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Abstract We present explicit formulas for a set of generators of the ideal of relations
among the pfaffians of the principal minors of the antisymmetric matrices of fixed
dimension. These formulas have an interpretation in terms of the standard monomial
theory for the spin module of orthogonal groups.
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1 Introduction

Let X,+; be the set of (n+ 1) x (n 4+ 1) antisymmetric matrices over the complex
number. It is well known that the determinant X,,;; > X —— det X € Cis the square
of a polynomial function X, 3 X —— Pf(X) € C called the pfaffian of a matrix.
In particular only the even dimensional principal minors of X € X,,;; have non zero
pfaffian.

Let B be the ring Clx;;| 1 <i < j < n+ 1]. As a set of generators of B we choose
the pfaffians of the (even dimensional) principal minors of matrices in X,,;;. In this
paper we want to describe the relations among these generators. This is a classical
problem and may be seen as analogous to the Pliicker relations for determinants.
Indeed the formulas we present are very similar to Pliicker formulas. In order to
state such formulas we introduce some notations.

Presented by Peter Littelmann

R. Chirivi (X) - A. Maffei
Dip. di Matematica, Universita di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
e-mail: chirivi@dm.unipi.it

@ Springer



956 R. Chirivi, A. Maffei

The pfaffians of the principal minors are indexed by lists of even length of integers
in {1,2,...,n+ 1}, or, equivalently, by row, i.e. list I = iyi, - - - i, (of any length) of
integersin {1, 2, ..., n} in the following way: define I° to be either the same sequence
I'if r is even or the sequence i1i - - - ir, n + 1 if r is odd and let pf; be the polynomial
function on X,,;; given by the pfaffian of the principal minor with rows and columns
in I°. For convenience we set also pf,, to be equal to the constant polynomial 1. This
indexing procedure may look unusual but it makes it easier to write the relations
among pfaffians.

Consider the action o - (i - - - i;) = 0 (i)) - - - 0 (i,) of the symmetric group S, on the
set of rows. Given a row / containing distinct entries, let t; € S, be the permutation
reordering the entries of / in increasing order and fixing all integers not appearing in
I and let ¢(I) = (—1)". We have pf, ; = ¢(I)pf; and pf; = 0 if there are repetitions
in 1. If I and J are rows we set 1J to be the row obtained by listing the elements of J
after the elements of 1. For arow I =i, ---i,, let |I| = r be its length.

Let us define an order on rows as follows: R =ijir---i, < S=jijp---jsifr>s
and i, < j, for h=1,2,...,s. For each pair of rows R, S with increasing entries
which are not comparable with respect to this order we construct a relation among
pfaffians in the following way. Assume R is not shorter than § and let R = IJ and
S = HK be such that |I|=r, |[H| =r+ 1, any entry of [ is less or equal to the
corresponding entry of H and the first entry of J is greater than the last entry of
H; so we have the first violation of the order condition in the (r + 1)-th column.

Theorem For each pair of rows as above, we have the following relation among

pfaffians:

At |] K| +h 1y /

S=n*E [ \ N } e(H'J)e(Z2K}) Pty Py, = 0 (1)
-1

with h=|H|— |H'|, Z, =1INH and Z, =JNK as ordered rows and the sum

running over the set of all quadruples (J', H', K|, K’) of rows with increasing entries

such that

(1) |H'| < H|,

2) HuJ =Hul,
3) KjuK,=K,
4) Z CcH,

5) Z,cJnNK..

Moreover these relations generate the ideal of relations among pfaffians.

In the formula above we have denoted, for 0 < k < m, by ['Z]q the gaussian

binomials defined as the element “‘g?{;i;g:ﬁ; '.')(_lnzlqj;:ﬂ) of C[g] and [}]
polynomial evaluated in —1.

Our interest for this topic stems from the standard monomial theory. Consider
V = C*"*? equipped with a non degenerate symmetric bilinear form such that the
subspaces V; and V,, generated respectively by the first and the last n 4 1 vectors of
the canonical basis of V, are totally isotropic. The variety of the (n + 1)-dimensional
totally isotropic subspaces of V has two connected components; let the positive
lagrangian grassmannian Gr be the component of those subspaces whose intersection

is this

-1
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Pfaffians and Shuffling Relations for the Spin Module 957

with V) is even dimensional. The special orthogonal group of V acts on this variety,
let G = Spin(2n + 2) be its simply connected cover and S the Spin module of G.

Then Gr embeds into P(S) and the study of relations among pfaffians is equivalent
to the study of the equations defining the cone over this embedding of Gr (see
Section 4). Notice that on the grassmannian side we have a natural action of a bigger
group of symmetries which is not apparent on the pfaffian picture of the problem.
Moreover in the study of the coordinate ring of this embedding we can make use of
the standard monomial theory.

The standard monomial theory is a very general theory which constructs a basis of
the projective coordinate ring given by the immersion of a generalized grassmannian
or a flag variety. The prototypical example of the theory is given by the work of
Hodge on the Pliicker immersion of a grassmannian [2]. The idea of Hodge was
generalized to a projective immersion of partial flag varieties for a semisimple group
G (and even to a Kac Moody one) between the seventies and the nineties by the work
of many peoples, Seshadri, Lakshmibai, Musili, De Concini, Eisenbud, Procesi and
Littelmann. The results of standard monomial theory have many consequences both
in representation theory and in the study of singularities of Schubert varieties and
other related varieties. However the theory does not give an explicit description of
the equations beyond the original case of the Pliicker immersion of a grassmannian
and some other very simple cases.

In our case the standard monomial theory takes the following form. Let A be
the coordinate ring of the embedding Gr — P(S) and let A,, be the subspace of
homogeneous polynomials of degree m. There exists a basis x(I) of A; indexed by
increasing rows [ as above. A tableau T = (I, I, --- , 1) is simply a sequence of
rows; it is standard if all rows have increasing entries and I; < I, < --- < [,,,. The set
of standard monomials x(7T) = x(I;)x(l») - --x(I,,) for T standard are a basis for A,),.
So each section x(7") with T non standard may be written as a linear combination of
standard ones, these relations are called straightening relations for A. Since the ideal
of relations in the generators x(/) is generated by quadratic elements it is enough to
consider only non standard tableaux with two rows. An important point is that in the
straightening relation for the tableau 7' = (/, J) only standard tableaux (H, K) with
H < I, Jand K > I, J do appear.

This is the core idea of the standard monomial theory: to replace the knowledge of
the (very) complicated explicit straightening relations by that of the order condition
stated above. Indeed this condition is sufficient to deduce quite a lot about the
geometry of the flag variety Gr.

