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Abstract

We bound the index of the adelic representation of Gal
(

K/K
)

associated with a product
E1 × . . .×En of pairwise non-isogenous elliptic curves (defined over K, a number field) that
do not admit complex multiplication.

1 Introduction

In this work we prove an explicit, adelic surjectivity result for the Galois representation attached
to a product of pairwise non-isogenous, non-CM elliptic curves, extending the result of [Lom14].
Our main theorem is as follows:

Theorem 1.1. Let E1, . . . , En, n ≥ 2, be elliptic curves defined over a number field K, pairwise
not isogenous over K. Suppose that EndK(Ei) = Z for i = 1, . . . , n, and denote G∞ the image of
Gal

(
K/K

)
inside

∏

ℓ

Aut(Tℓ(E1 × · · · × En)) ⊂ GL2(Ẑ)
n.

Set γ := 9 · 1011, δ := exp exp exp(13), and let H = max {1, log[K : Q],maxi h(Ei)}, where h(Ei)
denotes the stable Faltings height of Ei. The group G∞ has index at most

δn(n−1) ·
(
[K : Q] ·H2

)γn(n−1)

in
∆ :=

{

(x1, . . . , xn) ∈ GL2(Ẑ)
n
∣
∣ detxi = detxj ∀i, j

}

.

Remark 1.2. Note that the compatibility of the Weil pairing with the action of Galois forces
G∞ to be contained in ∆. Also note that the statement we actually prove (theorem 7.5 below) is
more precise and expressed in terms of the function b0 of definition 2.4: theorem 1.1 then follows
immediately by corollary 2.6 and elementary estimates.

It should be noted that it has been known since the work of Serre and Masser-Wüstholz
(cf. [MW93], Main Theorem and Proposition 1) that the isogeny theorem (section 2 below)
implies an effective bound ℓ0 on the largest prime ℓ for which the image of the representation
Gal

(
K/K

)
→ Aut(Tℓ(E1× . . .×En)) does not contain SL2(Zℓ)

n. As it was in [Lom14], the main
difficulty here lies in controlling the image of the representation modulo powers of primes smaller
than ℓ0.

The proof of theorem 1.1 is somewhat technical, so before fiddling with the details we describe
the main ideas behind it. The general framework is the same as that of the proof of the non-
effective open image theorem for such a product (cf. for example [Rib75, Theorem 3.5]), with the
added difficulties that naturally arise when trying to actually compute the index. In particular,
when writing ‘of finite index’ or ‘open’ in the sketch that follows we tacitly imply that the index in
question is explicitly computable in terms of the data. In those instances when the need will arise
to actually quantify indices, it will be useful to work with the following ‘standard’ open subgroups:

Definition 1.3. For a prime ℓ and a positive integer s we let Bℓ(s) be the open subgroup of
SL2(Zℓ) given by

{
x ∈ SL2(Zℓ)

∣
∣ x ≡ Id (mod ℓs)

}
.
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We also set Bℓ(0) = SL2(Zℓ), and for non-negative integers k1, . . . , kn we denote Bℓ(k1, . . . , kn)
the open subgroup

∏n
j=1 Bℓ(ki) of SL2(Zℓ)

n.

Let us now describe the proof method proper.

As a first step, a short argument shows that it is enough to consider products E1×E2 involving
only two factors: this is done by proving that a subgroup of SL2(Zℓ)

n whose projection on any
pair of factors is of finite index is itself of finite (and explicitly bounded) index. This step will be
carried out in section 3 below, and should be thought of as the ‘integral’ version of [Rib76, Lemma
on p. 790].

With this result at hand we are thus reduced to dealing with subgroups G of SL2(Zℓ)×SL2(Zℓ)
whose projections on either factor are of finite index in SL2(Zℓ). Note that this latter fact is the
open image theorem for a single elliptic curve, which was proved by Serre in [Ser72] and made
explicit in [Lom14]. We wish to show that G is of (explicitly bounded) finite index in SL2(Zℓ)

2,
that is, we want to exhibit a t such that G contains Bℓ(t, t): this clearly comes down to proving

that the two kernels Ki = ker
(

G
πi→ SL2(Zℓ)

)

, when identified with subgroups of SL2(Zℓ), are of

(explicitly bounded) finite index. By symmetry, we just need to deal with K1.
In section 4 we linearize the problem by reducing it to the study of certain Zℓ-Lie algebras.

We also give the statements of two technical results whose proof, being rather lengthy, is deferred
to the companion paper [Lom15]; while the results themselves are more complicated, the methods
used to show them do not differ much from those of [Lom14], where the case of a single elliptic
curve is treated.

A simple lemma, again given in section 4, further reduces the problem of finding an integer
t such that Bℓ(t) is contained in K1 to the (easier) question of finding a t such that K1(ℓ

t), the
reduction modulo ℓt of K1, is nontrivial. We exploit here the fact that π2(G) (the projection of
G on the second factor SL2(Zℓ)) acts by conjugation on K1, the latter being a normal subgroup
of G: we prove that a group whose reduction modulo ℓt is nontrivial and that is stable under
conjugation by a finite-index subgroup of SL2(Zℓ) must itself be of finite index in SL2(Zℓ). The
simplicity of this reduction step is mainly due to the fact that we can consider Lie algebras instead
of working directly with the corresponding groups (which might be quite complicated).

Next we ask what happens if we suppose that the smallest integer t such thatK1(ℓ
t) is nontrivial

is in fact very large. The conclusion is that the Lie algebra of G looks ‘very much like’ the graph of
a Lie algebra morphism sl2(Zℓ) → sl2(Zℓ), namely it induces an actual Lie algebra morphism when
regarded modulo ℓN for a very large N (depending on t). Following for example the approach of
Ribet (cf. the theorems on p. 795 of [Rib76]), we would like to know that all such morphisms are
‘inner’, that is, they are given by conjugation by a certain matrix: it turns out that this is also
true in our context, even though the result is a little more complicated to state (cf. section 5).

In section 6 we then deal with the case of two elliptic curves, applying the aforementioned
results to deduce an open image theorem for each prime ℓ. It is then an easy matter to deduce,
in section 7, the desired adelic result for any finite product.

Notation. Throughout the whole paper, the prime 2 plays a rather special role, and special care
is needed to treat it. In order to give uniform statements that hold for every prime we put v = 0
or 1 according to whether the prime ℓ we are working with is odd or equals 2, that is we set

v = vℓ(2) =

{

0, if ℓ is odd

1, otherwise.

We will also consistently use the following notations:

• Gℓ, to denote the image of Gal
(
K/K

)
in Aut(Tℓ(A));

• G(ℓn), where G is a closed subgroup of a certain GL2(Zℓ)
k, to denote the reduction of G

modulo ℓn, that is to say its image in GL2(Z/ℓ
nZ)k;

• N(G), where G is as above, to denote the largest normal pro-ℓ subgroup of G;

• G′, to denote the topological closure of the commutator subgroup.
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2 Preliminaries on isogeny bounds

The main tool that makes all the effective estimates possible is a very explicit isogeny-type theorem
taken from [GR14]. We need some notation: we let α(g) = 210g3 and define, for any abelian variety
A/K of dimension g,

b(A/K) = b([K : Q], g, h(A)) =
(

(14g)64g
2

[K : Q] max (h(A), log[K : Q], 1)
2
)α(g)

.

