...,nk≥0
n1+2n2+...+knk=n

∏
i

〈Lni−i1
∣∣ Lni−i1〉,

so we want to study
〈Ls−r1

∣∣ Ls−r1〉 = 〈1
∣∣ Lr · · ·LrL−r · · ·L−r1〉.

7’ci sono marito e moglie, e non vogliamo rapporti extraconiugali’ – ’ma se ci sono tante Li con lo stesso indice
posso farlo in tanti modi...’ – ’certo, certo, si può: quella si chiama poligamia, in certi paesi va bene...’

8one needs to think about the number of L that survive the commutation relation; an example where M is
realized outside the diagonal is (L−21

∣∣ L−1L−11)
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Now [Lr, L
s
−r] = sLs−1

−r [Lr, L−r] + lower degree terms (because the commutator is a multiple of
h, which is central, plus something of lower degree in h; here we use the fact that [Lr, ·] is a
derivation). Hence 〈Ls−r1

∣∣ Ls−r1〉 = s!(2rh)s + lower degree terms.
Combining everything we’ve proven so far,

dn(c, h) =
∏

n=n1+···+knk

k∏
r=1

〈Lnr−r1
∣∣ Lnrr 1〉+ terms of lower degree

=

n∏
r=1

n∏
s=1
rs≤n

〈Lnr−r1
∣∣ Lnrr 1〉# partitions of n with exactly s parts equal to r + terms of lower degree

=

n∏
r=1

∏
rs≤n

(s!(2r)s)m(r,s)h
∑
rs≤m sm(r,s) + terms of lower degree

Now let’s check that the degree of dn(c, h) is the one claimed in Kac’s formula. We have found
that the leading term in h has degree

∑
rs≤m sm(r, s), and

m(r, s) = #{partitions of n in which r appears at least s times}
−#{partitions of n in which r appears at least s+ 1 times}
= p(n− rs)− p(n− r(s+ 1)),

so ∑
rs≤n

sm(r, s) =
∑
rs≤n

[sp(n− rs)− sp(n− r(s+ 1))] =
∑
rs≤n

p(n− rs)

as claimed in Kac’s theorem. For the remainder of the proof (tomorrow) we’ll show that the
hr,s(c) are roots of dn(c, h) and that p(n− rs) is a lower bound for their multiplicity, which will
be enough to obtain the desired conclusion.

11 27.03.2018

12 28.03.2018 – Geddard-Kent-Olive, and the discrete series
of the Virasoro algebra

12.1 Unitary representations of ŝl2 of highest weight

Vω with

ω = mD + n
h1

2
+ rK,

where m ≥ n ≥ 0.

12.2 Sugawara’s construction

Theorem 12.1. Let g be a reductive Lie algebra. Fix

1. (·
∣∣ ·) a non-degenerate invariant symmetric bilinear form

2. a basis {ui}dim g
i=1 and its dual basis {ui}

3. the Casimir operator Ω (see below)

4. 2h∨ = Ω|g, where we consider the adjoint action of Ω (when g is simple, h∨ is a number,
called the dual Coxeter number)

5. k 6= −h∨
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6. V representation of level k

Define

Ln =
1

2(k + h∨)

dim g∑
i=1

∑
p∈Z

: (uit
−p)(uitp+n) :

where the normal ordered product is

: (atp)(btq) :=

{
(atp)(btq), if q ≥ p
(btq)(atp), if q < p

Note that L†n = L−n. Then:

1. [atm, Ln] = matm+n

2.

[Lm, Ln] = (m− n)Lm+n + c
m3 −m

12
δm+n,0,

where c = k
k+h∨ dim g.

Remark 12.2. Definition of the ordered product. What we are doing in the case p > q is writing

(atp)(btq) = (btq)(atp) + [atp, btq] = (btq)(atp) + [a, b]tp+q + central element

and eliminating the central element. More precisely,

[atm, btn] = [a, b]tm+n + km(a|b)δm+n,0

Definition 12.3. The Casimir element Ω of g is
∑
i uiu

i, considered as an element of U(g).

Exercise 12.4. Ω is independent from the choice of basis and is central in U(g).

Example 12.5. One can take g = sl2 or g = sl2 ⊕ sl2, with (A
∣∣ B) = tr(AB) or (A

∣∣ B) =

tr⊕ tr. In the case of sl2, we can take as basis {e, f, h} and as dual basis {f, e, h2 }, which leads to
Ω = ef + fe+ 1

2h
2. Let us compute the adjoint action of the Casimir operator by looking at the

equation
ad(Ω)(e) = (number)e;

it gives

[e, [f, e]] + [f, [e, e]] + [h, [h/2, e]] = [e,−h] + 0 + [h, [h/2, e]] = 2e+ 2e = 4e,

which implies h∨ = 2.

