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The Multicomponent KP and Fay Trisecant Formula

Andrea Maffei

The n-component KP hierarchy is a system of nonlinear partial differential equations that
generalizes the classical equation of Kadometsev-Petviashvili. Kac and van de Leur [7]
studied the algebraic aspect of this generalization, giving many equivalent formulations.
C. De Concini pointed out to me that one of the equations found by Kac and van de Leur
has the same structure as the Fay trisecant formula. From this observation and from the
well-known relation between KP equations and the theory of theta functions, a way to
prove the trisecant formula is suggested.

In the first part of this paper we complete the work of Kac and van de Leur, show-
ing the relation between the action of a group on a Grassmannian Gr and the solutions of
the n-KP. In particular, we prove that a generalized Sato tau function evaluated along the
orbit of this action solves the n-KP in the Hirota form. In the second part we generalize
Krichever's construction to the case of n points on a Riemann surface, and the relation
between the tau function and the theta function defined on the Jacobian of the curve is
proved in this case. This relation allows us to prove that the theta function solves the
n-component KP. Finally, we give a geometric interpretation of some of these formulas. In
particular, using the Pliicker equations which appear in the hierarchy, a Fay generalized
trisecant formula is proved (see, for a more precise version of this formula, the article of
R. C. Gunning [6]).
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1 From the Grassmannian to the n-component KP in the Hirota form

H™ is the topological vector space on which the Grassmannian will be constructed. If

we set the following notation:

$2 = C U {00} is the Riemann sphere and z is the coordinate on S,
D, ={zeS% |27} < ¢},
D = D, - (o),
the definition of H™ is given by
H™ = HY @ H™ = lim (D7),
Hff’ = {f € O(C) and f(0) = 0},

H™ = C{z™!}", the set of holomorphic germs in z = co.

We also set vij) = (...,Zz% ...) and v in the 1-dimensional case, and we define the linear
operator e\ by el7vV = & 55, vV,
Remark 1.1. H™ ~ H = H" and the isomorphism maps (fi, ..., f,) into z! "™f;(z") +--- +

f.(z"). We observe also that this isomorphism preserves the decomposition of the space
H: the image of H(J:) is H, and the image of H™ is H_. Finally, v{” is mapped in viinq-1)

and e&j) corresponds to eiink-1),j+ni-1)-

Now we can use the results of the 1-dimensional case ([1] or [2]), and we observe
that in a standard way the space H™ turns out to be a locally convex topological vector
space as well as the relative spaces of continuous operators Hy, = L(H), H,) = {L: Hy —
H, linear and continuous} for A, u € {+, —}. Furthermore, it is possible to define a trace

and a determinant on certain ideals of maps. If

J,={teH,;andt=uvwithueH,_ andveH__},
D+ = {1 +t t S T+},
following [1] or [2], we have the following lemma.

Lemma 1.2. Letae D, andt=a—1 € T,;then:

(1) If F is a Fredholm operator then F + t is Fredholm, too, and index(F + t) =
index(F).

(2) The trace of A\'t is defined for all i.

(3) Deta=1+Y 2 tr(A't) converges.
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(4) Deta # 0 < a is an isomorphism.
(5) For g € GL(H,), we have tr(gtg™!) = trt and Det(gag™!) = Deta.

(6) If t is of finite rank, then Det is the usual determinant.

(7) Finite rank maps are dense in H, _. O

It is possible now to define the Grassmannian Gr:
Gr = {W: W is a closed subspace of H s.t.m,|w is Fredholm of index 0}

where 7, is the projection of H on H, along H_. Gr turns out to be an holomorphic
manifold modeled on H_, . Even though Gr is not compact, its only holomorphic sections
are the constant ones. It is worth observing that Gr may be defined also as
D
GD,

where D = {w:H, - H: 1, ow:H; —» H; € D, and w is an embedding} is the set

Gr ~

of admissible bases and GD, = D, N GL acts on D by composition on the right. This
characterization allows us to define the line bundle det on Gr, as in the finite-dimensional

case.