The equations we write down for the generators x(/) are given by formula 1
replacing pf; with x(I). These are not straightening relations but they are what we
call shuffling relations: given a non standard tableau 7" with two rows we say that the
element f =Y ayx(I;)x(Jy), with the a;, € C, is a shuffling relation for 7 if f =0,
T appears with coefficient 1 and all other tableaux do fulfill the order condition
of a straightening relation for 7. In particular we are not asking that all tableaux
but 7 must be standard. It is clear that by a finite number of steps we may deduce
the straightening relations from the shuffling relations; so these weaker relations are
still a set of generators for the ideal of relations. (The name ‘shuffling’ is the same
name used for the analogous relations for the determinants of minors of a matrix
of indeterminates.) Notice that also the classical Pliicker equations are shuffling
relations and not straightening relations.
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From the point of view of standard monomial theory, the easiest cases, which were
also the first ones to be analyzed [5], are those in which the embedding is in the
projective space of a minuscule G-module. Recall that an irreducible G-module is
said to be minuscule if its weights are a single orbit under the Weyl group.

The condition for a module (for a general semisimple group) to be minuscule is
very strong and, so, very few modules are minuscule. Moreover for all minuscule
modules for classical groups but the spin module explicit shuffling relations are
known. Indeed all such modules have an extremely simple order structure except the
fundamental representations of type A which corresponds to the Plicker immersion
of a grassmannian and the Spin modules. In particular our module S is a minuscule
one, and the other are either twisted form of S or restriction of S to Spin(2n + 1), so
the same result for these other cases may be easily deduced from our result.

For the exceptional groups only two modules for E¢ (one dual to the other) and
one module for E; are minuscule. (For E; one may see [1] for some hints to explicit
formulas for straightening relations.)

After completing this paper we came to known that formulas very similar to
ours have already been found by Kustin in [4]. However the proof in that paper
is very different from our: while being very elementary, since it uses only multilinear
algebra, it does not exploit the role played by the representation theory of the spin
module. So we still think our proof of the shuffling relations may have some interest;
at least we hope this paper may bring some attention to the paper of Kustin which,
in our opinion, is not very known.

The paper is organized as follows. In the first section we collect some combinato-
rial definitions about rows, tableaux and standardness and the definition and some
properties of the gaussian binomials. The second section introduce the spin group,
the spin module and the related grassmannian. Then the standard monomial theory
for this module is shortly discussed with a remark about a general invariance of
the relations defining a flag variety. In the third section we see the definition of a
pfaffian and the relations of such polynomial functions with the spin module. Using
this links we are able to prove some invariance properties of the ideal of relations.
In Section 5 we introduce our formulas and prove some combinatorial properties of
such formulas. In Section 6 we prove that the formulas are indeed shuffling relations.
Finally in the last section we extend these results to an arbitrary field.

2 Combinatorics
2.1 Rows and Tableaux

We call a finite sequence (maybe empty) of integers a row. Let R, D R} D SR,
be respectively the set of all rows in the alphabet {1, 2, ..., n}, the subset of rows
containing distinct elements and the subset of standard rows, i.e. of rows I = iji - - - i,
with i} <i; <--- <i,. We define the lenght of the row [ =iji,---i, as~|I| =r,
moreover the (standard) empty row is denoted by @. If I € R} we define I as the
complementary tow jy ... j,—, of I where {ij,....,}u{ji,..., ju—r} =1{1,2,...,1}
and i< p<...<jup. I =ij...0, and J = j; ... j; are two rows we set IJ =
P A
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Pfaffians and Shuffling Relations for the Spin Module 959

Given an integer & we define [ x & as the row obtained by adding 4 to the end
of the row I, further if k is another integer then I(h — k) is the row obtained by
replacing all occurrences (if any) of /4 by k in /. Hereafter we write /& € [ to say that
h appears as an element in the row I and, in general, we use the language of sets with
rows when this does not create any ambiguity.

The symmetric group S, acts on the set of rows: for I = iji, ---i, and o € S, we set
o-I=0(i1)o(r) o). Givenarow [ =ijip--- i, in R} let IS be the row with the
same entries of / rearranged in ascending order, moreover let 7; € S, be such that
77 - I = IS and 7 fixes each integer i ¢ I, let also (I) be the sign of 7;.

We define the partial order for the standard rows: if I =, ---i,, J = j; --- j; are
standard rows we set I < Jif |I| > |J|and i, < j, forall 1 <m < |J|.

A tableau is a sequence of rows T = (I, I, -+, Iy) with |I}| > || = -+ > |14];
it is standard if all rows are standard and I} < I, < --- < I, the degree of T is the
number d of rows. If 1, =i 1im2- - imr, for m =1,...,d then, as customary, we

write T arranged vertically and left justified

R T
i21 irn R e 12,r2
a1 da2 o ldry

so that 7 is standard if and only if its entries increase along the rows and do not
decrease along the columns.

Finally let R? be the subset of rows of even length of R,, and define analogously
R0 and SR). Givenarow I € R, let I € R", | be either the same row if | 1| is even

n+1
or the row I x (n + 1) otherwise; then the map I > I° is clearly a bijection between
SR, and SR, .

2.2 Gaussian Binomials

Let g be an indeterminate and define the gaussian binomials as the following
elements of C[q]: for all m, k € Z

fo<k<m

m ) (I—-¢g™m1 - qul) (1= qm7k+1)
|:k] - (1—-g"hHA —gk-H.-.-(1—¢q)
q

otherwise.

The evaluation of g to —1 is of particular interest for our aims; the following result
is easily proved by induction.

Lemma 1 Forall 0 < k < m we have

LT
|:m] _ ( Izc ) if m is odd or k is even
k], 5
0 otherwise.