Exercise 12.6. h∨(sln) = n.

Lemma 12.7. Let ui, u
i be dual bases. The element A :=

∑
[ui, u

i] is independent of the choice
of basis, and is equal to zero.

Proof. One checks independence on the choice of basis. Observing that (ui, ui) are also dual bases
we get

A =
∑

[ui, u
i] =

∑
[ui, ui],

which implies A = 0.
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Proof. We only show part (1). We proceed by regularization, truncating the sum on p to some
large (but finite) interval [−N,N ]. We compute[
atn,

dim g∑
i=1

N∑
p=−N

: (uit
−p)(uitp+n) :

 =
∑
i

∑
p

[atn, uit
−p]uitp+n + (uit

−p)[atm, uitp+n]

=
∑
i

∑
p

(
([a, ui]t

m−p)uitp+n + (uit
−p)[a, ui]tp+m+n + km(a|ui)δm−p,0uitp+n + km(a|ui)δm+n+puit

−p)
where in order to remove the ordered product we have used the fact that the ordered product
and the normal product differ by a central element (which is irrelevant, since it appears inside
the commutator) and by (a multiple of) [ui, u

i], which summed over i gives zero by the previous
lemma.

Now we

• use the δ’s to simplify the sums;

• apply the obvious identity
∑
i(a|ui)ui = a

• rename m− p→ p to make the first two summands equal to each other

and obtain

2kmatm+n +
∑
i

N−m∑
p=−N−m

[a, ui]t
−p(uitp+m+n) +

∑
i

N∑
p=−N

(uit
−p)[a, ui]tp+m+n.

We would now like to take the limit as N → ∞; it is easier to do so if we work with the ordered
products. Therefore we rewrite the previous expression as

2kmatm+n +
∑
i

N−m∑
p=−N−m

: [a, ui]t
−p(uitp+m+n) : +

∑
i

N∑
p=−N

: (uit
−p)[a, ui]tp+m+n :

+
∑
i

−(m+n)/2∑
p=−N−m

([[a, ui], u
i]tm+n + kp([a, ui]|ui)δm+n,0

+
∑
i

−(m+n)/2∑
p=−N

([ui, [a, u
i]]tm+n + kp(ui|[a, ui])δm+n,0

Exercise 12.8. ∑
i

[a, ui]⊗ ui +
∑
i

ui ⊗ [a, ui] = 0,

that is, the Casimir element is central in the tensor algebra (and not just in the universal enveloping
algebra).

Now we can take the limit in N for the first two sums (when acting on a given vector, the finite
sum and the infinite one act in the same way when N � 0) and find 0 by the exercise. Moreover,

∑
i

([a, ui]|ui) =
∑
i

(a|[ui, ui]) =

(
a
∣∣ ∑

i

[ui, u
i]

)
= 0,

so the only terms that survive are [[a, ui], u
i] and [ui, [a, u

i]]. We compute these by observing that∑
i

[ui, [a, u
i]] =

∑
i

[ui, [ui, a]] = ad Ω(a) = 2h∨a
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and likewise ∑
i

[ui, [a, u
i]] = −2h∨a.

Putting everything together, the commutator we’re trying to compute is

2kmatm+n +

−(m+n)/2∑
p=−N−m

2h∨atm+n −
−(m+n)/2∑
p=−N

2h∨atm+n = 2(k + h∨)matm+n

Corollary 12.9. Let V be a unitary representation of ŝl2 of highest weight ω = mD+nh1

2 + rK.
Then V is a unitary representation of Vir (with the same Hermitian form and the same adjunction
map) with central charge c = m

m+2 ·3 (which is either 0 or ≥ 1, and therefore does not give anything
new with respect to our investigation of the discrete series).

12.3 Geddard-Kent-Olive

There is a general construction which we will only describe in the special case of ŝl2. We consider

two particular unitary representations of ŝl2, namely VD and Vω, with ω = mD+nh1

2 (i.e. r = 0).