Definition 1.3. We have
DxC

~

det =

where ~ is the following relation in D x C: foru € D and t € D, (ut;d) ~ (u;0Dett).
Thus it follows that
D xC

/\//

(ut;8) ~ (u;8Dett™!)forueAandte D,.

det* =

)

To make explicit computations, it is useful to give a complete set of local charts
for Gr and det, which will be labelled by the following set:

Jo=1{IeZN: I=(,is..)and i) <ir < --- and i, = | definitively}.

If I € Jo and Hy = ({v;: j € I}), and Hi— = ({v;: j ¢ I}), it is easy to show that H; € Gr and
that H = H; € H;_. We also establish an isomorphism between H, and H; in the following

way:
¢fw) =v;y forl>0;

and in the same way we define ¢; where --- <i_; < ip. At this point, and after observing
that, given A € L(H;, H;_), its graph is in Gr, we can finally introduce the following open

subsets of Gr:

Wi = {W: W is the graph of some A € L(H, H;_)},
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and we call Wy the subset obtained with I = N. We make some remarks and set some
notation:

(1) W; = {W € Gr: iy : W — Hj is an isomorphism} = (W € Gr: WNH_ = {0} }
where 71;: H — Hj is the projection with kernel H;_. Similarly, we also define 7i;_ and
@ = (@) om, @ = () om.

(2) Wi ~ H_,, where the isomorphism ®; maps A € H_, in the graph of ¢ 0c Ao
(¢7)~'. We will denote with A{N the inverse of this isomorphism. Hence, if for W € W; we
set M, = j; o ] + j; o 7 o Al,, where j| and j; are the inclusions of Hj” and H; in H,
then M}, is a representative element of W in D.

(3) In particular, if W € Wi N Wy, we have the following crossing maps:
M}, = My, o (@] o My,) ™!

Aly = @5 o (df + b7 o Myy) o (@ o (df + by o M)

(4) Local charts for det and det* can be given as follows:

xi: det]yw, — H_; xC and X[t det” |y, — H_y x C

xiw, 8) = (AL, det(@] ow)d) Xiw, 8) = (AL, det(@] o w)19).

The transition maps are then given by

X X1 Ay, 8) = (A, det(@] M}y)5),

X1 ALy, 8) = (A}, det(@] Mi,)15).

With this notation, it is easy to define sections of det*. We observe that det, as in

the finite-dimensional case, has no section.
Definition 1.4. If I € Jp, we define
oiw) = (w;det @jow) forwe D

is a well-given section of det” and we define o = opy.

Proposition 1.5. (1) If 01,0, € TNGr,det*) and Zero(o;) = Zero(o,), then o; = Ao, with
AeCh.
(2) W e W & o1(W) # 0.

(3) {01} is a linearly independent set. O
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The action of the linear group

First notice that, through the decomposition H = H; @ H_, given ¢ € gL(H), we can think

of ¢ as a two-by-two operators matrix:

Q= <(p++ (p+_) with @j, € Hay.
o1 @

Definition 1.6. We have

G ={g € GL(H): g, is a Fredholm operator of index zero}

Gi={geG g4+=0 G_={geG: gy =0}

f) 0 fy

= le* with A = and | : | eHY} Gy,
0 fn fn
f) 0 fy

W — le? with A = and | 1 | eH™} cG_.
0 fo fn

We call these elements ef. We define also
A=A=QA1,...,A) €Z™ A\ +---+ A, =0},

and we think of A as a discrete subgroup of GL(n,H); and for A € A we denote

which is easily seen to be in G.

We introduce also the following central extension of G:

1>C"—>G— G—1, (1)
where
~ &
G=——
SD+’

and SD,. = {t € GD,: dett = 1}, € = {(g,q) € G x GL(H,): gq~! € D}, and SD. acts
on & on the left by t(g,q) = (g,tq). We observe that G acts transitively on Gr in the
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natural way, and that G acts on the line bundles det and det* in a compatible way, indeed
(g,9)(w, 5") = (gwq~!,6*). The homomorphism from Gto Aut(det”), which is determined
by this action, is easily seen to be injective. We can define a section on the subgroups G
and G_, and evidently also on their subgroups F‘j‘) and ', to G via g g =1(9,9+4). As
far as /A, we have to further investigate the possibility of the existence of a section to G.