In the next Lemma we see a g—analogous of a well known binomial formula; it is
needed in the proof of our main result.
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960 R. Chirivi, A. Maffei

Lemma 2 Forall1 <s < mwe have
Scerrge[ ™[ 2o
s—h h
h=0 q q

Proof Let y,  be the left hand side of the above identity. We use induction on m. By
the definition of the gaussian binomials we see that foralln > 0and 0 < k < n+1

|:n+ 1:| =g |:ni|
k p 1 _qn+lfk k q

Hence for all 1 < s < m we have

s

wey [m+1] [m+1—-s+h
Wm 5 = (_1)hq2|: ] |: :|
e= —h), q

Pt h h
D NIt e 2 s A | e
P 1 — qm+l—s+h 1 — qm+1—s s—h 4 h q
_ gm+l
— s
=0

by induction on m.
So we need to show that v, ,, = 0 for all m > 1 to complete the proof. But

31yt [
Ymm = Y _(=1)q [h]
h=0 q

and our claim follows by evaluating in t = —1 the Newton binomial formula

m] " hth=1) | M
1+ 4% = T .
[Ta+dn=> q> [h]
k=0 h=0 q
O

Remark 3 There is a certain link between gaussian binomials and Coxeter groups of
type A. Recall that if W = (sy, 52, ..., s,) is a Coxeter group and I C {sy, $2, ..., 8},
then one may define the set W/ < W of representatives of minimal lenght of the
quotient W/ W;, where W is the subgroup generated by / in W. Moreover for any
subset S of W the Poincaré polynomial of S is defined as ps(q) = Y, .sq"", where
¢ : W — Nis the length function.

We have pw:(q) = pw(q)/pw,(q), the quotient of the Poincaré polynomials of the
two Coxeter groups W and W;. Moreover pw(q) = []; 11_ f;i where d;, d», ... are the
degrees of W (see [3]).

Now let W be the symmetric group S, on m elements, which is a Coxeter group
of type A,,—; with respect to the set of generators s; = (i,i+ 1) fori=1,2,...,m —
1. Since the degrees of a Coxeter group of type A, are 2,3, ..., m, it follows at
once that the gaussian binomial [',’:]q is the Poincaré polynomial of the set of minimal
representatives of the quotient S,/ Sk X S—k-.
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Pfaffians and Shuffling Relations for the Spin Module 961

3 The Spin Module

We fix once and for all the notation ¢y, ..., ¢, for the standard basis of C" and we
denote by E;; the matrix associated to the linear map sending ¢; to &; and all other
elements of this basis to zero.

3.1 The Spin Group

On V = C*"*? fix the symmetric bilinear form whose associated matrix is (9 ). Let
g =s0(2n+ 2) and G = Spin(2n + 2) the associated simply connected group. In this
basis g is the set of all matrices (¢ _#,) with A, B, C (n+ 1) x (n+ 1) matrices and
B, C antisymmetric.

We fix the Chevalley generators, a Cartan subalgebra t and a Borel subalgebra b
in the following way:

e = (Eivf“ 0 ) fori=1,...,n,

0 —Ein,;
e - 0 En,n+l - En+l,n
n+1 0 0 ’
fizefori=1,...n+l,
Eii— Epirs 0
he = T i+1itl fori=1,...,n,
‘ ( 0 —Eii+ Eit1i+1
P Eyn+ Eniingi 0
n+l 0 —Eun— Enying1)’

. |fA 0 o
t:{(o —A’) eg|Alsd1agonal},

b= {(‘3 —?4’) € g| A is upper triangular and B is antisymmetric } .

We denote with 7" (resp. B) the maximal torus (resp. Borel subgroup) of G whose

Lie algebra is given by t (resp. b)and let B~ be the Borel opposite to B.

We identify the Cartan subalgebra with C"*! mapping &; to (EO"’ 7%{J> for i =

I,...,n+1 and, further, we identify the Cartan subalgebra with its dual using
the standard form ¢;-¢;=§;; for 1 <i, j<n+ 1. In particular if we set o; = h;,

fori=1,...,n+1, the set {&,...,a,11} is a simple basis for the roots of g. Let
A =Hom(T, C*) C t* be the set of integral weights and A™ be the subset of A of
dominant weights and let w1, ..., ®,;1 be the fundamental weights. For A € A™ let

V. be the irreducible representation of G of highest weight A.

3.2 The Spin Module

We want now to give an explicit description of the dual of the irreducible module of
highest weight wj, 1. This is called the positive spin module and will be denoted by S.
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962 R. Chirivi, A. Maffei

Define the vector space S = @;C - x(I) with basis elements x(/), I € SR,. Next
we define the weight of arow I € R} as

wi() =1 <Z£i — Zs,) € A.

iel® i 10

Now V has a g-module structure defined as follows:

x(IG+1—i)ifi+lel igl,
ei(x() = .
0 otherwise
x(Ixn)ifn ¢ Iand |I|is odd
e, (x(1)) = )
0 otherwise

x(Ixn)ifn ¢ I and |I] is even

0 otherwise.

epr1(x(D) = {
hi(x(D) =wt(DHx([) fori=1,2,...,n+ 1.

x(I(i— i+ 1)) ifie L i+1¢1
filx(D) = 0

otherwise

x(I\ {n}) ifn € I and |I] is even
Ja(x(D) = 0

otherwise

x(I\ {n}) ifn e I and |I|is odd
Jor1(x(D)) = 0

otherwise.
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Here is an example of this action for n = 3: for each basis vector of S we have drawn
all operators e, e, e3 which do not send that vector to 0.

x(123)
N
x(12)
x(13)
x(23) x(1)
e /

x(2)

e

x(3)

€4

/o NN

x(9)

Notice that S is irreducible, and its lowest weight is —w, so it is the dual of V,,, ..
Notice also that all the weights are in the orbit of —w,, in particular the spin module
is minuscule.

3.3 The Lagrangian Grassmannian

Let V and V, be the span, respectively, of the first, and the last, n + 1 vector of the
canonical basis of V. Define the positive lagrangian grassmannian Gr as the variety of
(n + 1)-dimensional subspaces of V which have even dimensional intersection with
V,. This is an homogeneous space for the special orthogonal group of V and for G.

The Picard group of Gr has a unique ample generator that we denote by £ which
is G-linearizable and the G-module H°(Gr, L) = {n: G — C|n is holomorphic
and n(gp™") = w;il(p)n(g) for all g € G and p € B} is isomorphic to S.

The main object of study of this paper is the graded ring A = @,, H*(Gr, L™). For
m > 0let A, = H°(Gr, L™) be the space of its homogeneous components of degree
m. In particular A; = V;; . The ring A is generated in degree one with quadratic
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964 R. Chirivi, A. Maffei

relations. We denote by K C S2(A;) — A, the kernel of the multiplication map;
our aim here is to find explicitly generators for this kernel. When we need to stress
the rank n + 1 of the spin group we add a subscript n, for example £C,,.