We look at the tensor product VD ⊗ Vω, which is a unitary representation of ŝl2. This is a space

with three different ŝl2-actions:

1. a · (u⊗ v) = (a · u)⊗ v + u⊗ (a · v) (the diagonal action)

2. a · (u⊗ v) = (a · u)⊗ v (the action on the first factor)

3. a · (u⊗ v) = u⊗ (a · v) (the action on the second factor)

The levels (:= action of K) of these three representations are K = m + 1,K = 1,K = m
respectively. The Sugawara construction gives us three actions of Vir on this same vector space:

1. L
(1)
n = 1

2(1+2) (
∑
...)⊗ 1, central charge c1 = 1

1+2 · 3 = 1

2. L
(2)
n = 1⊗ 1

2(1+2) (
∑
...), central charge c2 = m

m+2 · 3 = 3m
m+2

3. L
(∆)
n = 1

2(m+1+2) (
∑
...), central charge c∆ = 3(m+1)

m+3

Theorem 12.10 (Geddard-Kent-Olive). Defining

Ln = L(1)
n + L(2)

n − L(∆)
n

we obtain a Virasoro action with the following properties:

1. [atm, Ln] = 0, that is, Virasoro commutes with ŝl2
′

(the diagonal action)

2. [Lm, Ln] = Virasoro relation, with central charge c = c1 + c2 − c∆ = 1 − 6

(m+ 2)(m+ 3)
,

which are precisely the admissible values of the central charge for the discrete series of Vi-
rasoro.

Proof. Let’s start by computing [atm, Ln], where by a we mean the diagonal action of ŝl2, that is,
atn ⊗ 1 + 1⊗ atm. We have

[atm, Ln] =
[
atm ⊗ 1 + 1⊗ atm, L(1)

n ⊗ 1 + 1⊗ L(2)
n − L(∆)

n

]
= [atm, L(1)

n ]⊗ 1 + 1⊗ [atm, L(2)
n ] + [(atm)∆, L(∆)

n ]

= matm+n ⊗ 1 + 1⊗matm+n −m(atm+n)∆ = 0
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Now for part (2): we want to compute[
L(1)
m ⊗ 1 + 1⊗ L(2)

m − L(∆)
m , Ln

]
,

where we observe that Ln (which is a sum of ordered products of things in ŝl2
′
) commutes with

L
(∆)
m . Hence we just need to compute[
L(1)
m ⊗ 1 + 1⊗ L(2)

m , L(1)
n ⊗ 1 + 1⊗ L(2)

n − L∆
n

]
=

[L(1)
m , L(1)

n ]⊗ 1 + 1⊗ [L(2)
m , L(2)

n ]− [L(1)
m ⊗ 1 + 1⊗ L(2)

m − L(∆)
m + L(∆)

m , L∆
n ]

= (m− n)Lm+n + (c1 + c2 − c∆)
m3 −m

12
δm+n,0,

where we have used that Lm, L
∆
n commute because again L∆

n is given by a combination of operators
that commute with Lm by part (1).

12.4 Decomposition of VD ⊗ Vω

We shall use the following known result, which gives the decomposition of VD ⊗ Vω as a ŝl2-
representation (with respect to the diagonal action):

VD ⊗ Vω =
⊕
k∈Z

−(m+1−n)/2≤k≤n/2

⊕
j≥k2

V
⊕∆j

m,n,k

(m+1)D+(n−2k)
h1
2 −jK

The multiplicities ∆j
m,n,k are all strictly positive.

12.5 The discrete series of the Virasoro algebra

Remark 12.11. 9 Since the Virasoro action commutes with the action of ŝl2
′
, then, if v is a

singular vector (ie (atm)v = 0 for all m > 0 and ev = 0), Lnv is also a singular vector. It
follows that Virasoro acts on the subspace of singular vectors, which is given by the sum of the
1-dimensional lines of singular vectors in each V

(m+1)D+(n−2k)
h1
2 −jK

. The subspace of singular

vectors in VD ⊗ Vω is

U =
⊕
k

⊕
j≥k2

U jm,n;k,

where dimU jm,n;k = ∆j
m,n,k is the space of singular vectors in a single summand. Moreover, the

action on Um,n;k is given by K = m+ 1, h1 = n− 2k and D = −j.

Now Virasoro commutes with K and with h1, but not with D, so it preserves
⊕

j≥k2 U
j
m,n,k

(but not necessarily every U jm,n,k taken separately). In any case, for every k we get a Virasoro
action on

Um,n,k =
⊕
j≥k2

U jm,n,k.

These are unitary representations of the Virasoro algebra, with central charge c = 1− 6
(m+2)(m+3) .

