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Abstract We present explicit formulas for a set of generators of the ideal of relations
among the pfaffians of the principal minors of the antisymmetric matrices of fixed
dimension. These formulas have an interpretation in terms of the standard monomial
theory for the spin module of orthogonal groups.
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1 Introduction

Let Xn+1 be the set of (n + 1) × (n + 1) antisymmetric matrices over the complex
number. It is well known that the determinant Xn+1 � X �−→ det X ∈ C is the square
of a polynomial function Xn+1 � X �−→ Pf(X) ∈ C called the pfaf f ian of a matrix.
In particular only the even dimensional principal minors of X ∈ Xn+1 have non zero
pfaffian.

Let B be the ring C[xij | 1 � i < j � n + 1]. As a set of generators of B we choose
the pfaffians of the (even dimensional) principal minors of matrices in Xn+1. In this
paper we want to describe the relations among these generators. This is a classical
problem and may be seen as analogous to the Plücker relations for determinants.
Indeed the formulas we present are very similar to Plücker formulas. In order to
state such formulas we introduce some notations.
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The pfaffians of the principal minors are indexed by lists of even length of integers
in {1, 2, . . . , n + 1}, or, equivalently, by row, i.e. list I = i1i2 · · · ir (of any length) of
integers in {1, 2, . . . , n} in the following way: define I0 to be either the same sequence
I if r is even or the sequence i1i2 · · · ir, n + 1 if r is odd and let pfI be the polynomial
function on Xn+1 given by the pfaffian of the principal minor with rows and columns
in I0. For convenience we set also pf

∅
to be equal to the constant polynomial 1. This

indexing procedure may look unusual but it makes it easier to write the relations
among pfaffians.

Consider the action σ · (i1 · · · ir) = σ(i1) · · · σ(ir) of the symmetric group Sn on the
set of rows. Given a row I containing distinct entries, let τI ∈ Sn be the permutation
reordering the entries of I in increasing order and fixing all integers not appearing in
I and let ε(I) = (−1)τI . We have pfσ ·I = ε(I)pfI and pfI = 0 if there are repetitions
in I. If I and J are rows we set I J to be the row obtained by listing the elements of J
after the elements of I. For a row I = i1i2 · · · ir, let |I| .= r be its length.

Let us define an order on rows as follows: R = i1i2 · · · ir � S = j1 j2 · · · js if r � s
and ih � jh for h = 1, 2, . . . , s. For each pair of rows R, S with increasing entries
which are not comparable with respect to this order we construct a relation among
pfaffians in the following way. Assume R is not shorter than S and let R = I J and
S = HK be such that |I| = r, |H| = r + 1, any entry of I is less or equal to the
corresponding entry of H and the first entry of J is greater than the last entry of
H; so we have the first violation of the order condition in the (r + 1)-th column.

Theorem For each pair of rows as above, we have the following relation among
pfaf f ians:

∑
(−1)

h(h+1)

2

[|J \ K| + h
h

]

−1

ε(H′ J′)ε(Z2 K′
1) pfI J′ K′

1
pfH′ K′

2
= 0 (1)

with h .= |H| − |H′|, Z1
.= I ∩ H and Z2

.= J ∩ K as ordered rows and the sum
running over the set of all quadruples (J′, H′, K′

1, K′
2) of rows with increasing entries

such that

(1) |H′| � |H|,
(2) H′ � J′ = H � J,
(3) K′

1 � K′
2 = K,

(4) Z1 ⊂ H′,
(5) Z2 ⊂ J′ ∩ K′

2.

Moreover these relations generate the ideal of relations among pfaf f ians.

In the formula above we have denoted, for 0 � k � m, by
[m

k

]
q the gaussian

binomials defined as the element (1−qm)(1−qm−1)···(1−qm−k+1)

(1−qk)(1−qk−1)···(1−q)
of C[q] and

[m
k

]
−1

is this
polynomial evaluated in −1.

Our interest for this topic stems from the standard monomial theory. Consider
V = C2n+2 equipped with a non degenerate symmetric bilinear form such that the
subspaces V1 and V2, generated respectively by the first and the last n + 1 vectors of
the canonical basis of V, are totally isotropic. The variety of the (n + 1)–dimensional
totally isotropic subspaces of V has two connected components; let the positive
lagrangian grassmannian Gr be the component of those subspaces whose intersection
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with V2 is even dimensional. The special orthogonal group of V acts on this variety,
let G = Spin(2n + 2) be its simply connected cover and S the Spin module of G.

Then Gr embeds into P(S) and the study of relations among pfaffians is equivalent
to the study of the equations defining the cone over this embedding of Gr (see
Section 4). Notice that on the grassmannian side we have a natural action of a bigger
group of symmetries which is not apparent on the pfaffian picture of the problem.
Moreover in the study of the coordinate ring of this embedding we can make use of
the standard monomial theory.

The standard monomial theory is a very general theory which constructs a basis of
the projective coordinate ring given by the immersion of a generalized grassmannian
or a flag variety. The prototypical example of the theory is given by the work of
Hodge on the Plücker immersion of a grassmannian [2]. The idea of Hodge was
generalized to a projective immersion of partial flag varieties for a semisimple group
G (and even to a Kac Moody one) between the seventies and the nineties by the work
of many peoples, Seshadri, Lakshmibai, Musili, De Concini, Eisenbud, Procesi and
Littelmann. The results of standard monomial theory have many consequences both
in representation theory and in the study of singularities of Schubert varieties and
other related varieties. However the theory does not give an explicit description of
the equations beyond the original case of the Plücker immersion of a grassmannian
and some other very simple cases.

In our case the standard monomial theory takes the following form. Let A be
the coordinate ring of the embedding Gr ↪→ P(S) and let Am be the subspace of
homogeneous polynomials of degree m. There exists a basis x(I) of A1 indexed by
increasing rows I as above. A tableau T = (I1, I2, · · · , Im) is simply a sequence of
rows; it is standard if all rows have increasing entries and I1 � I2 � · · · � Im. The set
of standard monomials x(T)

.= x(I1)x(I2) · · · x(Im) for T standard are a basis for Am.
So each section x(T) with T non standard may be written as a linear combination of
standard ones, these relations are called straightening relations for A. Since the ideal
of relations in the generators x(I) is generated by quadratic elements it is enough to
consider only non standard tableaux with two rows. An important point is that in the
straightening relation for the tableau T = (I, J) only standard tableaux (H, K) with
H � I, J and K � I, J do appear.

This is the core idea of the standard monomial theory: to replace the knowledge of
the (very) complicated explicit straightening relations by that of the order condition
stated above. Indeed this condition is sufficient to deduce quite a lot about the
geometry of the flag variety Gr.

The equations we write down for the generators x(I) are given by formula 1
replacing pfI with x(I). These are not straightening relations but they are what we
call shuf f ling relations: given a non standard tableau T with two rows we say that the
element f = ∑

ah x(Ih)x(Jh), with the ah ∈ C, is a shuffling relation for T if f = 0,
T appears with coefficient 1 and all other tableaux do fulfill the order condition
of a straightening relation for T. In particular we are not asking that all tableaux
but T must be standard. It is clear that by a finite number of steps we may deduce
the straightening relations from the shuffling relations; so these weaker relations are
still a set of generators for the ideal of relations. (The name ‘shuffling’ is the same
name used for the analogous relations for the determinants of minors of a matrix
of indeterminates.) Notice that also the classical Plücker equations are shuffling
relations and not straightening relations.
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From the point of view of standard monomial theory, the easiest cases, which were
also the first ones to be analyzed [5], are those in which the embedding is in the
projective space of a minuscule G–module. Recall that an irreducible G–module is
said to be minuscule if its weights are a single orbit under the Weyl group.