In order to do this we need a lemma.
Definition 1.7. Forl <i<mn,letd;=(0,...,1,...,0),andfor1l <1i,j <n,Ajj =06—0; € A.

Proposition 1.8. If z¥,z' € G, then
D= (—1)WZhgy, O

i e et . . .
Proof. We observe that zVz+tzV "z* ~ is an automorphism of det over id, so it must be
zVzHh = clv, WzhzY,

and c(v, p) is independent of the choices we have made of z¥ over z¥ and of z* over z*. If
7V = (2¥,q,) and z" = (2%, q,), then clv, ) = det(qvq,q;'q,"). Since c is a symmetric and

bimultiplicative function, it is enough to prove that c(Aj, Anx) = (—1)%kHontdik+din_ et

Z Z em) + Z em+1m+ Z en)ll)lm

1#£1,j m=—o00

A++=ZZC +Zem+lm +Zei1j1jll,m
m=2

1#1i,j m=1

(i) ()]) (ij)
A+_ == eluo A_+ = e A = ell

dv=ad=A11 + Ao

[
Z Z e + Z efr::l—lm-’_ Z eg(Lk—)l,m
m=—o00

l£h k m=—00
o0
1) (hh) (k)
D P LIRS LIS
Ush k m=1 m=2
(hh) (k) (hK)
B =epp By =e¢g, Bo = e;

du =p = B4y + Bo.
We have

AoBO = J; heﬂ‘)
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el if j#£hk
AoBir =€i/Bii=10 ifj=h

e ifj=k

e ifh#£1,j
A++B0 = A++e(hk 0 ifh= ]

e ifh =1
We observe that z*z" = z*z" hence
ApiBiy Ay By =By A AL By +BL A LA By — AL B PALL By
and A, ‘A, =1—e”and B, 'B,, =1—el™. Then

[—el el ifi£hk

(hh) (hh) (ii)

B++A++ tA++ tB++ =1- ell B++e B++ I-— ell 622 ifi=h
I— e(lhlh) ifi=k

t t (hh) ,(3) t t (hh) t
Bi-A_"Ayy By =ejg ey App Bii=¢e,0B =0

t t (i) ,(kk) t t i) t
Ay B fAL B =l AL By, = ducel) By = ducel.

Casesi=j,j=k,i=h,and j = kori=k and j = h are trivial. We have to

study the cases
i=handj#k i=kand j#h
j=kandi#h j=handi#k.

We complete the calculations only in the second case, noticing that the remaining ones

are similar:

apa 'p ! = (A44Byy + A1y Bo + AgByy 4+ AgBo)
Ay By + AL 'Bo+ Ao By + tA0 tBo)
= (A By +e™ el L o)A, By + e +040)

(jh)

=A B AL B++ + A Bel + el AL B

(i) t t (hk) ,(jh) (ij) ,(jh)
+en Ay Bioteen teppen

h) i .
—1— e(lhlh) + A++e(] ) 404+ e(hk) tBJer + 6(11111) S - e(hh) 4 e(hl + e(ﬁt))

and then det(qpq~'p~!) = —1. [ |
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The last proposition shows that there is no group section from A to G. However,

it is useful to introduce an inverse map of the projection of Ato A Ifi #j, let
Z?\ij — (Z)\ij)(z)\ij)++ + e(lili)) _ (Z?\i,” qij) e a (2)
Definition 1.9. For A = (Aq,...,As) € A, we define
A= a2 e N
We define also ¢ to be the bimultiplicative function on Z" x Z" such that
-1 ifi>j

e(6i,85) = e
1 ifi<j.
In particular, we have ;‘1\1 = ¢(5, 6]~);“;‘ and the following proposition.

Proposition 1.10. If v,u € A, then
AR elv, p)zVzh, O

We have the following commutation rules.