3.4 Standard Monomial Theory

On the module S we have defined the basis x(/), I € SR,,, now we want to extend
the symbol x(I) to any row I € R,:let x(I) = (=1)"x(IS)if I € R, and x(I) = 0 for
alll ¢ R}

Next we extend x : R,, —> A, to tableaux as

I,
I
x| . | =xUDx()---x(I) € SA

I,
We will call such a monomial standard if the tableau is standard. Notice that if this
monomial is non zero (i.e. if and only if I, € R} for all =1, ..., r) then we may
always consider all of its rows as standard up to a sign change.
Let y(T) be the image of x(7) in A, and recall that, by a well known result of

Standard Monomial Theory, the set of monomials y(7T) with T a standard tableau of
degree r is a C-basis of A,. Moreover for each non standard tableau (j) we have a

straightening relation
1 H
y(]>:ZaH'Ky(K>’ aH,Ke(C

where the sum runs over all standard tableaux (Z) with H < I, Jand K > I, J (see
Corollary 1 of [5]). In the case of a minuscule module these properties are not difficult
to prove and were the starting point of the standard monomial theory.

Notice that for all (}) we have JUJ= HUK with multiplicities, by t-

homogeneity. We may write the relation above also as x(}) — Y ap xx() € K; in
particular these elements (that we still call straightening relations) generate the space
K of quadratic relations, hence they generate the ideal defining the ring A.

Later we will see direct formulas for what we call shuffling relation: given a non
standard tableau T = () as above, a shuffling relation for 7 is any element

Zamx<lgm>, a, € C

of K such that x(;) appears with coefficient 1 and, for all m, H,, < I, J and K,, >

I, J. Notice that we are not requiring (IZ) to be standard. Clearly the straightening

relation for (/) can be obtained in a finite number of steps using the shuffling

relations, so also the shuffling relations generate .
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3.5 Complementary Invariance of Relations

In this section we want to prove a symmetry property of the ideal defining a (general)
flag variety, so here we allow g to be any semisimple Lie algebra.

Fix a triangular decomposition g =b~ @ h @ b, a corresponding set of simple
roots «y, ..., o, with fundamental weights w, ..., w; and corresponding Chevalley
generators ey, ..., ep, hy, ..., hyand fi, ..., f,. For any dominant weight 2, let v; be
a fixed highest weight vector of the irreducible g-module V), and let v; be the lowest
weight vector in the Weyl group orbit of v;. Denote by K, the kernel of the g—-module
projection S2V, —> V5, this kernel is the direct sum of all isotypic components of
S%V, of weight less than 2.

Let wy be the longest element of the Weyl group of g and denote by d the
linear map of A given by —wy; hence, in particular, Vi =~ V4, for all dominant
weights . We still denote by d the permutation of {1, ..., ¢} defined in the following
way: 1 < h < € is mapped to k if d(wy) = wg. Further let a : g — g be the unique
automorphism defined by e¢; —> fy), hi —> —hgi) and fi— ey fori=1,...,¢
and, finally, extend it to the universal enveloping algebra U (g).

It is clear that any element of S?V; may be written as > hei @nVi - Ypv Where
@n, Yy, are in the universal enveloping algebra U(b~) of b= forh =1,...,7.

Lemma 4 If the element Y ), _, pv;. - Ynv;. of S*V, is in K, then also Y j,_, a(pp)v; -
a(yy)v; is an element of K,.

Proof Given a g—-module V, let V* be the g-module on the vector space V with
action defined by x - v = a(x)v for all x € g and v € V. Itis clear that (S?V)* = S?V*
and (U @ V)* = U“* @ V* for all g—-modules U and V.

Notice that v, is a highest weight vector of V{, and its weight is a(woA) =
—dwo(1) = A; hence there exists a g—-module isomorphism «; : V, — V{ and we
may normalize it by «; (v,) = v; .

Now consider the map S%a;. Since V,, C SV is sent to itself by S%a;, we see that
SZQA(K)L) C IC)L. So

S (Z ORY), - 1/fhvx> = Zm(%vx) o (Ypvy)

h=1 h=1

=Y alen)vy - a@n)vy

h=1

is an element of K, as claimed. O

Specializing to our context, and using the notation of previous sections, we see that
if vy, \Xith @ € U(b7), is the vector x(I), with I € SR,,, then a(p)v, is the vector x(I)
where [ is the complementary row of the row /. Hence we have proved the following
corollary.
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966 R. Chirivi, A. Maffei

Corollary 5 If the element Y, ahx(;’h’), with ap, € C and I, J,, € SR, is in the kernel

K of the multiplication map S*A; —> A, then also Y, ahx(j::) is an element of K.

4 Pfaffians
4.1 Definition

Let X, be the set of n x n antisymmetric matrices with complex coefficients. We
identify X, with A’C" mapping X = (x;) € X, to wy = % Zi’jxl-]- g A gj. We recall
that the pfaffian of X € X,,,, denoted by Pf(X), is defined by

1
— Y =PRX) e Ao A e,

Notice that Pf(X)? = det X and, in particular, the pfaffian of X vanishes when the

matrix X is singular. Moreover if we let S, act on X,,, by permuting the rows and

the coloumns of a matrix as o - (x; ;) = (X3),0(j)), then Pf(o - X) = (=1)? Pf(X).
Now we see an example; it will be used in the proof of our theorem.

Example 6 The pfaffian of the following antisymmetric matrix

0 10 ... 0
-1 01 ... 0
0-101...0

-1 01
0 ... —-10

is 1; clearly the same is true for all even dimensional principal submatrices of M.

Let B be the ring of polynomial functions on X,,.;. For each X € X,,,; and [ =
i1 -+ -ip € Ry41 define X7 to be the antisymmetric matrix given by the principal minor
corresponding to the rows and the columns iy, . .., i, of X. In this definition we allow
repetitions and we consider also the order of the elements in /; for example if

X:(:Og:éclé) then Xi3=(55%) whie X3=() ).

For each I € R, we define a (polynomial) function pf, on X, by
pf;(X) = Pf(Xp).

The ordering of the elements of / is not essential here since pf;(X) = (=1)"pf;< (X)
for all I € R;'; however it will be convenient for us to have this more general
notation. Notice that pf; = 0 for all sequences / with a repetition since the pfaffian
of a singular matrix is zero. It is also clear that the functions pf; with / € R, generate
the ring B; indeed pfij(X) =x;foralll <i<j<n
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4.2 Pfaffians and the Spin Module

We now describe the relation between the pfaffians and the spin module. Notice that
Gr has a unique B~ —stable divisor that we will denote with S. This is the variety of
all subspaces W € Gr with non trivial intersection with V,. As a subvariety of Gr it is
defined by the equation x(&) = 0.

Let now p € Gr be the point corresponding to V. The B~ -orbit U of p is the
complement of S. More precisely it is an orbit under the unipotent radical of the
stabilizer P of p. Define u: X,41 — G by u(X) = (%9) and ¢ : X,,,; —> Gr by
@(X) = u(X) - p. Then ¢ is an isomorphism between X, and Uf.