The condition for a module (for a general semisimple group) to be minuscule is
very strong and, so, very few modules are minuscule. Moreover for all minuscule
modules for classical groups but the spin module explicit shuffling relations are
known. Indeed all such modules have an extremely simple order structure except the
fundamental representations of type A which corresponds to the Plücker immersion
of a grassmannian and the Spin modules. In particular our module S is a minuscule
one, and the other are either twisted form of S or restriction of S to Spin(2n + 1), so
the same result for these other cases may be easily deduced from our result.

For the exceptional groups only two modules for E6 (one dual to the other) and
one module for E7 are minuscule. (For E7 one may see [1] for some hints to explicit
formulas for straightening relations.)

After completing this paper we came to known that formulas very similar to
ours have already been found by Kustin in [4]. However the proof in that paper
is very different from our: while being very elementary, since it uses only multilinear
algebra, it does not exploit the role played by the representation theory of the spin
module. So we still think our proof of the shuffling relations may have some interest;
at least we hope this paper may bring some attention to the paper of Kustin which,
in our opinion, is not very known.

The paper is organized as follows. In the first section we collect some combinato-
rial definitions about rows, tableaux and standardness and the definition and some
properties of the gaussian binomials. The second section introduce the spin group,
the spin module and the related grassmannian. Then the standard monomial theory
for this module is shortly discussed with a remark about a general invariance of
the relations defining a flag variety. In the third section we see the definition of a
pfaffian and the relations of such polynomial functions with the spin module. Using
this links we are able to prove some invariance properties of the ideal of relations.
In Section 5 we introduce our formulas and prove some combinatorial properties of
such formulas. In Section 6 we prove that the formulas are indeed shuffling relations.
Finally in the last section we extend these results to an arbitrary field.

2 Combinatorics

2.1 Rows and Tableaux

We call a finite sequence (maybe empty) of integers a row. Let Rn ⊃ R+
n ⊃ SRn

be respectively the set of all rows in the alphabet {1, 2, . . . , n}, the subset of rows
containing distinct elements and the subset of standard rows, i.e. of rows I = i1i2 · · · ir
with i1 < i2 < · · · < ir. We define the lenght of the row I = i1i2 · · · ir as |I| .= r,
moreover the (standard) empty row is denoted by ∅. If I ∈ R+

n we define Ĩ as the
complementary row j1 . . . jn−r of I where {i1, . . . , ir} � { j1, . . . , jn−r} = {1, 2, . . . , n}
and j1 < j2 < . . . < jn−r. If I = i1 . . . ir and J = j1 . . . js are two rows we set I J .=
i1 . . . ir j1 . . . js.
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Given an integer h we define I ∗ h as the row obtained by adding h to the end
of the row I, further if k is another integer then I(h −→ k) is the row obtained by
replacing all occurrences (if any) of h by k in I. Hereafter we write h ∈ I to say that
h appears as an element in the row I and, in general, we use the language of sets with
rows when this does not create any ambiguity.

The symmetric group Sn acts on the set of rows: for I = i1i2 · · · ir and σ ∈ Sn we set
σ · I .= σ(i1)σ (i2) · · · σ(ir). Given a row I = i1i2 · · · ir in R+

n let I� be the row with the
same entries of I rearranged in ascending order, moreover let τI ∈ Sn be such that
τI · I = I� and τI fixes each integer h �∈ I, let also ε(I) be the sign of τI .

We define the partial order for the standard rows: if I = i1 · · · ir, J = j1 · · · js are
standard rows we set I � J if |I| � |J| and im � jm for all 1 � m � |J|.

A tableau is a sequence of rows T = (I1, I2, · · · , Id) with |I1| � |I2| � · · · � |Id|;
it is standard if all rows are standard and I1 � I2 � · · · � Id, the degree of T is the
number d of rows. If Im = im,1im,2 · · · im,rm for m = 1, . . . , d then, as customary, we
write T arranged vertically and left justified

⎛

⎜⎜⎜⎝

i1,1 i1,2 · · · · · · · · · i1,r1

i2,1 i2,2 · · · · · · i2,r2

...

id,1 id,2 · · · id,rd

⎞

⎟⎟⎟⎠

so that T is standard if and only if its entries increase along the rows and do not
decrease along the columns.

Finally let R0
n be the subset of rows of even length of Rn and define analogously

R+,0
n and SR0

n. Given a row I ∈ Rn let I0 ∈ R0
n+1 be either the same row if |I| is even

or the row I ∗ (n + 1) otherwise; then the map I �→ I0 is clearly a bijection between
SRn and SR0

n+1.

2.2 Gaussian Binomials

Let q be an indeterminate and define the gaussian binomials as the following
elements of C[q]: for all m, k ∈ Z

[
m
k

]

q

.=
⎧
⎨

⎩

(1 − qm)(1 − qm−1) · · · (1 − qm−k+1)

(1 − qk)(1 − qk−1) · · · (1 − q)
if 0 � k � m

0 otherwise.

The evaluation of q to −1 is of particular interest for our aims; the following result
is easily proved by induction.

Lemma 1 For all 0 � k � m we have

[
m
k

]

−1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
⌊m

2

⌋

⌊
k
2

⌋
)

if m is odd or k is even

0 otherwise.

In the next Lemma we see a q–analogous of a well known binomial formula; it is
needed in the proof of our main result.



960 R. Chirivì, A. Maffei

Lemma 2 For all 1 � s � m we have
s∑

h=0

(−1)hq
h(h−1)

2

[
m

s − h

]

q

[
m − s + h

h

]

q
= 0.

Proof Let ψm,s be the left hand side of the above identity. We use induction on m. By
the definition of the gaussian binomials we see that for all n � 0 and 0 � k � n + 1

[
n + 1

k

]

q
= 1 − qn+1

1 − qn+1−k

[
n
k

]

q

Hence for all 1 � s � m we have

ψm+1,s =
s∑

h=0

(−1)hq
h(h−1)

2

[
m + 1

s − h

]

q

[
m + 1 − s + h

h

]

q

=
s∑

h=0

(−1)hq
h(h−1)

2
1 − qm+1

1 − qm+1−s+h

1 − qm+1−s+h

1 − qm+1−s

[
m

s − h

]

q

[
m − s + h

h

]

q

= 1 − qm+1

1 − qm+1−s
ψm,s

= 0

by induction on m.
So we need to show that ψm,m = 0 for all m � 1 to complete the proof. But

ψm,m =
m∑

h=0

(−1)hq
h(h−1)

2

[
m
h

]

q

and our claim follows by evaluating in t = −1 the Newton binomial formula

m−1∏

k=0

(1 + qkt) =
m∑

h=0

q
h(h−1)

2

[
m
h

]

q
th.


�

Remark 3 There is a certain link between gaussian binomials and Coxeter groups of
type A. Recall that if W = 〈s1, s2, . . . , sr〉 is a Coxeter group and I ⊂ {s1, s2, . . . , sr},
then one may define the set W I ↪→ W of representatives of minimal lenght of the
quotient W/WI , where WI is the subgroup generated by I in W. Moreover for any
subset S of W the Poincaré polynomial of S is defined as pS(q)

.= ∑
τ∈S q�(τ ), where

� : W −→ N is the length function.
We have pW I (q) = pW(q)/pWI (q), the quotient of the Poincaré polynomials of the

two Coxeter groups W and WI . Moreover pW(q) = ∏
i

1−qdi

1−q where d1, d2, . . . are the
degrees of W (see [3]).