Proposition 1.11. Iff e HT) and f € H™, then as a relation of elements of Aut(det*), we
have that

efef — eS(f,f) efef

where

.1 . 1 e
S, = — f,f)dz = — fifi dz. -
( ’ ) 2’7'[1 J'|Z|=£_1< ' > z 27'[1 J'|z|=£_1 ; z

Proof. It follows obviously from the same formula in the n = 1 case (see, for example,
[10]). [

Proposition 1.12. Letfe H, orfe H_ and A € A. Then
efzh = zZref. O

Proof. The formula can be proved by working as in the proof of the commutation rule
for A. ]

We study also the commutation rules between A or I' and the section o of det”.
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Proposition 1.13. (1) If f € H_, then oo(e™W) = efao(W).
(2) We have

-~

2 0 0 = €(8;, 85) (—1) VT iy, © 2. O

Proof. (1) Easy. (2) We prove the formula for z"i. Let I € Jy such that H; = z*iH, and

—_~

0 =2M 0090z M.
o is a section of det* and o(W) = 0 if and only if o;(W) = 0. Hence, it must be 0 = C o1. In

particular, we can calculate C by evaluating o and o7 on Hj. ]

The duality

On the space H™ it is possible to define a perfect pairing ( ; ) by the formula

n
(f; g) = Res(f(z)|g(z))dz"! = Res Z fi(z)gi(z)dz !
=00 =00 o1
where f = (f1,...,f1), g =(g1,...,9n).
We observe that (vﬁ);vg)) = 0ij0n4x,1 or equivalently (Vitm—1m;Vi+xk—1n) = 8ij0n+k1-
In particular, ( ; ) is a perfect pairing between H, and H_, which are totally isotropic

subspaces of H. If i* is the only integer such that (v;;v;) = i+, we can define for I € J
It ={(i*eZ:i¢1} €Iy in order to have H;. = (Hy*,

and observe that the duality gives isomorphisms, denoted as F{” and F; , between H; and
(H;._)* and between H;_ and (H;.)*. For I =N, let F, = F{ and F_ = F.

N N
Proposition 1.14. (1) W € Gr := W' € Gr.
(2)W€WI<:>WJ_EWIL. O
Proof. Easy. ]

Definition 1.15. By means of the above proposition, we can define a map p: Gr — Gr by
w(W) = W,

It is easy to see that this map is an holomorphic one. By considering the charts

‘Wi and Wi, we have that (Dfll o pno @ is given by

Ar— =) o (FL) o) o tA 0 Hdy) o Fru o ().
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In order to study the relations between the duality and det, we define a permu-
tation p = pyof theset (n <0}: If Il e JowithI={i; <ip <---},I_ ={--<i; <ip}and

ij" are the relative indices for I*, then p is defined by
ip, = (i)* forl<o. (3)

We observe also that

Fu="F_,  Fn_="F,
o =F'o'jjf)oF, @, =F'o(jf)oF

Proposition 1.16. There exists exactly one automorphism i of det* over p such that
Hoog=0go0 L.

Furthermore, we have i o o1 = e(p)(=1)WoyL o p where €I) = ), | — i1. (These
numbers are well known in the theory of the Grassmannian, since they are related to the

computation of the cohomology.) O

Proof. Following the required commutation rule between oy, i, and [t in the charts W,
the map fi must be given by the formula [i: (A;A) — (—F_!'*AF, ;). Therefore, in the open
set Wo N "Wy the map 1 is expressed as follows:

det(m, ML)
~ -1 I I+ +wi

oo AN — A, ———————

X1t 0 HoX; W ( Wi det(7t+M%N)
Ifi,< - <is<1=<ig-L=r<--and - - <i,=-1<---<ig<1l=<i <. <ip,

then we have
det(r; My,) = det(my o (57 &7 + i by Aly)

T T 0
= det ( Z eyl + Z Z amew) = (—1)Zimsn Ut det(an) h=0--1-s

l=s+1 1l=1 h=1-s

I+

det(re, ML,,) = det(((b) ' — Ald{) ) o j_) det(*(F1) ™" Y ) Fru )

and
—s s 0
det((p7) "ty — Alpy) 1) = det (Z ey — ) D amehﬁ>
l=—1 =1 h=—r
— (_1)S+Zl_=s—ril+l det(ahl) ]_LTB,J,S
and

B="F.)" Y Py = FZI(CDL)FI—(PI_-
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Hence B: Vig, > Vil > WL and detB = ¢(p) and
1

L
det(ry M}, — (o) (1) IR AT 1
det(r; M1, '

It is independent from A. So II is an holomorphic automorphism of det and det*. We
remark that s+ ° 41+1+> |_ ., i+ 1= (mod 2), and the local expression of fi in
the chart Wy is

(AR — (Al el =1 ).
The assertion on the commutation rule with oy is now straightforward. ]

Finally, we study the commutation rules between the duality and G.