The pull back ¢*L of £ on X,,;; is isomorphic to the trivial line bundle so it induces
a ring homomorphism ¥ : A—B. Notice that ¥ (x(&)) is a nowhere vanishing
function so it is a non zero constant that we can normalize to be 1. Hence v induces
an isomorphism

TR
Cx@)=1)

In particular, since U is open in Gr, the restriction v, = ¥ |a, to the homogeneous
component is injective and we define B, = ¥ (A,;). Since ¥ (x(2)) = 1 we have By C
B, € B, C ---. Notice also that the isomorphism v does not define a G-structure on
B however it defines a G—structure on B,, such that the multiplication maps B, x B,,,
in B,,;4,y. In particular we have the following commutative diagram

AARA —— A

Vi ®'/f|l ¢le

Bi®B —— B,

where vertical maps are isomorphisms and horizontal ones are induced by multiplica-
tion. Hence the homogenous relations between elements of A; and B, are the same.

We want to identify in a more explicit way B;; in order to do this we need to
make explicit the trivialization of the line bundle £. If o : G — C is a meromorphic
function such that o (gp™') = w,. ll(p)a(g) for all p € P then it defines naturally a
meromorphic section of £. We can associate to o also a function on X, by f,(X) =
o u(X)).

On the other hand every meromorphic function on X,,;; can be constructed in
this way. So we obtain an action of the Lie algebra g on the space of meromorphic
functions on X,.;;. Explicitely this action is given as follows:

A 0 d 1
<< 0 —’A) : f) (X) = af(XJrs(A’XJr X A)|,_, - ETr(A)f(X)
0B d 1
<<o 0 ) . f) (X) = $f(X+sXBX)|S=0 -3 Tr(BX) f(X)
00 d
((C 0) : f) (X) = $f(X—sC)|S:0
for all A € End(C"") and B, C € X,,,,.
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In particular with simple computations we get that if / € SR,,;:

pfe,-<1> if e;(I) # 0,
0 otherwise;

hi(pf;) = (hi, wt(D))pf;.

e;(pf)) =

Since we have normalized ¢ in such a way that ¢ (x(@)) = 1 = pf, we have

v (pt)) = x(I)

for all / € SR,. So, by our conventions, ¥ (pf;) = x(/) for all rows / and not only
for standard rows. Notice that, in particular, B, is the vector space spanned by the
functions pf; with / € SR,,.

So we have proved the following result.

Proposition 7 The element ", a;,x(_ﬁ) of S* Ay isin K if and only if ", anpt; pf; =0
as a polynomial function on X, 1.

4.3 The Action of the Symmetric Group and Submatrices

The previous identification of the weight vectors of the positive spin module and the
pfaffians allows us to prove the following invariance properties. These will be used
in the proof of our main result.

Lemma8 If)", ahx(Z

is in K too.

) is an element of K, with ap, € C, and o € S, then'y_, ahx(gjﬁj‘)

Proof Indeed Zahx(j’;) is an element of K if and only if )" a,pf; pf, =0 by
Proposition 7. If we change the enumeration of the rows and columns of an anti-
symmetric (n + 1) x (n 4+ 1) matrixfrom 1,2, ..., n+ 1too(1),0(2),...,0(n),n+ 1
the same relation holds. But in terms of the original enumeration this relation is
>_anpf, ; pt,.;, = 0; hence our claim follows using again Proposition 7. O

Lemma9 If f =), ahx(?h') is an element of KC,,, withay, € C,and I, J, C {1,...,n —
1} for all h, then we may consider f as an element of KC,,_,. On the converse any relation
in IC,,—1 may be considered as an element of IC,,.

Proof The element f € K, corresponds to the relation ) apf; pf; =0 in terms

of pfaffians. These pfaffians involve the rows and columns 1,2,...,n—1,n+1
by hypothesis. Now we change the enumeration from 1,2,...,n—1,n,n+1 to
1,2,...,n—1,n+ 1, n. The same relation is still true with the new enumeration;

but it is obtained by completing each odd length row [ by adding n and not n + 1
before computing the pfaffian pf;. Hence this last relation is the same we obtain if
we consider f has an element of the ring A for n — 1 instead of n.

The second claim is analogously proved using again Proposition 7. O
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If I=i;...i, is a row and 1 <s<n an integer, let ji(/) be the row
1+ 1pSipyy - - - I, where h is the maximal index such that i, <sforallt=1,...,A.
Notice that ji(7) is standard if [ is standard and s ¢ I.

Let ds(I) be the row obtained by deleting any occurrence of s in /. We have that
dy(I) is standard if [ is standard.

Further we define j;, d; on weight vectors by js(x(1)) = x(js(1)), ds(x(I)) =
x(dy(I)) respectively, for all standard rows I; clearly jox(/) =0 if and only if 5 € 1.
We extend j; and d; from A; to S*A as algebra homomorphisms.

Lemmal0 Let f=), ahx( ) be an element of IC with I, Jj, standard rows for all
h.Ifs & I, U Jy, for all h, then ]J(f) e K. If s € I, N Jy, for all h, then dy( f) € K.

Proof Given a subset A of {1,2,...,n} and a standard row I C A let ca([) be the
standard row complementary to I in A. We define c, on weight vectors by ca (x(1)) =
x(ca (D)) for all x(1) such that I is a standard row contained in A; further we extend
it as an algebra homomorphism from the subalgebra A, of A generated by x(I) with
I C AtoA.

By Corollary 5, Lemmas 8 and 9 we have: if f € Ay N K then ca(f) € K.

Now let Ay ={1,2,...,s—1,s+1,...,n}, A, ={1,2,...,n}. If I is a standard
row and s ¢ [ then j;(I) = ca,ca, (I) and hence our first claim follows.

The second claim is analogous; indeed if s € I then d(I) = ca,ca, (). O

5 Shuffling Relations
5.1 Shuffling Polynomial

We say that a tableau is r—standard if all rows are standard, the entries of 7" do not
decrease along the first r columns but the same is not true in the (r + 1)—th column.
If morever T has two rows then we may write it as 7' = ( HK) where I =ijiy- - iy,
J=jip-js, H=hhy---h.yand K = k1k, - - - k, with s > t and with the followmg
inequalities

i < << < J| <Jp<-ro-- < Js
T=|/N\ A A\ V
h1<h2<"'<hr<hr+]<k1<"~<kt

We call this subdivision of the two rows of T its canonical form. Notice in particular
that we have a chain of strict inequalities from 4, to j;, hence there is no repetition
in HJ.