Now let W be the symmetric group Sm on m elements, which is a Coxeter group
of type Am−1 with respect to the set of generators si = (i, i + 1) for i = 1, 2, . . . , m −
1. Since the degrees of a Coxeter group of type Am−1 are 2, 3, . . . , m, it follows at
once that the gaussian binomial

[m
k

]
q is the Poincaré polynomial of the set of minimal

representatives of the quotient Sm/Sk × Sm−k.
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3 The Spin Module

We fix once and for all the notation ε1, . . . , εn for the standard basis of Cn and we
denote by Eij the matrix associated to the linear map sending ε j to εi and all other
elements of this basis to zero.

3.1 The Spin Group

On V .= C2n+2 fix the symmetric bilinear form whose associated matrix is
(

0 I
I 0

)
. Let

g
.= so(2n + 2) and G .= Spin(2n + 2) the associated simply connected group. In this

basis g is the set of all matrices
(

A B
C −t A

)
with A, B, C (n + 1) × (n + 1) matrices and

B, C antisymmetric.
We fix the Chevalley generators, a Cartan subalgebra t and a Borel subalgebra b

in the following way:

ei
.=
(

Ei,i+1 0
0 −Ei+1,i

)
for i = 1, . . . , n,

en+1
.=
(

0 En,n+1 − En+1,n

0 0

)
,

fi
.= et

i for i = 1, . . . , n + 1,

hi
.=
(

Ei,i − Ei+1,i+1 0
0 −Ei,i + Ei+1,i+1

)
for i = 1, . . . , n,

hn+1
.=
(

En,n + En+1,n+1 0
0 −En,n − En+1,n+1

)
,

t
.=
{(

A 0
0 −At

)
∈ g | A is diagonal

}
,

b
.=
{(

A B
0 −At

)
∈ g | A is upper triangular and B is antisymmetric

}
.

We denote with T (resp. B) the maximal torus (resp. Borel subgroup) of G whose
Lie algebra is given by t (resp. b)and let B− be the Borel opposite to B.

We identify the Cartan subalgebra with Cn+1 mapping εi to
(

Ei,i 0
0 −Ei,i

)
for i =

1, . . . , n + 1 and, further, we identify the Cartan subalgebra with its dual using
the standard form εi · ε j = δij for 1 � i, j � n + 1. In particular if we set αi

.= hi,
for i = 1, . . . , n + 1, the set {α1, . . . , αn+1} is a simple basis for the roots of g. Let



.= Hom(T, C∗) ⊂ t∗ be the set of integral weights and 
+ be the subset of 
 of
dominant weights and let ω1, . . . , ωn+1 be the fundamental weights. For λ ∈ 
+ let
Vλ be the irreducible representation of G of highest weight λ.

3.2 The Spin Module

We want now to give an explicit description of the dual of the irreducible module of
highest weight ωn+1. This is called the positive spin module and will be denoted by S.
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Define the vector space S
.= ⊕IC · x(I) with basis elements x(I), I ∈ SRn. Next

we define the weight of a row I ∈ R+
n as

wt(I) .= 1
2

(
∑

i∈I0

εi −
∑

i/∈I0

εi

)
∈ 
.

Now V has a g–module structure defined as follows:

ei(x(I)) =
{

x(I(i + 1 −→ i)) if i + 1 ∈ I, i �∈ I,

0 otherwise

en(x(I)) =
{

x(I ∗ n) if n �∈ I and |I| is odd

0 otherwise

en+1(x(I)) =
{

x(I ∗ n) if n �∈ I and |I| is even

0 otherwise.

hi(x(I)) = wt(I)x(I) for i = 1, 2, . . . , n + 1.

fi(x(I)) =
{

x(I(i −→ i + 1)) if i ∈ I, i + 1 �∈ I,

0 otherwise

fn(x(I)) =
{

x(I \ {n}) if n ∈ I and |I| is even

0 otherwise

fn+1(x(I)) =
{

x(I \ {n}) if n ∈ I and |I| is odd

0 otherwise.
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Here is an example of this action for n = 3: for each basis vector of S we have drawn
all operators e1, e2, e3 which do not send that vector to 0.

x(123)

x(12)

e4
�����������

x(13)

e2

�����������

x(23)

e1

�����������
x(1)

e3
�����������

x(2)

e3
����������� e1

�����������

x(3)

e2

�����������

x(∅)

e4
�����������

Notice that S is irreducible, and its lowest weight is −ωn+1 so it is the dual of Vωn+1 .
Notice also that all the weights are in the orbit of −ωn+1, in particular the spin module
is minuscule.

3.3 The Lagrangian Grassmannian

Let V1 and V2 be the span, respectively, of the first, and the last, n + 1 vector of the
canonical basis of V. Define the positive lagrangian grassmannian Gr as the variety of
(n + 1)–dimensional subspaces of V which have even dimensional intersection with
V2. This is an homogeneous space for the special orthogonal group of V and for G.

The Picard group of Gr has a unique ample generator that we denote by L which
is G–linearizable and the G–module H0(Gr,L) = {η : G −→ C | η is holomorphic
and η(gp−1) = ω−1

n+1(p)η(g) for all g ∈ G and p ∈ B} is isomorphic to S.
The main object of study of this paper is the graded ring A .= ⊕

m H0(Gr,Lm). For
m � 0 let Am

.= H0(Gr,Lm) be the space of its homogeneous components of degree
m. In particular A1 = V∗

ωn+1
. The ring A is generated in degree one with quadratic
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relations. We denote by K ⊂ S2(A1) −→ A2 the kernel of the multiplication map;
our aim here is to find explicitly generators for this kernel. When we need to stress
the rank n + 1 of the spin group we add a subscript n, for example Kn.

3.4 Standard Monomial Theory

On the module S we have defined the basis x(I), I ∈ SRn, now we want to extend
the symbol x(I) to any row I ∈ Rn: let x(I) .= (−1)τI x(I�) if I ∈ R+

n and x(I) .= 0 for
all I �∈ R+

n .
Next we extend x : Rn −→ A1 to tableaux as

x

⎛

⎜⎜⎜⎝

I1

I2
...

Ir

⎞

⎟⎟⎟⎠
.= x(I1)x(I2) · · · x(Ir) ∈ SrA1

We will call such a monomial standard if the tableau is standard. Notice that if this
monomial is non zero (i.e. if and only if Ih ∈ R+

n for all h = 1, . . . , r) then we may
always consider all of its rows as standard up to a sign change.

Let y(T) be the image of x(T) in Ar and recall that, by a well known result of
Standard Monomial Theory, the set of monomials y(T) with T a standard tableau of
degree r is a C–basis of Ar. Moreover for each non standard tableau

(I
J

)
we have a

straightening relation

y
(

I
J

)
=
∑

aH,K y
(

H
K

)
, aH,K ∈ C

where the sum runs over all standard tableaux
(H

K

)
with H � I, J and K � I, J (see

Corollary 1 of [5]). In the case of a minuscule module these properties are not difficult
to prove and were the starting point of the standard monomial theory.

Notice that for all
(H

K

)
we have I ∪ J = H ∪ K with multiplicities, by t–

homogeneity. We may write the relation above also as x
(I

J

) − ∑
aH,Kx

(H
K

) ∈ K; in
particular these elements (that we still call straightening relations) generate the space
K of quadratic relations, hence they generate the ideal defining the ring A.