Proposition 1.17. (1) If f € H™, then (ef'W)*+ = e~fW*.
(2) If A € A, then (W)L = 2 MW, 0

Proof. Easy. ]

Proposition 1.18. (1) Iff e H‘]r‘), fio ef=eTo L.
2 IfA €A, flor =220 fi. O

Proof. (1) For the preceding proposition, fio efo flo ef is an isomorphism of det* over Id.
So it is a multiple of the identity. To calculate this constant, we evaluate the two members

on op(H,). The claim is thus proved by the following calculations:

- ~ ({1
fioefog(Hy) =fioel ((O) ) 1) = fiog(Hy) = oo(Hy),

—_—

e o fiog(Hy) = e fop(H) = oo(H,).

(2) As in the previous case, we have

uo?‘zc(}\)z/*\)\o}l

—

as actions on det*. Expanding {io z*11*2, we immediately notice that c is a character of A,
and so it is enough to prove the statement in the case A = A;;. Evaluating the two terms

of the previous relation on H, in this case, we obtain
L ApH
clhij) = e(8;, 8:)e(8s, 85)e(p)(—1) (1))

where p(l) = lforl < —m, and in {-n+1,...,0} p is given by the cyclep = (0 — 1 —
2 ...2—n1-mn). Hence ¢(p) = (-1)* ! and {(z"iH,) = (~1)"**" and finally c(\;)) = 1. =
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The tau function and the n-KP

In this subsection, we introduce an n-component version of the tau function of Sato and

of the {-Baker function. (The n = 1 case is treated, for example, in [10].)

Definition 1.19. Let &}, € dety, be a nonzero element of the fiber of the line bundle det*
over W and A € A; we define Tst, A Gy — Cby
oolgz™'W)
Tg;\/‘)\(g) = I
gz 783,
_ . . . m)
and Tsy, = Tst,,0- In particular, 7 is defined on .

Sometimes Ty will be defined but to a multiplicative constant as a generic Ts,, .

Proposition 1.20. We have
Tazaq;v,x(ef) = Ts;v,—)\(eff)- o

Proof. It automatically follows by Proposition 1.18. ]
Definition 1.21. If W € Gr and A € A, let us define

M) ={g el g7'lz7?"W e Wo} = r‘jz’_xw.

We observe that g € FRVO\) & olg~'z7*W) # 0; and FJ(F“\)V(A) is an open subset of
r. We define ¥y(\) and Ww(): T, () — glin, H) in the following way: If g € T3 (),

ie{l.---n}and

Vi, g)
Wi\, g) =
ani(Aa g)

is the only element of g~'z"*W such that it has the form v(f) +w; with w; € H™ | then let
us define

Uwih, g) = (W50, 9) and Wy, g) = gZ"Pw(A, g).

Remark 1.22. We introduce the following conventional notation, which coincides with
the ones common in the n = 1 case. We observe that each element of " could be ex-
pressed in the form 1 | 5 xv. Hence, we can think of Wy, ¥y, and Ty as functions
either in the variable g € I](_“) or in the variables x{ﬂ, and we will write Yy (A, x) to mean
Yw(A, e¥?) where
eI 0
X = € Fjr“).

oo (M) 1
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We observe also that ‘I’(?\,x, z2)=zI+ ) o An(A, x)z7™ with A, € Mat,«n(C) and
that W\, x, z) = e**zZ"P(A, x, z).

Definition 1.23. Let q¢(z) =1 —z/{ and let

1 0
tz) = qcl2) € glin, Hy) N G..

0

Proposition 1.24. If WeGrAeAandge FL“JV(A), then

Twa; (9Q)

Ui\, g, 0) = e(ij, A €85, 8;) %0
Twalg)

(4)

Proof. First notice that by choosing ,-1;-1y, = oo(z*g~'W), we have the relation

T\/V,)\+)\‘1j (gQé)
Twalg)

So it is enough to prove the proposition for A = 0 g = 0 and W = Graph(A) € Wy.