We still need to compute the action of h on Um,n,k, where by definition h is the value of L0

on the highest weight vector, or equivalently the smallest eigenvalue of L0. Recall that L0 =

L
(1)
0 ⊗ 1 + 1⊗L(1)

0 −L
(∆)
0 . To simplify the computation we use the following trick: we rewrite L0

as
(L

(1)
0 +D)⊗ 1 + 1⊗ (L

(2)
0 +D)− (L

(∆
0 ) +D(∆)

9‘scema ma cruciale’
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and notice that LSugawara
0 +D is central10. To see this, notice that [K,LSugawara

0 +D] = 0 because
K is central. Moreover,

= [D,LSugawara
0 ]

= [D,
∑

: (uit
−p)(uitp) :];

observe that [D, ·] is a derivation and it gives the degree in t, so the previous sum becomes a sum
with coefficients (−p) + (p) = 0. Finally,

[atm, LSugawara
0 +D] = matm+0 − degree(tm)atm = 0.

It follows that LSugawara
0 + D acts as a scalar on irreducible (or even just highest weight) repres-

entations. On the other hand, we can compute this scalar on a representation Vω̃ by looking at
the action on a highest weight vector vω̃. Write ω̃ = m̃D + ñh1

2 + r̃K. Then the action of D on
vω̃ is r̃ by definition; we then get

LSugawara
0 +D)vω̃ = r̃vω̃ +

1

2(m̃+ 2)

3∑
i=1

∑
p

: (uit
−p)(uitp) : vω̃,

and we may observe that for p 6= 0 the ordered product hits vω̃ with an operator that kills it, so

(LSugawara
0 +D)vω̃ = r̃vω̃ +

1

2(m̃+ 2)
(ef + fe+

1

2
h2)vω̃ = r̃vω̃ +

ñ(ñ+ 2)

4(m̃+ 2)
vω̃

Combined with the previous remark that L0 can be rewritten as a combination of L
(·)
0 + D, we

obtain that the action of L0 on a vector in U jm,n;k is

0 +
n(n+ 2)

4(n+ 2)
+ j − (n− 2k)(n− 2k + 2)

4(m+ 3)

where the three terms come from the action on a representation of weight D, ω, (m+ 1)D+ (n−
2k)h1

2 − jK respectively. Now we want the lowest eigenvalue of L0, so we have to take j = k2,
and we get

h =
n(n+ 2)

4(m+ 2)
− (n− 2k)(n− 2k + 2)

4(m+ 3)
+ k2.

Now the change of variables{
r = n+ 1

s = n+ 1− 2k
if k ≥ 0,

{
r = m− n+ 1

s = m− n+ 2 + 2k
otherwise

shows that h = hr,s, and completes the classification of the unitary representations of the Virasoro
algebra.

10that is, it commutes with ŝl2
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13 Exercises

13.1 Week 2

1. Let (·
∣∣ ·) : M+

λ ×M−µ → C be a nonzero g-invariant bilinear form. Prove that µ = −λ.

7. Let U≤n be the image of
∑
r≤n g

⊗r in U(g). Prove that U≤m · U≤n ⊆ U≤m+n, and that
gr(U) ∼= S(g).

Solution. The first part is trivial: given α ∈ U≤m, β ∈ U≤n we can find α̃ ∈
∑
r≤m g⊗r and

β̃ ∈
∑
r≤n g

⊗r such that α (resp. β) is the image of α̃ (resp. β̃) in U(g). Now αβ is the

class of α̃β̃, which clearly belongs to
∑
r≤m+n g

⊗r.

To prove that gr(U(g)) ∼= S(g) we apply the PBW theorem. The i-th graded piece of
gr(U(g)) has a basis given by ordered monomials of exact degree i in a basis of g; to show
the desired isomorphism, therefore, it suffices to show that gr(U) is commutative. Since the
i-th graded piece is generated by monomials in the basis of the 1st graded piece, it suffices to
show the following: given x ∈ g, y ∈ g which are part of a basis for g, their images in gr(U)
commute. And this is true because xy − yx ≡ xy − yx − [x, y] mod gr1(U), hence xy = yx
in gr2 / gr1, and therefore xy = yx in gr(U).

8. Let g be a Lie algebra. Prove that U(g) is a domain (i.e. ab = 0⇒ a = 0 or b = 0)

Solution. This follows from the fact that (for any graded associative algebra U) if gr(U) is
a domain, then so is U . Let me write a proof of this lemma:

Proof. An element x of U is said to have degree d if it belongs to Ud \ Ud−1; the leading
term of x is x̄ = x + Ud−1. By definition of the multiplication in gr(U), one has xy = x · y
provided that the latter is nonzero.