However, despite the name, a standard tableau is not r—standard for any .

Definition 11 Given an r—standard tableau T = ( ﬁ() in canonical form, we define
the shuffling polynomial of T as the following element of S?A;:

e [T\ K|+ h 1J'K;
O =) (-1 [' \h|+ ]IS(H’J’)a(ZzKi)x<H,K/21>
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with h=|H|—|H'|, Z=27Z,(T)=INH and Z, = Z,(T) =JNK as ordered
rows and the sum running over the set Z(T) of all (J', H', K|, K}) € 572:4 such that

(1) [H'|<[H|,

2) HuJ =Hul,
3) KjuK,=K,
4) Z,cH,

5) Z,cJnK,.

For short let

h(i+1) |:|] \K|+h

o', H K|, Ky = ()" i } e(H' 1)e(Z,K)).
-1

Remark 12 Notice that T appears in ®(7) with coefficient 1 and each tableau in
O(T) but T fulfills the conditions of a straightening relation for 7.

5.2 Combinatorial Properties of Shuffling Polynomials

In the next purely combinatorial lemma we prove that the shuffling polynomial of a
tableau does not change if we insert or remove a common entry in the rows.

Lemma 13 Let T be a non standard tableau with two standard rows.

(1) If T does not contain s, then j(T) is not standard and j(©(T)) = ©(j(T)).
(2) If s is contained in both rows of T, then dy(T) is not standard and d,(©(T)) =
O(ds(T)).

Proof We prove the first claim. Assume that 7' = ( é;) is r—standard in canonical

form. Consider first the case s < A, . Then j,(T) is (r + 1)-standard, j(T) = (]];(F',;})
in canonical form and the map

(', H', K}, K5) = (J', j{(H), K}, K5)

gives a bijection from Z(7) to Z(j(T)).
Let f be an addend in ®(T), we compare j;( f) with the corresponding term in
O (Jjs(T)) under this bijection. Clearly we have

1) s = [js(H)| = |H| — |H'l,
(i) J ~ K is the same set for 7" and for j(7) and
(ili) Z, and K| do not change in this bijection.
Let k be the number of elements of J' smaller than s. Then we have
eGs(HNJ') = (=D)*e(H'])
e(s(DT'K}) = (=)*e(1T'K})
e(js(H)K3) = e(H'K3)
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Hence
. / /7 ]S(I)]/Kq _ . / / . /B 7di . / / (]S(I)‘,/K;)g)
S(JS(H)J)X<].S(H,)K£> = e(Js(H)T)e(js(D)J 1<1)8(]s(H)I<2)X((].S(H,)K/2)g
_ i 1 ! ! 17! ]5((IJ/K/1)<)
=e(H')e(IJ' K)e(H KZ)x(js((H’K/z)Q)

’ / <
= ‘9<H/~'/>8<U/Ki>e<H/K;>js(x(w < ))

(H'Ky)<
) 1J' K,
i)
which implies that the two terms we are considering are equal. This proves

Js(©(T)) = O(js(1)).
Assume now that s > h,;. Then ji(T) is r—standard, j(T) = (

form and the map

1 js(J)

Hal K)) in canonical

(J/, H, K/l’ K/z) = (jS(]/)7 H', Kll? ]s(K/z))

gives a bijection from Z(T) to Z(j(T)). As above we compare the corresponding
terms in ®(7) and ©(j;(7)) under this bijection. We have: j;(J)\ js(K) = J\ K while
|H| — | H'| does not change in this bijection. Let k be the number of elements of H’
bigger than s and m be the number of elements of K| smaller than s. Then we have

e(H'js(J) = (=D*e(H'T")
e(Ijs(JHK)) = (=1)"e(1J'K})
e(H'j(Ky) = (=D)*e(H'K})
e(Js(Z)K)) = (=D"e(Z,K))

which, as above, implies that the two corresponding terms are equal and hence
(@) = O (T)).

Now we see how the second claim follows from the first one. Indeed let T be
a non standard tableau containing s in both rows as in the second claim and let
T = dy(T). Notice that j(T) = j.dy(T) = T since T has standard rows, hence T can
not be standard otherwise also T = j;(7) should be standard. So we may apply the
first claim to 7 and find j;(®(7T)) = O(js(T)) = O(T). Apply dy to both sides of
this identity and notice that d; j, = Id to conclude ®(d,T) = d, j;®(T) = d,0(T) as
claimed. ]

Now we see another combinatorial property of the shuffling polynomials. We want
to prove that if we permute the entries of a tableau with a permutation satisfing
certain assumptions then the shuffling polynomial may change only by the sign.

Let us start by stating these assumptions of compatibilities between an r—standard

tableau T = ( [%) in canonical form and a permutation o € S,,. Given a row [ let I°

be the row (o - I)S and let T7 = ((%2;) We say that o is compatible with T if T°
is again r—standard with canonical form ( ;;,Zr,) and K° = o - K. In particular notice

that in this case we have Z(T°) = Z(T)? and Z,(1T°) = Z,(T)°.
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Lemma 14 [f T is r—standard and o is T-compatible then o - ©(T) = £O(T7).

Proof First notice that the map
(J', H', Ky, K3) — (J”, H, KY, KY')

gives a bijection from Z(7) to Z(T7).
If (H',J', K|, K}) is an element of Z(T), consider the following sequence of
transformations which reorder the row H'? J"

o T T , , o! - Ty
H°J° —— (¢ - H)(o0o -J) ——— H'J —— HJ e

—T s (o-H)o-J) L HO T — S (H JO)S.
So, using that the sign of oty o~ is that of 7z , we obtain
e(H° J°)=¢e(oc - H)e(o - JNe(H' J)e(o - He(o - J).

Moreover by o - K = K° we have o - K| = K\, 0 - K, = K7 and also ¢(Z,K)) =
e(Z§ KY), hence

. , 1J'K;
e(H'INe(Z2K)) o - x(H,KD
I(T J/U K/o'
= e(H'J)e(Z2K))e(o - De(o - J)e(o - H/)x< e Kgfl )
I()' ]/()' K/O'
=e(o-De(o - Je(o - Hye(H” J7)e(Z5 K )x !
H/o' K/za

Set e = ¢(o - Ne(o - J)e(o - H) and notice that |J'| = |J”| and |H| — |H'| = |H°| —
| H”|. From the above identities we conclude

o-0(T) = Z a(H',J', K|, K)) o -x 17K
sV Ax] AR H’Ké
(H',J' K}, K5)eZ(T)
- " " . IO‘ J/O' K’O’
= ) eaH"T ,Ki’Ké)x< H/aK"’l>
(H',J'.K|,K))eZ(T) ’
=& @(TU)
proving our claim. .