= e(\ij, Ng-1,-0mp, (QD).

Moreover, if Qé = (Sz) € Gy and m; ---m, > 0, then

z~™ 0
z
bl ¢ | =|E™a ') and  (z7™q; (@) = qul(Z),
7z~ Mn 0

and finally a='b(f; ... f,) = ((£;(0)/Q V.
We observe now that

TooW,A; (0) = €(85, 81) det t,
where if i 7 j, t = (I - e} + elg'A taj + a 'bleg] + (2)__A'‘tq;)) = T+ B+ a”'bC and
aji = ()44 + 6(1]11)§ while if i = j, t = [+ a"'bA. In the case i = j, since the image of a™'b

is generated by v(lj), we have
dett =1+ tr(a”'bA),

and by following the definition of ¥ we get Av(lj) = (W);(2),...,%;5(2) — z,...,¥,;(z) and
a oAV = ((¥5;(0) — 0/ V). Hence

dett = M
¢
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If i # j, proceeding as above, we calculate
Bl = 0!+ AW = )+ Byn
ailev(lj) = a’lb(v(li) + (M) __ Av(li))

=04 a 'bWyi(2),...,z7 W), ..., 2¥;(2) — 295(0), ..., Vni(2)
= (@100 — Py 0.

Therefore, (B + a‘le)v(lj) = (W;1(Q) — l)v(lj), and finally
Dett = \I’n(C) |

If we adopt the conventions introduced in Remark 1.2.2, we can write the formula

(4) in the following way:

-1
) o _ G n)
TWA+A (xl N ...,xln)

Wi\, g, Q) = eij, N £(85, 8%
Tw(x)

Proposition 1.25. If W e Gr;A,pe Aand g € FJ(F“\)V()\) and h e rjrn\va(},L), then

Res Wi\, o) Wy (1, h) dz ™! = 0. (5)

Proof. Let Ww;(A, g) ="*(¥y;---¥n;) and similarly ¥y, ;. We observe that
Res Wy, g) Wy (i, h) dz7h = ((Ywa(A, @) 5 Wi, 1)

ij=1-m"

Now the claim follows by observing that Ywi(A, g) € W and ¥y, ;(n, h) € W, ]

Proposition 1 allows us to write the equation (5) as an equation in T. In order to

make this result more explicit, we use the following simple lemma.

Lemma 1.26. If f is an holomorphic function in the variables x;, xs, ..., then

fx1 + U1, X2 + Yz, ...) = (eZiVil@/f)(x), O
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Following Propositions 1.24 and 1.18, we have

—5 % =4 a/oul?
Zl:l(z /1) (0/ u )TVV,)\Jr?\ij(u)

Tw(w)

G)1 €
LZ

Wit 1, 2) = i, Ne(®;, 828 N el

)

0 (-1 (3)
227 /00/0v )T\/V»H—Ahj W)

Twu(v)

o 1€
Wiyt (=1, —v, 2) = e(Aij, WelS;, Sr)zthitHie™ v

With the following substitutions: y = (u—v)/2,x = (u+Vv)/2, x =A+d;, f = pn— 06y, and
if Sy, .- ) = X, multindex and =k (1/P)Y” (where [p] = p1 +2p2 +3p3 +- - ) is defined by the
identity el vz = Y 2 Sily)z', then from Proposition 1.25 we obtain the n-component
KP in the Hirota form (see [7]): If «, p € Z™ are such that (5|c) = 1 and (8|f) = —1 where
(0=06,+---+6y)andifx,y € H(}r‘), then

_ d
Z 8(6% x + [3) Poc,ﬁ,j (y(lh), —au(h)> (T\/V)(Xféj (x +u) TWﬁ+5j (x —u) =0 (6)

j=1 1 u=0

where

0 0 ngoo Ky /oK)
Pap,j (U{h) —> = Qup,j (U(h) —) 0 eXk=1 21 Y 070y
WPy ’ (h) D)) 1o (h)
ou, ou,

and

Q . (h) 0 _is (2 (i))S _li
o, | Yt PO = kley k—1+(5j|x—p) lau{j) .