Theorem 2.1. ([GR14] Théorème 1.4) Let K be a number field and A,A∗ be two Abelian K-
varieties of dimension g. If A,A∗ are isogenous over K, then there exists a K-isogeny A∗ → A
whose degree is bounded by b([K : Q], dim(A), h(A)).

Remark 2.2. As the notation suggests, the three arguments of b will always be the degree of a
number field K, the dimension g of an Abelian variety A/K and its stable Faltings height h(A).

In [Mas98] (cf. especially lemma 3.4) Masser shows the following:

Theorem 2.3. (Masser) Suppose that A/K is an Abelian variety that is isomorphic over K to
a product Ae1

1 × . . . × Aem
m , where each Ai is simple and has trivial endomorphism ring over K.

Suppose furthermore that for every A∗ isogenous to A over K we can find an isogeny A∗ → A of
degree bounded by b for a certain constant b. Then there exists an integer b0 ≤ b such that we can
always choose a K-isogeny A∗ → A of degree dividing b0.

We will denote b0(A/K) the minimal b0 with the property of the above theorem; in particular
b0(A/K) ≤ b(A/K). Consider now b0(A/K

′) as K ′ ranges through all the finite extensions of K
of degree bounded by d. On one hand, b0(A/K) divides b0(A/K

′) ([Mas98], p.190); on the other
b0(A/K

′) ≤ b(d[K : Q], h(A), dim(A)) stays bounded, and therefore the number

lcm[K′:K]≤d b0(A/K
′)

exists and is finite. We give this function a name:

Definition 2.4. Suppose A/K is a product of simple varieties with absolutely trivial endomor-
phism ring. Then we define

b0(A/K; d) = lcm[K′:K]≤d b0(A/K
′).

The function b0(A/K; d) is studied in [Mas98, Theorem D]. Adapting the argument given by
Masser to the form of the function b(d[K : Q], h(A), dim(A)) at our disposal it is immediate to
prove:

Proposition 2.5. If A/K is as in the previous definition and of dimension g, then

b0(A/K; d) ≤ 4exp(1)·(d(1+log d))2α(g)

b([K : Q], dim(A), h(A))1+2α(g) log(d(1+log d)).

In particular, for d = 2 · 482 and g = 2 we have

Corollary 2.6. If E1, E2/K are elliptic curves without potential complex multiplication, we have

b0
(
E1 × E2/K; 2 · 482

)
≤ exp exp exp(12.5) ·

(
[K : Q] ·H2

)1.5·109

,

where H = max {1, log[K : Q], h(E1), h(E2)}.
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3 An integral Goursat-Ribet lemma for SL2(Zℓ)

As anticipated, we show that a (necessary and) sufficient condition for a subgroup of SL2(Zℓ)
n

to be open is that all its projections on pairs of factors SL2(Zℓ)
2 are themselves open. This will

follow rather easily from the following elementary lemma (whose easy verification we omit):

Lemma 3.1. Let s1, s2 be non-negative integers. The commutator group [Bℓ(s1),Bℓ(s2)] contains
Bℓ(s1 + s2 + 2v), and the iterated commutator [· · · [

︸︷︷︸

(n−1) times

Bℓ(s1),Bℓ(s2) ],Bℓ(s3)], · · · ,Bℓ(sn)]

contains Bℓ(s1 + · · ·+ sn + 2(n− 1)v).

Lemma 3.2. Let n be a positive integer, G a closed subgroup of
∏n

i=1 SL2(Zℓ), and πi the pro-
jection from G on the i-th factor SL2(Zℓ). Suppose that, for every i 6= j, the group (πi × πj) (G)
contains Bℓ(sij , sij) for a certain sij: then G contains

n∏

i=1

Bℓ




∑

j 6=i

sij + (n− 2)v



 .

Proof. Clearly by the symmetry of the problem it is enough to show that G contains

{Id} × · · · × {Id} × Bℓ




∑

j 6=n

snj + (n− 2)v



 .

Thanks to the above lemma, for any g in Bℓ

(
∑

j 6=n sij + (n− 2)v
)

there exist elements

yi in Bℓ(sin) (for i = 1, . . . , n − 1) such that g can be written as the iterated commutator
[· · · [[y1, y2], y3], · · · , yn−1]. By hypothesis we can find x1, . . . , xn−1 ∈ G such that πi(xi) = Id
and πn(xi) = yi for all i between 1 and n− 1. Consider now the iterated commutator

g̃ = [· · · [[x1, x2], x3], · · · , xn−1] :

this is a product of elements of G, and therefore it is itself an element of G. For i ≤ n − 1, the
i-th component of g̃ is trivial, since

πi(g̃) = [· · · [· · · [[πi(x1), πi(x2)], πi(x3)], · · · , πi(xi)
︸ ︷︷ ︸

Id

], · · · , πi(xn−1)]

On the other hand, our choice of y1, . . . , yn−1 ensures that

πn(g̃) = [· · · [[y1, y2] , y3] , · · · , yn−1] = g.

We have thus shown that (1, 1, . . . , 1, g) = g̃ is an element of G for any choice of g in

Bℓ

(
∑

j 6=n sij + (n− 2)v
)

, and repeating the argument for the other projections gives the required

result.

Corollary 3.3. Let G be a closed subgroup of
∏n

i=1 SL2(Ẑ). Suppose that for every pair of indices

i 6= j we can find a group S(i,j) ⊆ SL2(Ẑ)
2 with the following properties:

• the projection of G on the direct factor SL2(Ẑ)×SL2(Ẑ) corresponding to the pair of indices
(i, j) contains S(i,j);

• S(i,j) decomposes as a direct product
∏

ℓ S
(i,j)
ℓ ;

• for almost every ℓ, the group S
(i,j)
ℓ is all of SL2(Zℓ)× SL2(Zℓ);
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• for every prime ℓ such that S
(i,j)
ℓ 6= SL2(Zℓ)×SL2(Zℓ) there exists an integer f

(i,j)
ℓ such that

S
(i,j)
ℓ = Bℓ(f

(i,j)
ℓ , f

(i,j)
ℓ ).

Denote c(i,j) the index of S(i,j) in SL2(Ẑ) × SL2(Ẑ) and c = max
i6=j

c(i,j). The index of G in
∏n

i=1 SL2(Ẑ) is strictly less than

212n(n−2)ζ(2)2cn(n−1)/2.

Proof. Let ℓ be an odd prime. If S
(i,j)
ℓ = SL2(Zℓ)

2 for all (i, j), then the previous lemma applies
with s = 0 and shows that

∏n
k=1 SL2(Zℓ) is contained in G.

Suppose on the other hand that either ℓ = 2 or for at least one pair (i, j) we have S
(i,j)
ℓ 6=

SL2(Zℓ)× SL2(Zℓ), and set fℓ = max
i6=j

f
(i,j)
ℓ . The previous lemma tells us that the projection of G

on the direct factor
∏n

i=1 SL2(Zℓ) of
∏n

i=1 SL2(Ẑ) contains

Bℓ




∑

j 6=1

f
(j,1)
ℓ + 2(n− 2)v, . . . ,

∑

j 6=n

f
(j,n)
ℓ + 2(n− 2)v



 .