Later we will see direct formulas for what we call shuf f ling relation: given a non
standard tableau T = (I

J

)
as above, a shuffling relation for T is any element

∑

m

amx
(

Hm

Km

)
, am ∈ C

of K such that x
(I

J

)
appears with coefficient 1 and, for all m, Hm � I, J and Km �

I, J. Notice that we are not requiring
(Hm

Km

)
to be standard. Clearly the straightening

relation for
(I

J

)
can be obtained in a finite number of steps using the shuffling

relations, so also the shuffling relations generate K.
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3.5 Complementary Invariance of Relations

In this section we want to prove a symmetry property of the ideal defining a (general)
flag variety, so here we allow g to be any semisimple Lie algebra.

Fix a triangular decomposition g = b− ⊕ h ⊕ b, a corresponding set of simple
roots α1, . . . , α� with fundamental weights ω1, . . . , ω� and corresponding Chevalley
generators e1, . . . , e�, h1, . . . , h� and f1, . . . , f�. For any dominant weight λ, let vλ be
a fixed highest weight vector of the irreducible g–module Vλ and let v−

λ be the lowest
weight vector in the Weyl group orbit of vλ. Denote by Kλ the kernel of the g–module
projection S2Vλ −→ V2λ; this kernel is the direct sum of all isotypic components of
S2Vλ of weight less than 2λ.

Let w0 be the longest element of the Weyl group of g and denote by d the
linear map of 
 given by −w0; hence, in particular, V∗

λ � Vd(λ) for all dominant
weights λ. We still denote by d the permutation of {1, . . . , �} defined in the following
way: 1 � h � � is mapped to k if d(ωh) = ωk. Further let a : g −→ g be the unique
automorphism defined by ei �−→ fd(i), hi �−→ −hd(i) and fi �−→ ed(i) for i = 1, . . . , �

and, finally, extend it to the universal enveloping algebra U(g).
It is clear that any element of S2Vλ may be written as

∑r
h=1 ϕhvλ · ψhvλ where

ϕh, ψh are in the universal enveloping algebra U(b−) of b− for h = 1, . . . , r.

Lemma 4 If the element
∑r

h=1 ϕhvλ · ψhvλ of S2Vλ is in Kλ then also
∑r

h=1 a(ϕh)v
−
λ ·

a(ψh)v
−
λ is an element of Kλ.

Proof Given a g–module V, let Va be the g–module on the vector space V with
action defined by x · v = a(x)v for all x ∈ g and v ∈ V. It is clear that (S2V)a = S2Va

and (U ⊕ V)a = Ua ⊕ Va for all g–modules U and V.
Notice that v−

λ is a highest weight vector of Va
λ , and its weight is a(w0λ) =

−dw0(λ) = λ; hence there exists a g–module isomorphism αλ : Vλ −→ Va
λ and we

may normalize it by αλ(vλ) = v−
λ .

Now consider the map S2αλ. Since V2λ ⊂ S2Vλ is sent to itself by S2αλ, we see that
S2αλ(Kλ) ⊂ Kλ. So

S2αλ

(
r∑

h=1

ϕhvλ · ψhvλ

)
=

r∑

h=1

αλ(ϕhvλ) · αλ(ψhvλ)

=
r∑

h=1

a(ϕh)v
−
λ · a(ψh)v

−
λ

is an element of Kλ as claimed. 
�

Specializing to our context, and using the notation of previous sections, we see that
if ϕvλ, with ϕ ∈ U(b−), is the vector x(I), with I ∈ SRn, then a(ϕ)v−

λ is the vector x( Ĩ)
where Ĩ is the complementary row of the row I. Hence we have proved the following
corollary.
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Corollary 5 If the element
∑

h ahx
(Ih

Jh

)
, with ah ∈ C and Ih, Jh ∈ SRn, is in the kernel

K of the multiplication map S2A1 −→ A2 then also
∑

h ahx
( Ĩh

J̃h

)
is an element of K.

4 Pfaffians

4.1 Definition

Let Xn be the set of n × n antisymmetric matrices with complex coefficients. We
identify Xn with 
2Cn mapping X = (xij) ∈ Xn to ωX

.= 1
2

∑
i, j xij εi ∧ ε j. We recall

that the pfaf f ian of X ∈ X2m, denoted by Pf(X), is defined by

1

m! ωm
X = Pf(X) ε1 ∧ · · · ∧ ε2m.

Notice that Pf(X)2 = det X and, in particular, the pfaffian of X vanishes when the
matrix X is singular. Moreover if we let S2m act on X2m by permuting the rows and
the coloumns of a matrix as σ · (xi, j) = (xσ(i),σ ( j)), then Pf(σ · X) = (−1)σ Pf(X).

Now we see an example; it will be used in the proof of our theorem.

Example 6 The pfaffian of the following antisymmetric matrix

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
−1 0 1 . . . 0
0 −1 0 1 . . . 0

...

−1 0 1
0 . . . −1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

is 1; clearly the same is true for all even dimensional principal submatrices of M.

Let B be the ring of polynomial functions on Xn+1. For each X ∈ Xn+1 and I =
i1 · · · ih ∈ Rn+1 define XI to be the antisymmetric matrix given by the principal minor
corresponding to the rows and the columns i1, . . . , ih of X. In this definition we allow
repetitions and we consider also the order of the elements in I; for example if

X =
(

0 a b−a 0 c
−b −c 0

)
then X13 = (

0 b
−b 0

)
while X31 = (

0 −b
b 0

)
.

For each I ∈ Rn we define a (polynomial) function pfI on Xn+1 by

pfI(X)
.= Pf(XI0).

The ordering of the elements of I is not essential here since pfI(X) = (−1)τI pfI�(X)

for all I ∈ R+
n ; however it will be convenient for us to have this more general

notation. Notice that pfI = 0 for all sequences I with a repetition since the pfaffian
of a singular matrix is zero. It is also clear that the functions pfI with I ∈ Rn generate
the ring B; indeed pfij(X) = xij for all 1 � i < j � n.
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4.2 Pfaffians and the Spin Module

We now describe the relation between the pfaffians and the spin module. Notice that
Gr has a unique B−–stable divisor that we will denote with S . This is the variety of
all subspaces W ∈ Gr with non trivial intersection with V2. As a subvariety of Gr it is
defined by the equation x(∅) = 0.

Let now p ∈ Gr be the point corresponding to V1. The B−–orbit U of p is the
complement of S . More precisely it is an orbit under the unipotent radical of the
stabilizer P of p. Define u : Xn+1 −→ G by u(X)

.= (
I 0
X I

)
and ϕ : Xn+1 −→ Gr by

ϕ(X)
.= u(X) · p. Then ϕ is an isomorphism between Xn+1 and U .

The pull back ϕ∗L of L on Xn+1 is isomorphic to the trivial line bundle so it induces
a ring homomorphism ψ : A−→B. Notice that ψ(x(∅)) is a nowhere vanishing
function so it is a non zero constant that we can normalize to be 1. Hence ψ induces
an isomorphism

ψ̄ : A
(x(∅) = 1)

� B.