1 k=0

In these equations, the y’s are indeterminates, so we have an equation for each
monomial in y. If we want to obtain pure algebraic equations in T, we must consider the
coefficient of y° and choose « and B in such a way that (§;ja — ) < 1 foreach j =1,...,n.

For such « and 3, we get

n

D eldy, o — B) Twas () Twpas; (X) =0, (7)
(5]-\(:113):1

which is a class of Plicker relations.

2 The theta function and the n-component KP

In this section, Krichever's construction is generalized to the case of n points on a Rie-
mann surface (for the n = 1 case see, for example, [10]). Then we find a generalization of

the classical Fay trisecant formula.
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Let X be a Riemann surface of genus ¢, and L a line bundle of Chern class g — 1
(c(L) = g — 1) on it. Let Py,..., P, be distinct points of X, and z;: U;—>S? local charts for
X where P; € Us, zi(Py) = oo and U; N Uj = {). To proceed with Krichever’s construction,
we fix also ¢1,..., @ trivializations of L in Uy, ..., U,, where ¢;: L|y; = Dy x Cis such
that ¢; = (z; o t, ), where : L — X is the projection of the line bundle on X and ¢;p is a

linear map for all P € U;. We set also the following notation:
Xi = Zfl(Dw) = Zfl(ﬁl)y Xie = Zsl(ﬁe)» Cis = aXis = Z;I(aﬁs))
Xo = X\ U{Pi}, Xoe = X\ U Xie -

Definition 2.1. ] is the set of data (X;L;Py,...,Pn;21,...,20;@1,..., ©n) described above.

We define X: J — Gr as follows: for f € H™ defined as a holomorphic function in D?,
f=(f1,...,f0) e KK LP1,...,P2z1, ..., 20; 01, .., On)

if and only if there exists a g € I'(Xo; L) such that glc,. = ¢; ' (Id; i 0z) or dilglc,.) = fi o z;.
The definition is well given by the following proposition.

Proposition 2.2. We have
KX, L,Py,...,Pn,21,...,2Zn, @1,...,Pn) € GT. O

Proof. As in the 1-dimensional case, we can see that W = X(X, L, P;, z;, ¢i) = H%(Xo, L)
Kermy lw = HO(X, L) and coKerm|w = H (X, L). [ |

Some notation for Riemann surfaces

A: HY(X, C) x HY(X,C) — C is the usual extension of the cap product defined on H!(X, Z)
bywAro=[ywAao.

Let Po; 1 ... &g,B1---Bg =V1,...,Y2g be amarking of X, ] ~ Pic® the Jacobian and
®: X — ] the Abel map of base point Py. Let (X, p) be the universal covering of X, and let
Y C X be the closure of a connected component of p~1(X — (Jvi); so that X >~ Y/~ where ~
is the identification along A = Y = &, B1 6(1_1 e B;l and v is a lifting of y to Y. Let also P;
be a point of Y such that 7t(P;) = P; and let Y; be a subset of Y such that 7«(Y;) = X;.

Furthermore, let a; ---ag, by ---bg = v§,...,v3, € H' (X, Z) —Hp, (X) be the dual
basis of «; - - - B4, and x the matrix representing the cap product in this basis. We make
all the above-mentioned choices, so that x = (° ) and Q = (1Q,), where Q: Z* — C°
is the matrix related to 5: H! (X,Z) — H! (X, 0). We call Q also the lattice Q(Z*?). From
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Riemann's relations it follows Q, = 'Q, and Im Q5 > 0. We set also
_ _ P _
G=Px'P=(Q;—Qy)", where <5> =(tQtQ)t.

Let 0(x) and 0[vl(x), defined for v € (1/2)Z°%/Z9, be the classical theta functions of first
and second order defined on C? « H!(X,0), and as usual © is the associate divisor.
Furthermore, 6 = (0v]): ] — CP?~!will be the Kummer map.

In order to relate the theta function with the tau function, we introduce a variant
of the classical theta function (see, for example, [8]), as proposed by Segal and Wilson
[10].

Definition 2.3. Let h: HY(X,0) x H}(X,©) — C be the only Hermitian form such that for
all a,b € H!(X, Z), it holds that Im h(5(a), 5(b)) = a A b, and let H be the matrix related to
h in the given basis.