Note that the index of this group in
∏n

i=1 SL2(Zℓ) is at most

n∏

j=1

(

ℓ3
∑

j 6=i f
(j,i)
ℓ

+12(n−2)v
)

= 212(n−2)v
n∏

j=1

∏

i6=j

ℓ3f
(j,i)
ℓ .

Let now P = {2} ∪
{

ℓ
∣
∣ ℓ 6= 2, ∃(i, j) : S

(i,j)
ℓ 6= SL2(Zℓ)× SL2(Zℓ)

}

. By what we have just
seen,

[
n∏

k=1

SL2(Ẑ) : G

]

≤ 212n(n−2)
∏

ℓ∈P

n∏

j=1

∏

i6=j

ℓ3f
(j,i)
ℓ .

On the other hand, note that the index of S
(i,j)
ℓ in SL2(Zℓ)×SL2(Zℓ) is at least ℓ

6f
(i,j)
ℓ ·

(
ℓ2−1
ℓ2

)2

(and this is true even if f
(i,j)
ℓ = 0), so the above product is bounded by

212n(n−2)
∏

ℓ∈P

∏

i<j

{[

SL2(Zℓ)
2 : S

(i,j)
ℓ

]

·

(
ℓ2

ℓ2 − 1

)2
}

≤ 212n(n−2)
∏

ℓ

(
ℓ2

ℓ2 − 1

)2

·
∏

i<j

∏

ℓ∈P

[

SL2(Zℓ)
2 : S

(i,j)
ℓ

]

≤ 212n(n−2)ζ(2)2
∏

i<j

c(i,j)

≤ 212n(n−2)ζ(2)2cn(n−1)/2.

4 Lie subalgebras of sl2(Zℓ)
n and some Pink-type results

Let us briefly recall the construction (essentially due to Pink) of the Zℓ-Lie algebra associated
with a subgroup of GL2(Zℓ)

n:

Definition 4.1. (cf. [Pin93]) Let ℓ be a prime. Define maps Θn as follows:

Θn : GL2(Zℓ)
n →

⊕n
i=1 sl2(Zℓ)

(g1, . . . , gn) 7→
(
g1 −

1
2 tr(g1), . . . , gn − 1

2 tr(gn)
)
.

If G is a closed subgroup of GL2(Zℓ)
n (resp. of B2(2, . . . , 2) in case ℓ = 2), define L(G) ⊆

sl2(Zℓ)
n as the Zℓ-span of Θn(G). We call L(G) the Lie algebra of G.
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The crucial importance of this construction lies in the fact that it allows us to linearize the
problem of showing that a certain subgroup of GL2(Zℓ)

n contains an open neighbourhood of the
identity. Indeed, we have the following two results, for whose proof we refer the reader to [Lom15].

Theorem 4.2. Let ℓ > 2 be a prime number and G be a closed subgroup of GL2(Zℓ)×GL2(Zℓ).
Let G1, G2 be the two projections of G on the two factors GL2(Zℓ), and let n1, n2 be integers such
that Gi contains Bℓ(ni) for i = 1, 2. Suppose furthermore that for every (g1, g2) ∈ G we have
det(g1) = det(g2). At least one of the following holds:

• G contains Bℓ(4n1 + 16n2, 8n2)

• there exists a subgroup T of G, of index dividing 2 · 482, with the following properties:

– if L(T ) contains ℓksl2(Zℓ)⊕ ℓksl2(Zℓ) for a certain integer k, then T contains Bℓ(p, p),
where

p = 2k +max {2k, 8n1, 8n2} .

We call this property (∗).

– for any (t1, t2) in T , if both [t1] and [t2] are diagonal, then they are equal.

Theorem 4.3. Let G be a closed subgroup of GL2(Z2) × GL2(Z2) whose projection modulo 4
is trivial. Denote G1, G2 the two projections of G on the factors GL2(Z2), and let n1, n2 be
integers such that Gi contains B2(ni). Suppose furthermore that for every (g1, g2) ∈ G we have
det(g1) = det(g2).

If L(G) contains 2ksl2(Z2)⊕ 2ksl2(Z2) for a certain k ≥ 2, then G contains

B2(12(k + 13n2 + 5n1 + 6), 12(k + 13n1 + 5n2 + 6)).

Finally, the following easy lemma characterizes conjugation-stable subalgebras of sl2(Zℓ):

Lemma 4.4. ([Lom15, Lemma 2.1]) Let ℓ be a prime number, t a non-negative integer, and
W ⊆ sl2(Zℓ) a Lie subalgebra that does not reduce to zero modulo ℓt and that is stable under
conjugation by Bℓ(s), where s ≥ 0 is at least 2 if ℓ = 2 and at least 1 if ℓ = 3 or 5 (no conditions
are necessary if ℓ ≥ 7). The open set ℓt+4s+4v

sl2(Zℓ) is contained in W .

5 The automorphisms of sl2(Zℓ) are inner

We will obtain in this section a description of the automorphisms of sl2(Zℓ) showing that they are
all inner, in a suitable sense. In order to establish the required result we first need a few simple
preliminaries, starting with the following well-known version of Hensel’s lemma:

Lemma 5.1. Let p(x) ∈ Zℓ[x] and α ∈ Zℓ. Suppose that vℓ(p(α)) > 2vℓ(p
′(α)): then p(x) admits

a root ᾱ such that vℓ(α− ᾱ) ≥ vℓ(p(α))− vℓ(p
′(α)).

The main tool we will use to produce approximate solutions to polynomials is the following
simple lemma:

Lemma 5.2. Let ℓ be a prime number, n ≥ 1,m ≥ 1, g ∈ End (Zm
ℓ ) and pg(t) the characteristic

polynomial of g. Let furthermore λ ∈ Z/ℓnZ, w ∈ (Z/ℓnZ)
m

be such that gw ≡ λw (mod ℓn). Sup-
pose that at least one of the coordinates of w has valuation at most α: then pg(λ) ≡ 0 (mod ℓn−α).

Proof. Denote (g− λ Id)∗ the adjugate matrix of (g− λ Id), that is the unique operator such that
(g − λ Id)∗(g − λ Id) = det(g − λ Id) · Id. Multiplying (g − λ Id)w ≡ 0 (mod ℓn) on the left by
(g− λ Id)∗ we obtain det(g− λ Id) · Idw ≡ 0 (mod ℓn), and by considering the coordinate of w of
smallest valuation we have pg(λ) = det(g − λ Id) ≡ 0 (mod ℓn−α) as claimed.

An immediate computation also shows:
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Lemma 5.3. Let g ∈ sl2 (Zℓ). The linear operator Cg := [g, ·] from sl2 (Zℓ) to itself has eigenvalues
0,±2µ, where ±µ are the eigenvalues of g, so pCg

(t) = t(t2 − 4µ2).