In particular, since U is open in Gr, the restriction ψm = ψ |Am to the homogeneous
component is injective and we define Bm

.= ψ(Am). Since ψ(x(∅)) = 1 we have B0 ⊂
B1 ⊂ B2 ⊂ · · · . Notice also that the isomorphism ψ does not define a G–structure on
B however it defines a G–structure on Bm such that the multiplication maps Bm × Bm′

in Bm+m′ . In particular we have the following commutative diagram

A1 ⊗ A1 −−−−→ A2

ψ1⊗ψ1

⏐⏐& ψ2

⏐⏐&

B1 ⊗ B1 −−−−→ B2

where vertical maps are isomorphisms and horizontal ones are induced by multiplica-
tion. Hence the homogenous relations between elements of A1 and B1 are the same.

We want to identify in a more explicit way B1; in order to do this we need to
make explicit the trivialization of the line bundle L. If σ : G −→ C is a meromorphic
function such that σ(gp−1) = ω−1

n+1(p)σ (g) for all p ∈ P then it defines naturally a
meromorphic section of L. We can associate to σ also a function on Xn+1 by fσ (X)

.=
σ(u(X)).

On the other hand every meromorphic function on Xn+1 can be constructed in
this way. So we obtain an action of the Lie algebra g on the space of meromorphic
functions on Xn+1. Explicitely this action is given as follows:

((
A 0
0 −t A

)
· f

)
(X) = d

ds
f (X + s(At X + X A))

∣∣
s=0 − 1

2
Tr(A) f (X)

((
0 B
0 0

)
· f

)
(X) = d

ds
f (X + sX BX)

∣∣
s=0 − 1

2
Tr(BX) f (X)

((
0 0
C 0

)
· f

)
(X) = d

ds
f (X − sC)

∣∣
s=0

for all A ∈ End(Cn+1) and B, C ∈ Xn+1.
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In particular with simple computations we get that if I ∈ SRn:

ei(pfI) =
{

pfei(I) if ei(I) �= 0,

0 otherwise;
hi(pfI) = 〈hi, wt(I)〉pfI .

Since we have normalized ψ in such a way that ψ(x(∅)) = 1 = pf
∅

we have

ψ(pfI) = x(I)

for all I ∈ SRn. So, by our conventions, ψ(pfI) = x(I) for all rows I and not only
for standard rows. Notice that, in particular, B1 is the vector space spanned by the
functions pfI with I ∈ SRn.

So we have proved the following result.

Proposition 7 The element
∑

h ahx
(Ih

Jh

)
of S2 A1 is in K if and only if

∑
h ahpfIh

pfJh
= 0

as a polynomial function on Xn+1.

4.3 The Action of the Symmetric Group and Submatrices

The previous identification of the weight vectors of the positive spin module and the
pfaffians allows us to prove the following invariance properties. These will be used
in the proof of our main result.

Lemma 8 If
∑

h ahx
(Ih

Jh

)
is an element of K, with ah ∈ C, and σ ∈ Sn then

∑
h ahx

(
σ ·Ih
σ ·Jh

)

is in K too.

Proof Indeed
∑

ahx
(Ih

Jh

)
is an element of K if and only if

∑
ahpfIh

pfJh
= 0 by

Proposition 7. If we change the enumeration of the rows and columns of an anti-
symmetric (n + 1) × (n + 1) matrix from 1, 2, . . . , n + 1 to σ(1), σ (2), . . . , σ (n), n + 1
the same relation holds. But in terms of the original enumeration this relation is∑

ahpfσ ·Ih
pfσ ·Jh

= 0; hence our claim follows using again Proposition 7. 
�

Lemma 9 If f .= ∑
h ahx

(Ih
Jh

)
is an element of Kn, with ah ∈ C, and Ih, Jh ⊂ {1, . . . , n −

1} for all h, then we may consider f as an element of Kn−1. On the converse any relation
in Kn−1 may be considered as an element of Kn.

Proof The element f ∈ Kn corresponds to the relation
∑

ahpfIh
pfJh

= 0 in terms
of pfaffians. These pfaffians involve the rows and columns 1, 2, . . . , n − 1, n + 1
by hypothesis. Now we change the enumeration from 1, 2, . . . , n − 1, n, n + 1 to
1, 2, . . . , n − 1, n + 1, n. The same relation is still true with the new enumeration;
but it is obtained by completing each odd length row I by adding n and not n + 1
before computing the pfaffian pfI . Hence this last relation is the same we obtain if
we consider f has an element of the ring A for n − 1 instead of n.

The second claim is analogously proved using again Proposition 7. 
�
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If I = i1 . . . ir is a row and 1 � s � n an integer, let js(I) be the row
i1 · · · ihsih+1 · · · ir where h is the maximal index such that it � s for all t = 1, . . . , h.
Notice that js(I) is standard if I is standard and s �∈ I.

Let ds(I) be the row obtained by deleting any occurrence of s in I. We have that
ds(I) is standard if I is standard.

Further we define js, ds on weight vectors by js(x(I)) .= x( js(I)), ds(x(I)) .=
x(ds(I)) respectively, for all standard rows I; clearly jsx(I) = 0 if and only if s ∈ I.
We extend js and ds from A1 to S∗A as algebra homomorphisms.

Lemma 10 Let f .= ∑
h ahx

(Ih
Jh

)
be an element of K with Ih, Jh standard rows for all

h. If s �∈ Ih ∪ Jh for all h, then js( f ) ∈ K. If s ∈ Ih ∩ Jh for all h, then ds( f ) ∈ K.

Proof Given a subset � of {1, 2, . . . , n} and a standard row I ⊂ � let c�(I) be the
standard row complementary to I in �. We define c� on weight vectors by c�(x(I)) .=
x(c�(I)) for all x(I) such that I is a standard row contained in �; further we extend
it as an algebra homomorphism from the subalgebra A� of A generated by x(I) with
I ⊂ � to A.

By Corollary 5, Lemmas 8 and 9 we have: if f ∈ A� ∩ K then c�( f ) ∈ K.
Now let �1

.= {1, 2, . . . , s − 1, s + 1, . . . , n}, �2
.= {1, 2, . . . , n}. If I is a standard

row and s �∈ I then js(I) = c�2 c�1(I) and hence our first claim follows.
The second claim is analogous; indeed if s ∈ I then ds(I) = c�1 c�2(I). 
�

5 Shuffling Relations

5.1 Shuffling Polynomial

We say that a tableau is r–standard if all rows are standard, the entries of T do not
decrease along the first r columns but the same is not true in the (r + 1)–th column.
If morever T has two rows then we may write it as T = ( I J

HK

)
where I = i1i2 · · · ir,

J = j1 j2 · · · js, H = h1h2 · · · hr+1 and K = k1k2 · · · kt with s > t and with the following
inequalities

T =
⎛

⎝
i1 < i2 < · · · < ir < j1 < j2 < · · · · · · < js

h1 < h2 < · · · < hr < hr+1 < k1 < · · · < kt

⎞

⎠

We call this subdivision of the two rows of T its canonical form. Notice in particular
that we have a chain of strict inequalities from h1 to js, hence there is no repetition
in H J.

However, despite the name, a standard tableau is not r–standard for any r.

Definition 11 Given an r–standard tableau T = ( I J
HK

)
in canonical form, we define

the shuf f ling polynomial of T as the following element of S2A1:

�(T)
.=
∑

(−1)
h(h+1)

2

[|J \ K| + h
h

]

−1

ε(H′ J′)ε(Z2 K′
1) x

(
I J′K′

1

H′K′
2

)



970 R. Chirivì, A. Maffei

with h .= |H| − |H′|, Z1 = Z1(T)
.= I ∩ H and Z2 = Z2(T)

.= J ∩ K as ordered
rows and the sum running over the set I(T) of all (J′, H′, K′

1, K′
2) ∈ SR×4

n such that

(1) |H′| � |H|,
(2) H′ � J′ = H � J,
(3) K′

1 � K′
2 = K,

(4) Z1 ⊂ H′,
(5) Z2 ⊂ J′ ∩ K′

2.