6 Proof of the Shuffling Relations

In this section we prove our main result.

Theorem 15 If T is a non standard tableau with two standard rows, then ©(T) is an
element of K.
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Proof Assume that T is r—standard, 7' = ( I ) in canonical form and let Ry = IJ and

HK.

R, = HK be its first and second row respectively.

Step 1.

Step 2.

Step 3.

Step 4.

If Ry UR, #{1,2,...,n}then there existso € §,, suchthatn ¢ o - T and
o (i) < o(j) for any pair 1 <i < j < nin 7. The permutation o is clearly
T—compatible and, in particular 7° = o - T,50©(c - T) = 0 - O(T) by
Lemma 14.

Using induction on n we may suppose that @(c - T) € IC,_;; but then
O -T) e K, by Lemma 9. Hence &(T) =40"'- 0@ -T) € K, by
Lemma 8 and our claim is proved.

The inductive base step is automatically true since for n = 1 there are no
non standard tableaux.

Now we proceed by induction on |R; N R,|. Suppose s € R N R, and
let T=dy(T). Since s ¢ T we have O(T) e K by Step 1. Hence
Js(®(T)) € K by Lemma 10. But j(®(T)) = ©(j,(T)) by Lemma 13 and
moreover ji(T) = T since T has standard rows. This proves our claim.
In the following steps we assume that R; and R, do not intersect proving
the induction base.

Now we show that it suffices to prove our claim for a particular tableau.
Indeedlet I = iliz- --ir,J = j]jz- "js, H:hlhz---hr+1,K = klkz- -~k[,
with 2r + s+t + 1 = n since we are assuming R U R, = {l,...,n} and
RINR,=0.

By R N R, = @ we deduce that there exists (a unique) o € S, such that
oy =uforu=1,....r,othy) =u+rforu=1,....,r+1, o(jy) =
u+2r+1foru=1,...,sando(k,) =u~+2r+s+1foru=1,...,¢t.1It
is clear that

TU—O"T—TO;( 1 2 - r2r+2 2r+3 ... 2F+S+l>

r+1r+2---2r2r+12r+s+2--- n

In particular 77 is r-standard and o is T—compatible. Hence ©(7T) =
o~ ®(T% by Lemma 14 and we see that if we prove ®(7°) € K then
O(T) € K by Lemma 8.

So in the sequel we assume T = T°.

In this step we prove our claim for K = &. For short we write (J', H')
instead of (J', H', &, @).

Notice that in

o= Yy al, H/)x<ll_;:>

(J',H)eI(T)

only T is non standard. Let A(T) be the unique element of S?A,
corresponding to the straightening relation for 7. Each tableau (21) in
A(T) verifies R} < Ry, R, and R}, > Ry, R,; using this it is easy to2 see
that there exists (J', H') € Z(T) such that R} = IJ' and R, = H'. So we

may write

A= > 8, H)x(Z)

(J' H)eZ(T)
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for some coefficients §(J', H') € C. If we show that a(J', H) = §(J', H')
for all (J', H') € Z(T) then we have ©(T) = A(T) € K and our claim is
proved.

Step 4.1. Now we want to prove that «(J', H') = §(J’, H') for all
(J', H) € Z(T) withr + 1 € H'. We compare d,e,® (T) with d,e, A(T).
Let

T d.(HJ B 1 2 -oor—12r4+22r+3---n
“\d(H)) T \r+2r+3-- 2r 2r+1 :

Using the definition of d, and e, we have

d,e,®&(T) = > a(J, H/)x<

(J',HYeL(T), r+1eH

d (DT’ )
drri(H))

The map (J', H)— (J',d,11(H")) is a bijection from Z(7T) and
Z(T) (with inverse (J', H) — (J', jr+1(H"))). Moreover, adding the
corresponding tableau as superscript for clarity, we have

T |:n —2r—1+4h

o (J', dpr (H')) = (=1)" 7 7 ] e(H'\r+1J)
1

with h = |d,+1(H)| — |dr1 (H))| = |H| — |H'| and e((H'\r+ 1)J) =
e(H'J') since r+1e€ H'J' is the minimum element. Hence
al (', dyy1 (H')) = aT(J', H'); this proves that d,e,®(T) = O(T).

But then d,e,®(T) = ®(T) € Kby Step 1sincer ¢ T. Notice that T
is the unique non standard tableau in O(T),so d,e,O(T) is the element
A(T) of S?A, corresponding to the straightening relation of T since it
is an element of /C and the coefficient of T is 1 in both elements.
Consider now d,e, A(T). By the definitions

dye, A(T) = > s(J, H/)x(

(J',HYeZ(T), r+1eH’

d (DT’ )
drri(H))

Hence also in d,e, A(T) the unique non standard tableau is T and it
appears with coefficient 1. But K is closed by e, since it is a g—-module
and it is closed by d, by Lemma 10 so d,e,A(T) = A(T) being the
straightening relation for T unique.

Hence we have showed that d,e,®(T) = A(T) = d,e, A(T); in partic-
ular a(J', H) = 8(J', H') for all (J', H') € Z(T) with r + 1 € H' that
is our claim for this step.

Step 4.2. Our next claim is now a(J', H) =8(J', H) if H # @.
Indeed letr + 1 < i < n and consider ¢;A(T). We find at once

LJGi+1+— i))

e AN(T) = > 8(J, H/)x( e

(J' H"eZ(T),ieH ,i+1eJ’

o 1
+ 2. (% H)X<H’(i+ | —> i))'

(J' HYEL(T),i+1eH icl
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In particular it is easy to see that all tableaux in ¢;A(T) are standard;
but this is an element of K, hence e¢;A(T) = 0. Each tableau in ¢;A(T)
is obtained in exactly two ways: replacing i + 1 by i in the first row or
in the second row. So we have proved that §(J”, H") = —§(J', H') if
i and i + 1 appear in different row in (I,_f) and (’,_f) is obtained from
(II;) by swapping i and i + 1.

Since each tableau (Z) with H' # @ is reached by a finite number
of swaps of i, i + 1 with r + 1 < i < n from a tableau containing r + 1
in the second row, we have «(J', H') = §(J', H’) for all tableaux with
H' # & using the result of the previous step.