Let us also recast Hensel’s lemma into a form that is very useful for our purposes:

Lemma 5.4. Let g be an element of sl2 (Zℓ), w a vector in Z2
ℓ and let β be the minimal valuation

of the coefficients of w. Let furthermore ±µ be the eigenvalues of g, and suppose gw ≡ λw
(mod ℓn). Then either g has an eigenvalue ν such that vℓ(ν − λ) ≥ vℓ(λ) + 3 or else β is at least
n− 2(2 + vℓ(λ)).

Proof. From lemma 5.2 we deduce that vℓ(pg(λ)) ≥ n− β; notice further that pg(t) = t2 − µ2, so
p′g(t) = 2t. Suppose that β < n − 2(2 + vℓ(λ)): then n − β > 2(2 + vℓ(λ)) > 2vℓ(p

′
g(λ)), and by

Hensel’s lemma pg(t) has a root ν such that vℓ(ν − λ) ≥ n− β − v − vℓ(λ) ≥ vℓ(λ) + 3.

We now come to the central result of this section, which as anticipated is essentially a descrip-
tion of the Lie algebra automorphisms of (the finite quotients of) sl2(Zℓ).

Notation. For the remainder of this section, in order to make notation lighter, when a is a
positive integer we write x = y +O(a) for x ≡ y (mod ℓa).

Proposition 5.5. Let L1 be a subalgebra of sl2(Zℓ) and n ≥ 1, s ≥ 0 be integers. Suppose that L1

contains ℓssl2(Zℓ) and that ϕ : L1 → sl2(Zℓ) is a linear map such that

(∗) [ϕ(a), ϕ(b)] ≡ ϕ([a, b]) (mod ℓn) ∀a, b ∈ ℓssl2(Zℓ).

Denote

x = ϕ

(

ℓs ·

(
0 1
0 0

))

, y = ϕ

(

ℓs ·

(
0 0
1 0

))

, h = ϕ

(

ℓs ·

(
1 0
0 −1

))

and let α be the minimal integer such that x, y are both nonzero modulo ℓα+1.
There exists a matrix M ∈ M2 (Zℓ) at least one of whose coefficients is nonzero modulo ℓ and

such that for every w ∈ (Zℓ)
2
and every g1 ∈ L1 we have

M(g1 · w) ≡ ϕ(g1) ·M(w) (mod ℓn−α−6s−4v−6). (1)

Furthermore, det(M) does not vanish modulo ℓ4s+v, and for every g1 in L1 we have

tr
(
ϕ(g1)

2
)
= tr

(
g21
)

(mod ℓn−α−10s−5v−6)

and

ϕ(g1) ≡ Mg1M
−1 (mod ℓn−α−10s−5v−6), M−1ϕ(g1)M ≡ g1 (mod ℓn−α−10s−5v−6)

Remark 5.6. The reader might wonder whether it is really necessary for all the three parameters
n, α and s to appear in equation (1). The answer is yes. This is apparent for n, if the result is
to say something nontrivial about ϕ. Consider next the limiting case where ϕ ≡ 0 (i.e. α goes to
∞): this map satisfies the hypotheses in the proposition for every n, but it is easy to realize that
(independently of n) the equality

M(g1 · w) ≡ ϕ(g1) ·M(w) = 0 (mod ℓN )

can only hold for bounded N ; of course a similar conclusion holds if α stays finite, but is very
large. Finally, choose an n and any linear map ϕ and suppose s is sent to infinity. For s large
enough, the condition in the proposition will become void, since both sides of the equality will
automatically be 0 modulo ℓn: but then we cannot hope to deduce anything meaningful about ϕ,
so that s, too, has to appear in the conclusion.

The question of whether the dependence on the parameters is optimal, on the other hand, is
far more complicated, and there is almost certainly room for improvement.
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Here again let us say a few words about the method of proof before starting with the technical
details. To simplify matters, consider the algebra L = sl2(Qℓ). Proving that every automorphism
of L is inner basically boils down to showing that the only 2-dimensional representation of sl2(Qℓ)
is the standard one, a result which is usually proved through the ‘highest weight vector’ machinery:
one shows that it is possible to choose an eigenvector v for h that is killed by x, and then describes
its full orbit under the action of x, y, h. More precisely, one shows that yv is an eigenvector for h,
that xyv is proportional to v, and that y2h = 0.

The proof that follows mimics this very argument by producing a vector v+, by definition an
eigenvector for h, which plays the role of the highest weight vector, and subsequently finding its
orbit under the action of h, x, y. The main complication lies probably in the initial step, where
we need to prove that the eigenvalues of h lie in Zℓ and are of a certain shape. Once this is done,
most of the proof looks very much like the one for sl2(Qℓ), with the only added complication that
we have to keep track of valuations along the way.

Proof. Denote Ch the linear operator given by taking the commutator with h. It is clear that

Ch(x) = [h, x] ≡ ϕ

[

ℓs ·

(
1 0
0 −1

)

, ℓs ·

(
0 1
0 0

)]

≡ ϕ

(

2ℓs · ℓs ·

(
0 1
0 0

))

≡ 2ℓsx (mod ℓn),

so x is an (approximate) eigenvector of Ch associated with the (approximate) eigenvalue 2ℓs.
Lemma 5.2 yields

pCh
(2ℓs) ≡ 0 (mod ℓn−α).

If we let {0,±µ} denote the eigenvalues of h, then p′Ch
(t) = (t2 − 4µ2) + 2t2, and evaluating at

2ℓs we find

p′Ch
(2ℓs) = 4(ℓ2s − µ2) + 8ℓ2s =

pCh
(2ℓs)

2ℓs
+ 8ℓ2s.

To estimate the ℓ-adic valuation of this last expression simply observe that

vℓ

(
pCh

(2ℓs)

2ℓs

)

= vℓ (pCh
(2ℓs))− vℓ(2)− s ≥ n− α− v − s > 3v + 2s,

so vℓ
(
p′Ch

(2ℓs)
)
= vℓ

(
8ℓ2s

)
= 3v + 2s. By Hensel’s lemma (lemma 5.1), pCh

(t) admits a root
λ ∈ Zℓ such that

vℓ(λ− 2ℓs) > vℓ(pCh
(2ℓs))− vℓ(p

′
Ch
(2ℓs)) ≥ n− α− 2s− 3v ≥ 2s+ 1.

Note that λ cannot be zero, because clearly vℓ(0−2ℓs) = v+s is strictly smaller than vℓ(λ−2ℓs).
It follows that λ is one of the other two roots of pCh

(t), namely ±2µ, and hence λ2 = 4µ2. This
gives us a way to estimate µ2: indeed we have 4µ2 = λ2 = (2ℓs +O(n− α− 2s− 3v))2, whence

4µ2 = 4ℓ2s+O(n−α−s−v) ⇒ µ2 = ℓ2s(1+O(n−α−3s−3v)) ⇒ ±µ = ±ℓs(1+O(n−α−3s−4v)).

To sum up, the two eigenvalues of h belong to Zℓ and are of the form ±ℓs+O(n−α− 2s− 4v)
(and in particular of the form ±ℓs+O(s+4)). Let µ+ be the one of the form ℓs+O(n−α−2s−4v)
and v+ ∈ Z2

ℓ a corresponding eigenvector, normalized in such a way that at least one of the two
coordinates is an ℓ-adic unit. Set furthermore v− = yv+.