For short let

α(J′, H′, K′
1, K′

2)
.= (−1)

h(h+1)

2

[|J \ K| + h
h

]

−1

ε(H′ J′)ε(Z2 K′
1).

Remark 12 Notice that T appears in �(T) with coefficient 1 and each tableau in
�(T) but T fulfills the conditions of a straightening relation for T.

5.2 Combinatorial Properties of Shuffling Polynomials

In the next purely combinatorial lemma we prove that the shuffling polynomial of a
tableau does not change if we insert or remove a common entry in the rows.

Lemma 13 Let T be a non standard tableau with two standard rows.

(1) If T does not contain s, then js(T) is not standard and js
(
�(T)

) = �
(

js(T)
)
.

(2) If s is contained in both rows of T, then ds(T) is not standard and ds(�(T)) =
�(ds(T)).

Proof We prove the first claim. Assume that T = ( I J
HK

)
is r–standard in canonical

form. Consider first the case s < hr+1. Then js(T) is (r + 1)–standard, js(T) = ( js(I) J
js(H) K

)

in canonical form and the map

(J′, H′, K′
1, K′

2) �→ (J′, js(H′), K′
1, K′

2)

gives a bijection from I(T) to I( js(T)).
Let f be an addend in �(T), we compare js( f ) with the corresponding term in

�( js(T)) under this bijection. Clearly we have

(i) | js(H)| − | js(H′)| = |H| − |H′|,
(ii) J � K is the same set for T and for js(T) and

(iii) Z2 and K′
1 do not change in this bijection.

Let k be the number of elements of J′ smaller than s. Then we have

ε( js(H′)J′) = (−1)kε(H′ J′)

ε( js(I)J′K′
1) = (−1)kε(I J′K′

1)

ε( js(H′)K′
2) = ε(H′K′

2)
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Hence

ε( js(H′) J′) x
(

js(I)J′K′
1

js(H′)K′
2

)
= ε( js(H′)J′)ε( js(I)J′K′

1)ε( js(H′)K′
2) x

(
( js(I)J′K′

1)
�

( js(H′)K′
2)

�

)

= ε(H′ J′)ε(I J′K′
1)ε(H′K′

2)x
(

js((I J′K′
1)

�)

js((H′K′
2)

�)

)

= ε(H′ J′)ε(I J′K′
1)ε(H′K′

2) js

(
x
(

(I J′K′
1)

�

(H′K′
2)

�

))

= ε(H′ J′) js

(
x
(

I J′K′
1

H′K′
2

))

which implies that the two terms we are considering are equal. This proves
js(�(T)) = �( js(T)).

Assume now that s > hr+1. Then js(T) is r–standard, js(T) = ( I js(J)

H js(K)

)
in canonical

form and the map

(J′, H′, K′
1, K′

2) �→ ( js(J′), H′, K′
1, js(K′

2))

gives a bijection from I(T) to I( js(T)). As above we compare the corresponding
terms in �(T) and �( js(T)) under this bijection. We have: js(J)� js(K) = J�K while
|H| − |H′| does not change in this bijection. Let k be the number of elements of H′
bigger than s and m be the number of elements of K′

1 smaller than s. Then we have

ε(H′ js(J′)) = (−1)kε(H′ J′)

ε(I js(J′)K′
1) = (−1)mε(I J′K′

1)

ε(H′ js(K′
2)) = (−1)kε(H′K′

2)

ε( js(Z2)K′
1) = (−1)mε(Z2 K′

1)

which, as above, implies that the two corresponding terms are equal and hence
js(�(T)) = �( js(T)).

Now we see how the second claim follows from the first one. Indeed let T be
a non standard tableau containing s in both rows as in the second claim and let
T .= ds(T). Notice that js(T) = jsds(T) = T since T has standard rows, hence T can
not be standard otherwise also T = js(T) should be standard. So we may apply the
first claim to T and find js(�(T)) = �( js(T)) = �(T). Apply ds to both sides of
this identity and notice that ds js = Id to conclude �(dsT) = ds js�(T) = ds�(T) as
claimed. 
�

Now we see another combinatorial property of the shuffling polynomials. We want
to prove that if we permute the entries of a tableau with a permutation satisfing
certain assumptions then the shuffling polynomial may change only by the sign.

Let us start by stating these assumptions of compatibilities between an r–standard
tableau T = ( I J

HK

)
in canonical form and a permutation σ ∈ Sn. Given a row I let Iσ

be the row (σ · I)� and let Tσ .= (
(I J)σ

(HK)σ

)
. We say that σ is compatible with T if Tσ

is again r–standard with canonical form
( Iσ Jσ

Hσ Kσ

)
and Kσ = σ · K. In particular notice

that in this case we have Z1(Tσ ) = Z1(T)σ and Z2(Tσ ) = Z2(T)σ .
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Lemma 14 If T is r–standard and σ is T–compatible then σ · �(T) = ±�(Tσ ).

Proof First notice that the map

(J′, H′, K′
1, K′

2) �−→ (J′σ , H′σ , K′σ
1 , K′σ

2 )

gives a bijection from I(T) to I(Tσ ).
If (H′, J′, K′

1, K′
2) is an element of I(T), consider the following sequence of

transformations which reorder the row H′σ J′σ

H′σ J′σ τ−1
σ ·H′ ,τ−1

σ ·J′−−−−−→ (σ · H′)(σ · J′) σ−1−−−−→ H′ J′ τH′ J′−−−−→ H J
σ−−−−→

σ−−−−→ (σ · H)(σ · J)
τσ ·H ,τσ ·J−−−−→ Hσ Jσ =−−−−→ (H′σ J′σ )�.

So, using that the sign of στH′ J′σ−1 is that of τH′ J′ , we obtain

ε(H′σ J′σ ) = ε(σ · H′)ε(σ · J′)ε(H′ J′)ε(σ · H)ε(σ · J).

Moreover by σ · K = Kσ we have σ · K′
1 = K′σ

1 , σ · K′
2 = K′σ

2 and also ε(Z2 K′
1) =

ε(Z σ
2 K′σ

1 ), hence

ε(H′ J′)ε(Z2 K′
1) σ · x

(
I J′K′

1

H′K′
2

)

= ε(H′ J′)ε(Z2 K′
1)ε(σ · I)ε(σ · J′)ε(σ · H′)x

(
Iσ J′σ K′σ

1

H′σ K′σ
2

)

= ε(σ · I)ε(σ · J)ε(σ · H)ε(H′σ J′σ )ε(Z σ
2 K′σ

1 )x
(

Iσ J′σ K′σ
1

H′σ K′σ
2

)
.

Set ε
.= ε(σ · I)ε(σ · J)ε(σ · H) and notice that |J′| = |J′σ | and |H| − |H′| = |Hσ | −

|H′σ |. From the above identities we conclude

σ · �(T) =
∑

(H′,J′,K′
1,K

′
2)∈I(T)

α(H′, J′, K′
1, K′

2) σ · x
(

I J′K′
1

H′K′
2

)

=
∑

(H′,J′,K′
1,K

′
2)∈I(T)

ε α(H′σ , J′σ , K′σ
1 , K′σ

2 ) x
(

Iσ J′σ K′σ
1

H′σ K′σ
2

)

= ε �(Tσ )

proving our claim. 
�

6 Proof of the Shuffling Relations

In this section we prove our main result.