Now suppose that gr(U) is a domain, and take x, y ∈ U \ {0}. Since x, y are nonzero and
gr(U) is a domain, x · y is nonzero, so it is equal to xy, which is therefore also nonzero; it
follows that xy cannot be zero.

9. Let g = sl2. Prove that C = ef + fe+ 1
2h

2 is central, and compute its action on Mλ.

Solution. One has

= e(ef + fe+
1

2
h2)− (ef + fe+

1

2
h2)e

= e[e, f ] + [e, f ]e+
1

2
[e, h2]

= eh+ he+
1

2
(eh2 − heh+ heh− h2e)

= eh+ he+
1

2
([e, h]h+ h[e, h])

= eh+ he− eh− he = 0,

and similarly for [f, C]. As for [h,C], we get

= [h, ef + fe] = hef − ehf + ehf − efh+ hfe− fhe+ fhe− feh
= [h, e]f + e[h, f ] + [h, f ]e+ f [h, e]

= 2ef + e(−2f) + (−2f)e+ f(2e) = 0.

Being central, C acts as a scalar. Thus it suffices to see how it acts on 1λ:

C1λ = (ef +
1

2
h2)1λ = ([e, f ] + fe+

1

2
h2)1λ = (h+

1

2
h2)1λ =

(
λ(h) +

1

2
λ(h)2

)
1λ.
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13.2 Week 3

1. The following hold:

(a) f · V [λ] ⊂ V [λ− 2]

(b) e · V [λ] ⊂ V [λ+ 2]

Solution. This is obvious: if v ∈ V [λ], then

h · (f · v) = ([h, f ] + fh) · v = −2f · v + f · (h · v) = −2(f · v) + f · (λv) = (λ− 2)(f · v),

so f · v belongs to V [λ− 2]. The computation for e · v is completely analogous.

2. Let V be a module in our category. Then:

(a) V is finitely generated as a g-module

(b) dimV [λ] < +∞ ∀λ ∈ C
(c) ∃λ1, . . . , λm ∈ C such that

PV := {λ ∈ C : V [λ] 6= (0)} ⊂ (λ1 − 2N) ∪ · · · ∪ (λm − 2N)

Solution.

(a) True by assumption.

(b) Let v1, . . . , vr be generators of V as a g-module. Since V is graded, we can (and will)
assume that the vi’s are homogeneous, that is, that each of them belongs to a weight
space. By the PBW theorem, a set of generators of V as vector space is given by{

faebhcvi
∣∣ i = 1, . . . , r; a, b, c ∈ N

}
,

and since h acts as a scalar on every vi we can reduce this to the set{
faebvi

∣∣ i = 1, . . . , r; a, b ∈ N
}
.

Let λi be the weight of vi; by the previous exercise, faebvi has weight λi + 2(b− a). As
V is graded and the faebvi are homogeneous, we can extract from{

faebvi
∣∣ i = 1, . . . , r; a, b ∈ N

}
a generating set for V [λ]. However, an element faebvi belongs to V [λ] if and only if
λi + 2(b − a) = λ, which means that b − a = λ−λi

2 . Thus for every i the difference
a− b is fixed; on the other hand, for b sufficiently large (depending on i), we know by
assumption that ebvi = 0, so there are only finitely many vectors of the form faebvi
(with b− a = λ−λi

2 ) that are nonzero. In particular, we have found a generating set of
V [λ] that contains only finitely many elements, so dimV [λ] <∞ as desired.

(c) Consider generators v1, . . . , vr of V as a g-module. Since V ∼=
⊕
V [λ], each vi has

components only along finitely many weight spaces. Let λ1, . . . , λm be the complete
list of weights such that at least one of the vi has a nontrivial component in V [λi].
Then by the previous exercise it is clear that

⊕m
i=1

⊕
n∈N V [λi − 2n] is a submodule

of V , and since by construction it contains all the generators it is in fact equal to V ,
which proves the claim.

3. Mλ, Lλ are objects in O and {Lλ
∣∣ λ ∈ C} is a complete list of the irreducible representations

in O.

Solution. All the necessary properties are trivially true by construction. That the list is
complete has been proven in class; in any case, it follows easily from the following argument.
Take any eigenvector v for h. Then for a suitable n ∈ N the vector env is a (nonzero)
eigenvector for h killed by e (this uses the hypothesis that for N � 0 we have eNv = 0); by
irreducibility, v+ := env generates V . Hence V is a highest weight representation, so it is a
quotient of the Verma module, and from here the conclusion follows immediately.

4. Every V ∈ O admits a Jordan-Hölder composition series of finite length.
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