As anticipated, our next objective is to describe the action of x, y, h on v±. We expect v+ to
be annihilated by x and v− to be an eigenvector for h that is annihilated by y: of course this is
not going to be exactly true at all orders, but only up to a certain error term that depends on n,
α and s.

Let β be the minimal valuation of the coordinates of xv+: this is a number we want to
show to be large. The idea is that if xv+ were not very close to zero, then it would be an
eigenvector of h associated with an eigenvalue that h does not possess. Note that h(xv+) ≡
[h, x]v+ + xhv+ ≡ (2ℓs + µ+)xv+ (mod ℓn), so by lemma 5.4 either h has an eigenvalue ξ such
that vℓ(ξ − (µ+ + 2ℓs)) ≥ 3 + vℓ(µ+ + 2ℓs) ≥ s+ 3 or β ≥ n− 2(2 + vℓ(µ+ + 2ℓs)).
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Note now that we cannot be in the first case: indeed h would have an eigenvalue of the
form 3ℓs + O(s + 3), but we have already seen that the eigenvalues of h are ±ℓs + O(s + 4),
contradiction. Hence we are in the second situation, and furthermore vℓ(µ+ +2ℓs) ≤ s+1: hence
β ≥ n−2(2+vℓ(µ++2ℓs)) ≥ n−2s−6, and by definition of β this means xv+ ≡ 0 (mod ℓn−2(s+3)).

Next we compute
hv− = hyv+

= [h, y]v+ + yhv+

= −2ℓs · yv+ + y(µ+v+) +O(n)

= (µ+ − 2ℓs)v− +O(n)

= (−ℓs +O(n− α− 2s− 4v))v−

= −ℓsv− +O(n− α− 2s− 4v),

(2)

xv− = xyv+

= [x, y]v+ + yxv+

= ℓshv+ +O(n− 2(s+ 3))

= ℓsµ+v+ +O(n− 2(s+ 3))

= ℓs (ℓs +O(n− α− 2s− 4v)) v+ +O(n− 2(s+ 3))

= ℓ2sv+ +O(n− α− 2(s+ 3));

(3)

this settles the question of the action of h and x on v−. We are left with showing that v− is
(approximately) killed by y:

h · yv− = [h, y]v− + yhv−

= −2ℓs · yv− + y ((−ℓs) +O(n− α− 2s− 4v)) v−

= −3ℓsyv− +O(n− α− 2s− 4v),

so that yv− is an (approximate) eigenvector of h, associated with the (approximate) eigenvalue
−3ℓs. Let γ be minimal among the valuations of the coefficients of yv−. Apply lemma 5.4: either
γ ≥ n− α − 2s− 4v − 2(2 + vℓ(−3ℓs)) ≥ n− α − 4s− 4v − 6 or h has an eigenvalue ν satisfying
vℓ(ν+3ℓs) ≥ vℓ(−3ℓs)+3 ≥ s+3. This second possibility contradicts what we have already proven
on the eigenvalues of h, hence γ ≥ n−α−4s−4v−6, that is to say yv− = O(n−α−4s−4v−6).

Putting it all together, we have proved that up to an error of order ℓn−α−4s−4v−6 we have

xv+ = 0, yv+ = v−, hv+ = ℓsv+, xv− = ℓ2sv+, yv− = 0, hv− = −ℓsv−.

Write x (resp. y, h) for ℓs
(
0 1
0 0

)

(resp. ℓs
(
0 0
1 0

)

, ℓs
(
1 0
0 −1

)

) and consider the matrix

M̃ =
(
ℓsv+

∣
∣ v−

)
. The above relations may be stated more compactly as

M̃x = xM̃, M̃y = yM̃, M̃h = hM̃ (4)

modulo ℓn−α−4s−4v−6. Let δ be minimal among the valuations of the coefficients of M̃ : by
construction, at least one of the coordinates of v+ is an ℓ-adic unit, so δ ≤ s. Set M = ℓ−δM̃ .
Dividing equations (4) by ℓδ we see that M satisfies analogous equations up to error terms of order
n− α− 5s− 4v − 6. By construction, at least one of the coefficients of M is an ℓ-adic unit.

Let now g be any element of L1. The matrix ℓsg belongs to ℓssl2(Zℓ), so it is a linear combi-
nation of x, y, h with coefficients in Zℓ. Write ℓsg = λ1x+ λ2y + λ3h. We have

ℓsMg = M(ℓsg)

= M(λ1x+ λ2y + λ3h)

= (λ1x+ λ2y + λ3h)M +O(n− α− 5s− 4v − 6)

= ϕ(ℓsg)M +O(n− α− 5s− 4v − 6)

= ℓsϕ(g)M +O(n− α− 5s− 4v − 6),
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so that dividing by ℓs both sides we deduce Mg = ϕ(g)M + O(n − α − 6s − 4v − 6) for every
g ∈ L1. This proves the first statement in the proposition.

Let us now turn to the statement about the determinant. We can assume that v+ is normalized

so that v+ =

(
1
c

)

. We also write v− =

(
b
d

)

. It is clear that vℓ(detM) ≤ vℓ(det M̃), and that

det M̃ = ℓs det

(
1 b
c d

)

, so let us work with this last matrix. Write D for vℓ

(

det

(
1 b
c d

))

, and

suppose by contradiction D > 3s + v. By definition of the determinant we have d = bc + O(D).
This implies

v− =

(
b
d

)

=

(
b

bc+O(D)

)

= bv+ +O(D).

Applying h to both sides of this equality and using equation (3) we get

µ−v− +O(n− α− 2s− 4v) = hv− = h(bv+ +O(D)) = bµ+v+ +O(D).

Comparing the first coordinate of these vectors we deduce

bµ− = bµ+ +O(min {D,n− α− 2s− 4v}),

hence
µ− = µ+ +O(min {D − vℓ(b), n− α− 2s− 4v − vℓ(b)}). (5)

Note now that since d = bc + O(D) we have vℓ(d) ≥ min {vℓ(b), D}. Moreover, we see by
equation (3) that xv− = ℓ2sv+ + O(n − α − 2(s + 3)), and since the right hand side does not

vanish modulo ℓ2s+1 (since n − α − 2(s + 3) > 2s + 1 and ℓ2sv+ =

(
ℓ2s

ℓ2sc

)

) we deduce that

min {vℓ(b), vℓ(d)} ≤ 2s. Let us show that we also have vℓ(b) ≤ 2s. Suppose that vℓ(b) ≥ 2s + 1:
then

vℓ(d) ≥ min {vℓ(b), D} ≥ min {2s+ 1, 3s+ v} ≥ 2s+ 1,

which implies min {vℓ(b), vℓ(d)} ≥ 2s+1 and contradicts what we just proved. Therefore vℓ(b) ≤ 2s
and µ− = µ++O (D − 2s) by equation (5). On the other hand, we know that µ± = ±ℓs+O(s+4),
so the above equation implies 2ℓs+O(s+4) = O(D−2s). Hence we have proved vℓ(2ℓ

s) ≥ D−2s,
i.e. D ≤ 3s + v, a contradiction. It follows, as claimed, that vℓ(detM) ≤ vℓ(det M̃) = s + D ≤
4s+ v.