Theorem 15 If T is a non standard tableau with two standard rows, then �(T) is an
element of K.
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Proof Assume that T is r–standard, T = ( I J
HK

)
in canonical form and let R1

.= I J and
R2

.= HK be its first and second row respectively.

Step 1. If R1 ∪ R2 �= {1, 2, . . . , n} then there exists σ ∈ Sn such that n �∈ σ · T and
σ(i) < σ( j) for any pair 1 � i < j � n in T. The permutation σ is clearly
T–compatible and, in particular Tσ = σ · T, so �(σ · T) = ±σ · �(T) by
Lemma 14.
Using induction on n we may suppose that �(σ · T) ∈ Kn−1; but then
�(σ · T) ∈ Kn by Lemma 9. Hence �(T) = ±σ−1 · �(σ · T) ∈ Kn by
Lemma 8 and our claim is proved.
The inductive base step is automatically true since for n = 1 there are no
non standard tableaux.

Step 2. Now we proceed by induction on |R1 ∩ R2|. Suppose s ∈ R1 ∩ R2 and
let T .= ds(T). Since s �∈ T we have �(T) ∈ K by Step 1. Hence
js(�(T)) ∈ K by Lemma 10. But js(�(T)) = �( js(T)) by Lemma 13 and
moreover js(T) = T since T has standard rows. This proves our claim.
In the following steps we assume that R1 and R2 do not intersect proving
the induction base.

Step 3. Now we show that it suffices to prove our claim for a particular tableau.
Indeed let I = i1i2 · · · ir, J = j1 j2 · · · js, H = h1h2 · · · hr+1, K = k1k2 · · · kt,
with 2r + s + t + 1 = n since we are assuming R1 ∪ R2 = {1, . . . , n} and
R1 ∩ R2 = ∅.
By R1 ∩ R2 = ∅ we deduce that there exists (a unique) σ ∈ Sn such that
σ(iu) = u for u = 1, . . . , r, σ(hu) = u + r for u = 1, . . . , r + 1, σ( ju) =
u + 2r + 1 for u = 1, . . . , s and σ(ku) = u + 2r + s + 1 for u = 1, . . . , t. It
is clear that

Tσ =σ ·T =T0 .=
(

1 2 · · · r 2r + 2 2r + 3 · · · · · · 2r + s + 1
r + 1 r + 2 · · · 2r 2r + 1 2r + s + 2 · · · n

)
.

In particular Tσ is r–standard and σ is T–compatible. Hence �(T) =
σ−1 · �(T0) by Lemma 14 and we see that if we prove �(T0) ∈ K then
�(T) ∈ K by Lemma 8.
So in the sequel we assume T = T0.

Step 4. In this step we prove our claim for K = ∅. For short we write (J′, H′)
instead of (J′, H′, ∅, ∅).
Notice that in

�(T) =
∑

(J′,H′)∈I(T)

α(J′, H′)x
(

I J′

H′

)

only T is non standard. Let �(T) be the unique element of S2A1

corresponding to the straightening relation for T. Each tableau
(R′

1
R′

2

)
in

�(T) verifies R′
1 � R1, R2 and R′

2 � R1, R2; using this it is easy to see
that there exists (J′, H′) ∈ I(T) such that R′

1 = I J′ and R′
2 = H′. So we

may write

�(T) =
∑

(J′,H′)∈I(T)

δ(J′, H′)x
(

I J′

H′

)



974 R. Chirivì, A. Maffei

for some coefficients δ(J′, H′) ∈ C. If we show that α(J′, H′) = δ(J′, H′)
for all (J′, H′) ∈ I(T) then we have �(T) = �(T) ∈ K and our claim is
proved.

Step 4.1. Now we want to prove that α(J′, H′) = δ(J′, H′) for all
(J′, H′) ∈ I(T) with r + 1 ∈ H′. We compare drer�(T) with drer�(T).
Let

T =
(

dr(I)J
dr+1(H)

)
=
(

1 2 · · · r − 1 2r + 2 2r + 3 · · · n
r + 2 r + 3 · · · 2r 2r + 1

)
.

Using the definition of dr and er we have

drer�(T) =
∑

(J′,H′)∈I(T), r+1∈H′
α(J′, H′)x

(
dr(I)J′

dr+1(H′)

)
.

The map (J′, H′) �−→ (J′, dr+1(H′)) is a bijection from I(T) and
I(T) (with inverse (J′, H′) �−→ (J′, jr+1(H′))). Moreover, adding the
corresponding tableau as superscript for clarity, we have

αT(J′, dr+1(H′)) = (−1)
h(h+1)

2

[
n − 2r − 1 + h

h

]

−1

ε((H′ \ r + 1)J′)

with h = |dr+1(H)| − |dr+1(H′)| = |H| − |H′| and ε((H′ \ r + 1)J′) =
ε(H′ J′) since r + 1 ∈ H′ J′ is the minimum element. Hence
αT(J′, dr+1(H′)) = αT(J′, H′); this proves that drer�(T) = �(T).
But then drer�(T) = �(T) ∈ K by Step 1 since r �∈ T. Notice that T
is the unique non standard tableau in �(T), so drer�(T) is the element
�(T) of S2A1 corresponding to the straightening relation of T since it
is an element of K and the coefficient of T is 1 in both elements.
Consider now drer�(T). By the definitions

drer�(T) =
∑

(J′,H′)∈I(T), r+1∈H′
δ(J′, H′)x

(
dr(I)J′

dr+1(H′)

)
.

Hence also in drer�(T) the unique non standard tableau is T and it
appears with coefficient 1. But K is closed by er since it is a g–module
and it is closed by dr by Lemma 10 so drer�(T) = �(T) being the
straightening relation for T unique.
Hence we have showed that drer�(T) = �(T) = drer�(T); in partic-
ular α(J′, H′) = δ(J′, H′) for all (J′, H′) ∈ I(T) with r + 1 ∈ H′ that
is our claim for this step.
Step 4.2. Our next claim is now α(J′, H′) = δ(J′, H′) if H′ � �= ∅.
Indeed let r + 1 � i � n and consider ei�(T). We find at once

ei�(T) =
∑

(J′,H′)∈I(T),i∈H′,i+1∈J′
δ(J′, H′)x

(
I, J′(i + 1 �−→ i)

H′

)

+
∑

(J′,H′)∈I(T),i+1∈H′,i∈J′
δ(J′, H′)x

(
I J′

H′(i + 1 �−→ i)

)
.
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In particular it is easy to see that all tableaux in ei�(T) are standard;
but this is an element of K, hence ei�(T) = 0. Each tableau in ei�(T)

is obtained in exactly two ways: replacing i + 1 by i in the first row or
in the second row. So we have proved that δ(J′′, H′′) = −δ(J′, H′) if
i and i + 1 appear in different row in

(I J′
H′
)

and
(I J′′

H′′
)

is obtained from(I J′
H′
)

by swapping i and i + 1.
Since each tableau

(I J′
H′
)

with H′ �= ∅ is reached by a finite number
of swaps of i, i + 1 with r + 1 � i � n from a tableau containing r + 1
in the second row, we have α(J′, H′) = δ(J′, H′) for all tableaux with
H′ �= ∅ using the result of the previous step.
Step 4.3. So �(T) − �(T) = c · x

(I H J
∅

)
and we want to show c = 0.