Step 4.3.S500(T) —A(T)=c- x(lg”) and we want to show ¢ = 0.
Let M be the (n + 1) x (n + 1) antisymmetric matrix of Example 6 all
of whose pfaffians are 1 and identify the elements of S*A; with the
corresponding polynomials as in the Proposition 7. So ¢ = ©(T)(M)
since A(T)(M) =0 by A(T) € K and x(*2)(M) = 1. We want to
show that ®(7T)(M) = 0 proving ¢ = 0 and ©(7T) = A(T).

We have

11 —2r—1+h
oM =Y <—1>%[” " +] e(H'J')
(J',H')eZ(T) -1

|H|
= Z(—l)w[”_zrh_ : +h] D R0 0
h=0 -1

H'cHJ, | H'|=|H|~h

Notice that by the definition of & on rows we have
D HICHI |\ = H|—h e(H'J') = > (=D, where  the sum  runs
on the set of minimal rapresentatives of the quotient
Sia14101/ S H=n X Sjpieh = Sner/Srv1-n X Su—2r—14h- Hence  the
previous sum is the Poincaré polynomial of this quotient evaluated in

—1,50 X ey ey m—n €CH'T) = [117,]_, by Remark 3. We find

i wen [m—2r — 1+ h n—r
O(T)(M) = ;( 1) [ P ]_1[r+ . _hL
and this is zero by Lemma 2 with s = |H|=r+ 1, m = |H|+|J| =
n—randqg=—1.
This finishes the proof that ®(7T) € K for all non standard tableaux T
with K = @.

Step 5. In this final step we prove that our claim for generic K follows by the

case K = & of the previous steps. Let T' = ( I%() be as in the conclusion of

Step 3;I=12---r,J=2r+2---2r+s+1,H=r---2r+1and K =
2r+s+2---n.

We want to proceed by induction on |K|. Indeed, for u =0, ..., |K]| let T, =

( 7 ), where K, is the standard row containing the first u entries of K, and notice

H, K,

that the base inductive step, i.e. ®(Ty) € K, has already been proved.
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Now suppose that ©(T,) € Kfor0 < u < |K|andlet k = 2r + s + 1 4+ u be the last
entry of K,,. By Lemma 9 we have O(T,) € Kx C Kii1, S0 we apply e = exi1 + €ri2
to ®(T,). By the definition of ;| and ey, (for n = k + 1) we see that the operator
e produce two tableaux from each tableau in ® (7)) by adding the entry k + 1 in the
first and the second row. It is clear that

aler(J', H', jiri (KY), Kb) = a1 (', H', K, jip1 (Ky)) = aTo(J', H', K, K5)

by the definition. Moreover Z(7,+) is the set of tableaux obtained from Z(T,) by
applying e. So we conclude O(7,41) =e-O(T,) € K¢s1 C K and this finishes the
proof of the theorem. O

So we may state our result in terms of shuffling relations.

Corollary 16 For any non standard tableau T with two standard rows, ©(T) is a
shuffling relation for T; the set of all such shuffling relations generate the kernel of
the multiplication map S*A; — A, and the ideal of relations defining Gr in P )
One may hope to simplify ®(7) by considering only the tableaux with K| = &,
in analogy with the shuffling relations for determinants. This is not possible as the
following example for n = 4 shows.
If T = (};) we have:

e e R o g B Y o B R )
o)) () o) o)

So, if the sum ©(T) of all elements with K| =@ in ©(T) (i.e. of those with 4 in the
bottom row) were an element of /C, then we have also

e(T) - O(T) — @(?4) = —x<1§4> ek

1234

that is impossible since ('

) is standard.

7 Conclusion and Relations in Arbitrary Characteristic

We begin by restating the main result in terms of pfaffians and we slightly generalize
it to a commutative unitary base ring R. Let Bg = R[x;|1 <i < j<n+ 1].Itis easy
to check that the pfaffians of an antisymmetric matrix as defined in Section 4 is
a polynomial in the variables x;; with integer coefficients so we can consider the
elements pf; as elements of Bg. For a tableau T, let pf; € B be the product of the
pfaffians which appear in 7' Since, as we have already noticed pf;; = x;;, the ring
Br is spanned as an R-module by the elements pf;,. Notice that ®(T) has integral
coefficients hence we may define ®p(T) as the element of B obtained by mapping
x(I) — pf, for I € R, and I # &, and mapping x(<) to 1.
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Theorem 17 Let R be a commutative unitary ring.

(1) The set of pt; with T standard and T not containing the empty row is an R—basis
Of BR,'

(2) the ring By is defined by quadratic (but not necessarily homogenous) relations
in the generators pf;;

(3) for all non standard T with two rows we have O (T) = 0 and these equations
generate (as a R—-module) the set of quadratic relations.

Proof For R = C the result follows by Corollary 16 and Section 4.2. For R =7
notice that Bz is a subring of Bc; in particular the polynomial ®p¢(T) vanishes. Since
pf; has coefficient 1 in ©p¢(T), this allows to write any element pf; as a Z-linear
combination of pfaffians of standard tableaux, clearly we may assume also that the
empty row does not appear. Since the polynomials pf, with 7" as in (1) are linear
indipendent over C we have proved that they are a Z-basis, proving (1) for Z.

Now (2) and (3) for Z follows by a standard argument. Indeed consider the
ring C generated over Z by indeterminates ¢; with I € SR,, I # @ module the
ideal generated by the polynomials ®(T) where T runs in the set of non standard
tableaux with two standard rows obtained by mapping x(/) to ¢; and x(&) to 1 in
(7).

Arguing as above we see that also C has a basis given by the set of ¢ with T
running in the set of standard tableaux without the empty row. So the map ¢; — pf;,
is an isomorphism and (2) and (3) follows.

The general case follows by Br = Bz ®z R. O

In a similar way we generalize Corollary 16 from C to R with R a field or the
integers. The group G, the variety Gr, and the line bundle £ may be defined in
a flat way over the integers, hence they may be defined over R and we denote
by Gg, Grr and Ly the associated schemes and line bundles. Let us define Ay as
D=0 H%(Grg, L%). As proved in Remark 7 in [6], Ay is generated in degree 1 and
if Ris a field then Ay is isomorphic to Az ®z R. So arguing as in the proof of the
previous theorem we have the following result.

Theorem 18 Let R be the set of integers or a field.

(1) The sections y(T) with T standard are an R-basis for the ring Ag;

(2) the ring Ag is defined by quadratic (but not necessarily homogenous) relations
in the generators x(I);

(3) for all non standard T with two rows we have ©(T) = 0 and these equations
generate (as a R—-module) the set of quadratic relations.
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