Next we prove the statement about traces. Let g be any element of L1. Setting, for the sake of
simplicity, N = n−α− 6s− 4v− 6, we have Mg = ϕ(g)M +O(N), so (multiplying on the left by
the adjoint M∗ of M) we deduce det(M)g = M∗ϕ(g)M +O(N). Didiving through by det(M) we
have g = M−1ϕ(g)M+O(N−(4s+v)); note that this equality would a priori only hold in sl2(Qℓ),
but since both g and the error term are ℓ-integral we necessarily also have M−1ϕ(g)M ∈ sl2(Zℓ).

Squaring and taking traces then yields tr
(
g2
)
= tr

[(
M−1ϕ(g)M

)2
]

+O(N − (4s+ v)), i.e.

tr
(
g2
)
= tr

(
ϕ(g)2

)
+O(N − (4s+ v))

as claimed. Finally, essentially the same argument shows the last two statements: we can multiply
the congruence Mg1 ≡ ϕ(g1)M (mod ℓN ) on the right (resp. left) by M∗ and divide by detM to
get

Mg1M
−1 ≡ ϕ(g1) (mod ℓN−4s−v), g1 ≡ M−1ϕ(g1)M (mod ℓN−4s−v).
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6 Products of two curves

Let E1, E2 be two elliptic curves over K and ℓ a rational prime. To study the Galois representation
attached to E1 × E2 we are going to pass to a suitable extension of K over which the study of
the Lie algebra of Gℓ is sufficient to yield information on Gℓ itself. Before doing this, however, we
need to dispense with some necessary preliminaries. Let Gℓ,1, Gℓ,2 be the two projections of Gℓ

onto the two factors GL2(Zℓ), and m1,m2 be integers such that Bℓ(mi) is contained in Gℓ,1.
Suppose for the moment that ℓ is odd. We want to apply theorem 4.2, so for the whole section

(up until the very last proposition) we make the following

Assumption. If ℓ is odd, Gℓ does not contain Bℓ (4m1 + 16m2, 8m2).

Under this assumption, we define Kℓ to be the extension of K associated with the following
closed subgroups of Gℓ: {

ker
(
G2 → GL2(Z/8Z)

2
)
, if ℓ = 2

Hℓ, if ℓ 6= 2,

where Hℓ is the group given by an application of theorem 4.2 under our assumption. Note that
the degree [K2 : K] is at most 32214, that is to say the order of

{
(x, y) ∈ GL2(Z/8Z)

2
∣
∣ detx = det y

}
,

whereas [Kℓ : K] is uniformly bounded by 2 · 482 for ℓ 6= 2. Note that Hℓ is by construction the
image of Gal

(
Kℓ/Kℓ

)
in AutTℓ(E1 × E2); we write Hℓ,1, Hℓ,2 for its two projections on the two

factors GL2(Zℓ). Furthermore, we let n1, n2 be integers such that Hℓ,1, Hℓ,2 respectively contain
Bℓ(n1),Bℓ(n2).

Remark 6.1. Note that if m1,m2 > 0 we can in fact take n1 = m1, n2 = m2 unless ℓ ≤ 3: indeed
for primes ℓ ≥ 5 the index of Hℓ in Gℓ is not divisible by ℓ, so for any positive value of n the
(pro-ℓ) group Bℓ(n) is contained in Hℓ if and only if it is contained in Gℓ.

Let L ⊆ sl2(Zℓ)
⊕2 (resp. L1, L2 ⊆ sl2(Zℓ)) be the Lie algebra of Hℓ (resp. Hℓ,1, Hℓ,2). Choose

a basis of L of the form (a1, b1), (a2, b2), (a3, b3), (0, y1), (0, y2), (0, y3). Such a basis clearly exists.
Since by our assumption Hℓ,1 ⊇ Bℓ(n1) we have L1 ⊇ ℓn1sl2(Zℓ).

Also note that (0, y1), (0, y2), (0, y3) span a Lie-subalgebra: indeed [(0, yi), (0, yj)] = (0, [yi, yj ])
must be a linear combination with Zℓ coefficients of the basis elements; however, since a1, a2, a3
are linearly independent over Zℓ, we deduce that this commutator is a linear combination of
(0, y1), (0, y2), (0, y3), so that these three elements do indeed span a Lie algebra, which we call L3.
Note that L3 can equivalently be described as the kernel of the projection from L ⊆ sl2(Zℓ)⊕sl2(Zℓ)
to the first copy of sl2(Zℓ).

Lemma 6.2. L3 is stable under conjugation by Bℓ(n2).

Proof. Take any element l ∈ L3: it is the limit of a certain sequence ln =
∑k

i=1 λn,iΘ(gn,i) for
certain gn,i ∈ Hℓ. For any g ∈ Bℓ(n2) there exists a certain h ∈ Hℓ,1 such that (h, g) is in Hℓ. We
have

(h, g)−1ln(h, g) =

k∑

i=1

λn,i(h, g)
−1Θ(gn,i)(h, g) =

k∑

i=1

λn,i(h, g)
−1

(

gi −
tr(gn,i)

2
Id

)

(h, g)

=

k∑

i=1

λn,i

(

(h, g)−1gn,i(h, g)−
tr((h, g)−1gn,i(h, g))

2
Id

)

=

k∑

i=1

λn,iΘ((h, g)−1gn,i(h, g)) ∈ 〈Θ(Hℓ)〉,
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so the sequence
(
(h, g)−1ln(h, g)

)

n≥0
is in L, and by continuity of conjugation tends to the element

(h, g)−1l(h, g) of L. Now if we write l = (l(1), l(2)) = (0, l(2)) we have

(h, g)−1l(h, g) = (h, g)−1(0, l(2))(h, g) = (0, g−1l(2)g) ∈ L,

and since L3 is exactly the sub-algebra given by the elements whose first coordinate vanishes the
claim is proved.

Lemma 6.3. Fix an integer t, and suppose that at least one among y1, y2, y3 is not zero modulo
ℓt: then L3 contains ℓt+4n2+4v

sl2(Zℓ).

Proof. Apply lemma 4.4 with s = n2.

Our task is therefore to bound the values of t for which the yi’s all vanish modulo ℓt. If
this is the case, then none of b1, b2, b3 can be zero modulo ℓt, for otherwise L2 could not contain
ℓn2sl2(Zℓ). Even more, the bi’s must generate ℓn2sl2(Zℓ).

Denote ϕ : L1 → L2 the only Zℓ-linear map sending ai to bi for i = 1, 2, 3. For two indices j, k

write [aj , ak] =
∑3

i=1 µ
(j,k)
i ai. There exist scalars ν

(j,k)
i such that

[(aj , bj), (ak, bk)] =

3∑

i=1

µ
(j,k)
i (ai, bi) +

3∑

i=1

ν
(j,k)
i (0, yi),

and reducing the second coordinate of this equation modulo ℓt gives

[ϕ(aj), ϕ(ak)] = [bj , bk] =

3∑

i=1

µ
(j,k)
i bi

=
3∑

i=1

µ
(j,k)
i ϕ(ai)

= ϕ

(
3∑

i=1

µ
(j,k)
i ai

)

= ϕ ([aj , ak]) (mod ℓt).