Let M be the (n + 1) × (n + 1) antisymmetric matrix of Example 6 all
of whose pfaffians are 1 and identify the elements of S∗A1 with the
corresponding polynomials as in the Proposition 7. So c = �(T)(M)

since �(T)(M) = 0 by �(T) ∈ K and x
(I H J

∅

)
(M) = 1. We want to

show that �(T)(M) = 0 proving c = 0 and �(T) = �(T).
We have

�(T)(M) =
∑

(J′,H′)∈I(T)

(−1)
h(h+1)

2

[
n − 2r − 1 + h

h

]

−1

ε(H′ J′)

=
|H|∑

h=0

(−1)
h(h+1)

2

[
n − 2r − 1 + h

h

]

−1

·
∑

H′⊂H J, |H′ |=|H|−h

ε(H′ J′)

Notice that by the definition of ε on rows we have∑
H′⊂H J, |H′ |=|H|−h ε(H′ J′) = ∑

τ (−1)τ , where the sum runs
on the set of minimal rapresentatives of the quotient
S|H|+|J|/S|H|−h × S|J|+h = Sn−r/Sr+1−h × Sn−2r−1+h. Hence the
previous sum is the Poincaré polynomial of this quotient evaluated in
−1, so

∑
H′⊂H J, |H′ |=|H|−h ε(H′ J′) = [ n−r

r+1−h

]
−1

by Remark 3. We find

�(T)(M) =
r+1∑

h=0

(−1)
h(h+1)

2

[
n − 2r − 1 + h

h

]

−1

[
n − r

r + 1 − h

]

−1

and this is zero by Lemma 2 with s = |H| = r + 1, m = |H| + |J| =
n − r and q = −1.
This finishes the proof that �(T) ∈ K for all non standard tableaux T
with K = ∅.

Step 5. In this final step we prove that our claim for generic K follows by the
case K = ∅ of the previous steps. Let T = ( I J

HK

)
be as in the conclusion of

Step 3; I = 12 · · · r, J = 2r + 2 · · · 2r + s + 1, H = r · · · 2r + 1 and K =
2r + s + 2 · · · n.

We want to proceed by induction on |K|. Indeed, for u = 0, . . . , |K| let Tu
.=( I J

H,Ku

)
, where Ku is the standard row containing the first u entries of K, and notice

that the base inductive step, i.e. �(T0) ∈ K, has already been proved.
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Now suppose that �(Tu) ∈ K for 0 < u < |K| and let k .= 2r + s + 1 + u be the last
entry of Ku. By Lemma 9 we have �(Tu) ∈ Kk ⊂ Kk+1, so we apply e .= ek+1 + ek+2

to �(Tu). By the definition of ek+1 and ek+2 (for n = k + 1) we see that the operator
e produce two tableaux from each tableau in �(Tu) by adding the entry k + 1 in the
first and the second row. It is clear that

αTu+1(J′, H′, jk+1(K′
1), K′

2) = αTu+1(J′, H′, K′
1, jk+1(K′

2)) = αTu(J′, H′, K′
1, K′

2)

by the definition. Moreover I(Tu+1) is the set of tableaux obtained from I(Tu) by
applying e. So we conclude �(Tu+1) = e · �(Tu) ∈ Kk+1 ⊂ K and this finishes the
proof of the theorem. 
�

So we may state our result in terms of shuffling relations.

Corollary 16 For any non standard tableau T with two standard rows, �(T) is a
shuf f ling relation for T; the set of all such shuf f ling relations generate the kernel of
the multiplication map S2A1 −→ A2 and the ideal of relations def ining Gr in P(V∗

ωn+1
).

One may hope to simplify �(T) by considering only the tableaux with K′
1 = ∅,

in analogy with the shuffling relations for determinants. This is not possible as the
following example for n = 4 shows.

If T = (23
14

)
we have:

�(T)=x
(

23

14

)
−x

(
13

24

)
+x

(
12

34

)
−x

(
123

4

)
+x

(
234

1

)
−x

(
134

2

)
+x

(
124

3

)
−x

(
1234

∅

)
,

�

(
234

1

)
= x

(
234

1

)
− x

(
134

2

)
+ x

(
124

3

)
− x

(
123

4

)
.

So, if the sum �(T) of all elements with K′
1 = ∅ in �(T) (i.e. of those with 4 in the

bottom row) were an element of K, then we have also

�(T) − �(T) − �

(
234

1

)
= −x

(
1234

∅

)
∈ K

that is impossible since
(1234

∅

)
is standard.

7 Conclusion and Relations in Arbitrary Characteristic

We begin by restating the main result in terms of pfaffians and we slightly generalize
it to a commutative unitary base ring R. Let BR = R[xij|1 � i < j � n + 1]. It is easy
to check that the pfaffians of an antisymmetric matrix as defined in Section 4 is
a polynomial in the variables xij with integer coefficients so we can consider the
elements pfI as elements of BR. For a tableau T, let pfT ∈ B be the product of the
pfaffians which appear in T. Since, as we have already noticed pfij = xij, the ring
BR is spanned as an R-module by the elements pfT . Notice that �(T) has integral
coefficients hence we may define �pf(T) as the element of BR obtained by mapping
x(I) �−→ pfI for I ∈ Rn and I �= ∅, and mapping x(∅) to 1.
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Theorem 17 Let R be a commutative unitary ring.

(1) The set of pfT with T standard and T not containing the empty row is an R–basis
of BR;

(2) the ring BR is def ined by quadratic (but not necessarily homogenous) relations
in the generators pfI ;

(3) for all non standard T with two rows we have �pf(T) = 0 and these equations
generate (as a R–module) the set of quadratic relations.

Proof For R = C the result follows by Corollary 16 and Section 4.2. For R = Z

notice that BZ is a subring of BC; in particular the polynomial �pf(T) vanishes. Since
pfT has coefficient 1 in �pf(T), this allows to write any element pfT as a Z–linear
combination of pfaffians of standard tableaux, clearly we may assume also that the
empty row does not appear. Since the polynomials pfT with T as in (1) are linear
indipendent over C we have proved that they are a Z–basis, proving (1) for Z.

Now (2) and (3) for Z follows by a standard argument. Indeed consider the
ring C generated over Z by indeterminates tI with I ∈ SRn, I �= ∅ module the
ideal generated by the polynomials �C(T) where T runs in the set of non standard
tableaux with two standard rows obtained by mapping x(I) to tI and x(∅) to 1 in
�(T).

Arguing as above we see that also C has a basis given by the set of tT with T
running in the set of standard tableaux without the empty row. So the map tI �−→ pfI
is an isomorphism and (2) and (3) follows.

The general case follows by BR = BZ ⊗Z R. 
�

In a similar way we generalize Corollary 16 from C to R with R a field or the
integers. The group G, the variety Gr, and the line bundle L may be defined in
a flat way over the integers, hence they may be defined over R and we denote
by GR, GrR and LR the associated schemes and line bundles. Let us define AR as⊕

m�0 H0(GrR,Lm
R). As proved in Remark 7 in [6], AZ is generated in degree 1 and

if R is a field then AR is isomorphic to AZ ⊗Z R. So arguing as in the proof of the
previous theorem we have the following result.

Theorem 18 Let R be the set of integers or a f ield.

(1) The sections y(T) with T standard are an R–basis for the ring AR;
(2) the ring AR is def ined by quadratic (but not necessarily homogenous) relations

in the generators x(I);
(3) for all non standard T with two rows we have �(T) = 0 and these equations

generate (as a R–module) the set of quadratic relations.
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