We want to apply proposition 5.5 to ϕ. I claim that, in the notation of that proposition, we
can take α ≤ n2 + n1. Notice that up to a change of basis we can assume a3 to be of the form
(
0 ℓu

0 0

)

with u ≤ n1 (this follows from the description of triangular basis for free modules). In

this case, ϕ(ℓn1

(
0 1
0 0

)

) = ℓn1−uϕ(a3) = ℓn1−ub3, and since b3 does not vanish modulo ℓn2 we

see that ϕ

((
0 ℓn1

0 0

))

does not vanish modulo ℓn1+n2 . As the property of not vanishing modulo

ℓn1+n2 is invariant under change of basis, this does not depend on our initial choice of basis. The

same argument applies to the image of ℓn1

(
0 0
1 0

)

. Also note that by construction of ϕ and by

our assumption on t we have

(l1, l2) ∈ L(Hℓ) ⇒ l2 ≡ ϕ(l1) (mod ℓt).

Set T = t − 11n1 − n2 − 5v − 6. We obtain from proposition 5.5 a matrix M ∈ M2(Zℓ) with
the following properties:

• tr l21 ≡ tr(ϕ(l1)
2) ≡ tr l22 (mod ℓT ) ∀(l1, l2) ∈ L(Hℓ);

• l2 ≡ M · l1 ·M
−1 (mod ℓT ) ∀(l1, l2) ∈ L(Hℓ);
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• Θ1(l2) ≡ MΘ1(l1)M
−1 (mod ℓT ) ∀(l1, l2) ∈ L(Hℓ).

Take any element (g1, g2) ∈ Hℓ. By our choice of Kℓ, we know that the determinant of g1 is a
square in Zℓ, so we can choose a square root of det g1 and write

(g1, g2) =
√

det g1(g
′
1, g

′
2)

for a certain (g′1, g
′
2) ∈ SL2(Zℓ). The image (l1, l2) of (g′1, g

′
2) via Θ2 differs from Θ2(g1, g2) by a

scalar multiple, so it lies again in L(Hℓ). By definition, there exists a pair (λ1, λ2) ∈ Z2
ℓ such that

(g′1, g
′
2) = (λ1, λ2) · Id+ (l1, l2) , (6)

and we wish to show that λ1 is congruent to λ2 modulo a large power of ℓ. We begin by discussing
the case of odd ℓ. Squaring equation (6) we obtain

(

(g′1)
2
, (g′2)

2
)

= (λ2
1 · Id+l21 + 2λ1l1, λ

2
2 · Id+l22 + 2λ2l2).

Now the left hand side is simply
1

det g1

(
g21 , g

2
2

)
, an element of Hℓ up to scalar multiples. The

image of this matrix through Θ2 is then an element of L(Hℓ), so applying Θ2 to the right hand
side of the previous equation we get

(
Θ1(l

2
1) + 2λ1l1,Θ1(l

2
2) + 2λ2l2

)
∈ L(Hℓ), (7)

which implies
Θ1(l

2
2) + 2λ2l2 = M

(
Θ1(l

2
1) + 2λ1l1

)
M−1

and, by difference,
2λ1l2 ≡ M (2λ1l1)M

−1 ≡ 2λ2l2 (mod ℓT ).

If l2 has at least one coordinate not divisible by ℓ, this last equation implies λ1 ≡ λ2 (mod ℓT ).
If not, then g′2 reduces modulo ℓ to a diagonal matrix (cf. equation (6)). Moreover, as det(g′2) = 1,
we have in particular

1 = det(λ2 + l2) = λ2
2 −

tr
(
l22
)

2
,

from which we find

λ2 = ±

√

1 +
tr(l22)

2
,

where the series converges since l2 is trivial modulo ℓ. Simmetrically we prove that either the
congruence λ1 ≡ λ2 (mod ℓT ) holds or else l1 is trivial modulo ℓ and

λ1 = ±

√

1 +
tr(l21)

2
.

Suppose then l1, l2 to be both trivial modulo ℓ. As tr
(
l21
)
≡ tr

(
l22
)

(mod ℓT ), it follows that
λ1 and λ2 are congruent modulo ℓT as soon as λ1 and λ2 have the same reduction modulo ℓ. But
g′1, g

′
2 reduce to diagonal matrices diag (λi, λi) in SL2(Fℓ), so λ1 ≡ λ2 (mod ℓT ) if and only if g′1, g

′
2

have the same reduction, and this is exactly one of the properties of Tℓ given by theorem 4.2.
If, on the other hand, ℓ = 2, then l1, l2 vanish modulo 8 by construction and the same argument

as above shows that

λi = ±

√

1 +
tr(l2i )

2
, i = 1, 2. (8)

Given that 2λi = tr (g′i) ≡ 2 (mod 8) (by our construction of Kℓ and consequently of Hℓ), it
follows that λ1,2 ≡ 1 (mod 4), so the sign in equation (8) must be a plus and λ1 ≡ λ2 (mod 2T−1).

Using this information in equation (6) we have thus proved
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Lemma 6.4. There exists a matrix M ∈ M2(Zℓ) such that, for every element (g1, g2) ∈ Hℓ, the
congruence g2 ≡ Mg1M

−1 (mod ℓT−v) holds.

Set now H := T − v and choose any w ∈ E1[ℓ
H ]: as ℓHw = 0, for every (g1, g2) ∈ Hℓ we have

Mg1w = Mg1M
−1Mw = (g2M +O(ℓH))w = g2Mw,

so the subgroup
Γ =

{
(w,Mw) ∈ E1[ℓ

H ]× E2[ℓ
H ]|w ∈ E1[ℓ

H ]
}

is defined over Kℓ: indeed for any (g1, g2) ∈ Hℓ we have

(g1, g2) · (w,Mw) = (g1w, g2Mw) = (g1w,Mg1w).

Thus the abelian variety A∗ = E1 ×E2/Γ is defined over Kℓ, and we have an isogeny A → A∗

of degree |E1[ℓ
H ]| = ℓ2H ; on the other hand, we also have an isogeny A∗ → A of degree b dividing

b0(E1×E2,Kℓ), and the composition of the two is an endomorphism of E1×E2 that kills Γ. Here
we use the crucial fact that at least one of the coefficients of M is an ℓ-adic unit to deduce that the
projection of Γ on E2 contains at least one point of exact order ℓ

H , so the endomorphism of E1×E2

killing Γ must be of the form

(
ℓHe1 0
0 ℓHe2

)

, of degree e21e
2
2ℓ

4H . It follows that e21e
2
2ℓ

4H = ℓ2Hb,

hence 2H ≤ vℓ(b0(E1×E2,Kℓ)) and 2t ≤ vℓ(b0(E1×E2,Kℓ))+2(11n1+n2+6v+6). This inequality

is certainly not satisfied if we take t =
⌊
vℓ(b0(E1×E2,Kℓ))

2

⌋

+11n1+n2+6v+7, so for this value of t

the Lie algebra L3 does not vanish modulo ℓt. Lemma 6.3 then shows that L3 contains ℓf1sl2(Zℓ),

where f1 =
⌊
vℓ(b0(E1×E2,Kℓ))

2

⌋

+11n1+5n2+10v+7, and therefore L(Hℓ) contains 0⊕ ℓf1sl2(Zℓ).

Swapping the roles of E1 and E2 we deduce that L(H) contains ℓfsl2(Zℓ)⊕ ℓfsl2(Zℓ), where now

f =

⌊
vℓ(b0(E1 × E2/K2))

2

⌋

+ 16max {n1, n2}+ 10v + 7.

Proposition 6.5. Let E1, E2 be elliptic curves over K that are not isogenous over K and do
not admit complex multiplication over K. Let ℓ be a rational prime. Suppose the image of
Gal

(
K/K

)
→ Aut(Tℓ(Ei)) contains Bℓ(ni) for i = 1, 2. Let f be given by the formula above.

If ℓ is odd, the image Gℓ of Gal
(
K/K

)
→ Aut(Tℓ(E1) × Tℓ(E2)) contains Bℓ(4f) × Bℓ(4f);

if ℓ = 2, the image G2 of Gal
(
K/K

)
→ Aut(T2(E1)× T2(E2)) contains B2(12(f + 13n2 + 5n1 +

6), 12(f + 13n2 + 5n1 + 6)).

Proof. For ℓ = 2 the result follows at once from theorem 4.3. For odd ℓ, and under the assumption
we made at the beginning of this section, the result similarly follows from property (∗) of Tℓ given
in theorem 4.2 and the fact that clearly 2f > 8max {n1, n2}. On the other hand, if our assumption
is false, then Gℓ contains Bℓ (4n1 + 16n2, 8n2) (note that we can assumem1 ≤ n1,m2 ≤ n2 without
loss of generality), which is stronger than what we are claiming.

7 Conclusion

Consider again the case of two elliptic curves E1, E2 defined over K (and non-isogenous over K).
Let P be the set of primes ℓ for which Gℓ does not contain SL2(Zℓ)

2. Rewriting Proposition 1 of
[MW93] in terms of the function b0 of definition 2.4 we get:

Lemma 7.1. Let ℓ be a prime. If ℓ does not divide the product

6b0(E1/K; 60)b0
(
E2

1/K; 2
)
b0(E2/K; 60)b0

(
E2

2/K; 2
)
b0(E1 × E2/K; 2),

then ℓ is not in P.
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Proof. Lemma 8.2 of [Lom14] implies that for a prime ℓ that does not divide

b0(E1/K; 60)b0
(
E2

1/K; 2
)
b0(E2/K; 60)b0

(
E2

2/K; 2
)

both projections of Gℓ(ℓ) on the two factors GL2(Fℓ) contain SL2(Fℓ). Under this hypothesis, the
proof of [MW93, Proposition 1] shows that Gℓ(ℓ) contains SL2(Fℓ)

2 unless ℓ2|b0(E1 × E2/K; 2).
Finally, a closed subgroup of GL2(Zℓ)

2 whose projection modulo ℓ contains SL2(Fℓ)
2 contains all

of SL2(Zℓ)
2, at least for ℓ ≥ 5 (this is well-known; see for example [Rib97, Proposition 4.2]).

Corollary 7.2. The inequality
∏

ℓ∈P

ℓ < 6b0(E1/K; 60)b0
(
E2

1/K; 2
)
b0(E2/K; 60)b0

(
E2

2/K; 2
)
b0(E1 × E2/K; 2)

holds.

Let now ℓ be a prime different from 2 and 3. For j = 1, 2 set

Dj(∞) = b0(Ej/K; 120)5b0(E
2
j /K; 2).

As ℓ is odd, by [Lom14, Corollary 7.6] we see that Gℓ,j contains

Bℓ (24(vℓ(Dj(∞)) + 1) ,

hence the same is true for Hℓ,j , cf. remark 6.1. Therefore - in the notation of the previous section
- we can take nj = nj(ℓ) = 24(vℓ(Dj(∞)) + 1. On the other hand, for ℓ = 3 we apply [Lom14,
Theorem 7.5] directly to Ej/K3 (notice that our present K3 satisfies the same hypotheses as the
field noted K3 in [Lom14]) and see that we can take

nj(3) = 24v3
(
b0(E/K3)

5b0(E
2/K3)

)
+ 24 ≤ 24(v3(Dj(∞)) + 1);

similarly, for ℓ = 2 we can take nj(2) = 72v2
(
b0(Ej/K2)

5b0(E
2
j /K2)

)
+ 74.

Applying proposition 6.5 with these values of nj we get:

Lemma 7.3. Let ℓ be a prime. The group Gℓ contains Bℓ(f(ℓ), f(ℓ)), where f(ℓ) is given by

f(ℓ) = 2vℓ(b0(E1 × E2/K; 2 · 482)) + 1536max {vℓ(D1(∞)), vℓ(D2(∞))}+ 1564

for odd ℓ and

f(2) = 6v2(b0(E1 × E2/K2)) + 30000max
j

{
v2
(
b0(Ej/K2)

5b0(E
2
j /K2)

)}
+ 30500

for ℓ = 2.

Using the very same argument as [Lom14], Theorem 9.1 and Proposition 9.2 and some very
crude estimates, we deduce

Proposition 7.4. There exists a subgroup S of G∞ of the form
∏

ℓ Sℓ, where each Sℓ coincides
with SL2(Zℓ)

2 except for the finitely many primes that are in P, for which Sℓ = Bℓ(f(ℓ), f(ℓ)).

The index of S in SL2(Ẑ) is bounded by b0(E1 × E2/K; 2 · 482)1200.

We finally come to the adelic estimate for an arbitrary number of curves:

Theorem 7.5. Let E1, . . . , En, n ≥ 2, be elliptic curves defined over K, pairwise non-isogenous
over K. Suppose that EndK(Ei) = Z for i = 1, . . . , n. Then G∞ has index at most

212n(n−2)ζ(2)2 · [K : Q] ·max
i6=j

b0
(
Ei × Ej/K; 2 · 482

)600n(n−1)

in {

(x1, . . . , xn) ∈ GL2(Ẑ)
n
∣
∣ detxi = detxj ∀i, j

}

.

15



Proof. The exact sequence

1 → G∞ ∩ SL2(Ẑ)
n → G∞

det
−→ Ẑ× →

Ẑ×

det ◦ρ∞ Gal
(
K/K

) → 1

and the fact that

∣
∣
∣
∣
∣

Ẑ×

det ◦ρ∞ Gal
(
K/K

)

∣
∣
∣
∣
∣
≤ [K : Q] (cf. [Lom14, Proposition 8.1]) show that it is

enough to prove that the index of G∞ ∩ SL2(Ẑ)
n inside SL2(Ẑ)

n is bounded by

212n(n−2)ζ(2)2 ·max
i6=j

b0(Ei × Ej/K; 2 · 482)600n(n−1).

Set G = G∞ ∩SL2(Ẑ). For every pair Ei, Ej of curves, we get from proposition 7.4 a subgroup

S(i,j) of SL2(Ẑ)
2 that satisfies all the requirements of corollary 3.3, and the theorem follows from

this corollary upon noticing that the index of S(i,j) in SL2(Ẑ)
2 is bounded by

b0(Ei × Ej/K; 2 · 482)1200.
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