Letn: C? — C be defined by

n (x) = Z (=1) tnme—(l/z) mhn+Qommn+Qym+2x) .

n,meZg

I gather together properties of introduced n in the following two propositions.

Proposition 2.4. (1) H= —2iG = (Im Q,)~ .
(2) The definition of n is well given and n(x) = Ce ™'"*6xg(x) and C e C*. O

Proof. Easy. [ ]

Proposition 2.5. We have

vx € COVw € Q, NOMKx + w) = neInlw)e™ @, 8)

Conversely, if f: C¢ — C and C e C verify fi(x + w) = CAX)F(w)e™ X then

Jx: C9 — C, a C-linear map, and 3p € C9, A € C: fi(x) = Ae*™¥n(x — B). O
Proof. Easy. u

Finally, we make some remarks on a class of line bundles. Let P € X, U a neigh-
bourhood of P, and z: U — D, a local chart such that z(P) = co. If f € H is defined on D?
and f(x) # O for all x, we define the line bundle L, by means of the associated element of
H!({Us; Uo}; OF) where Uy = z71(D?) and Uy = X — {P}. We set

(Lf)ooo =foze F(U.oo N UO, O*) (9)
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Definition 2.6. Iff=(f;.--f,) € H(}r‘) and A € A, we define

La=1l @ oL

n
M efn)

where L;Aiefi is the line bundle constructed as in (9) with base point P; and local chart z;.
We define also a map Z: H(j:) ® A — HY(X,0) by

Z(fAN=Z—(A\-P)
where A - P = A O(Py) + - - + A D(Py), D is a lifting of @ to X, and Z is given by
1
{Zio} € HI(X, O) with Zijg = —f;o0z.
2mi
Further, let Ko = Ker Z, Ky = H(f) NKg, K=KerL, and Ky = HT) NK.

Remark 2.7. Let ¢f" ... ¢/* be standard trivializations of L, so that, given o; € I'(U;, 9),

A f

oy will define an element o € I'(X, L)) by 0i 0 z; = ¢!* 0 o if and only if o; = 2% - €'t - gy.

Proposition 2.8. (1) c(L¢)) = 0.

(2) Lia =L ®@O0(—= Y L) MPy).

(3) L and Z are group homomorphisms so that, in the exponential sequence, we
have exp;1 oZ = L.

(4) L|H(+n> and Z|HT) are surjective. O

Proof. (1), (2), and (3) are easy; we prove (4): The surjectivity of the map L derives from the
fact that L|x_p, is trivial, because X —P; is affine. We observe that Ky is a closed subspace
of H(fr‘) of finite codimension. Let V; be a supplementary space for Ky 9. We observe that
L|y, is a universal covering of J. So Z|y, must be an isomorphism, and the claim follows.

|

Remark 2.9. We observe that (f,A) € Kif and only if there exist ¢ € I'(Xp, 0*) and o, € H™
such that

£ _ Q)
pz)‘lefl =(piopoz D). efx,

In particular, for (f,A) € K we have that fo, — fo(00) € V = z7'H™ is uniquely determined.
We define the group homomorphism a: K — V by alf,A) = fo, — foo(00); and ay = al-, M.
Noticing that K is a set of generators for H(]:) as an R-vector space, there exists a unique
R-linear extension a = b 4 ¢ of a to H{Y ® A where b is C-linear and ¢ is C-antilinear. We

observe also that ag is C-linear on Kyy.

Finally we describe the isomorphism between Ky /Ky and H!(X, Z) induced by the
(1)

map Z. If f € Ky and ef = gef>, let fy = f — fo. We observe that on X we have ¢ = e'0 in
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Ciand thatfori=1.--n,1/(2mi) J"Ci(d(p/(p) = 0. Hence, log ¢ = f( is defined on the whole
Yy. We have that

n(f,y):—J dfoz—J' d_(p
Y y @

By means of this notation, the isomorphism [ ]: Ky/Kyo — HY(X,Z) induced by Z

turns out to be

2n
[f1=> nlkyivi. (10)
i=1

The tau and the theta functions

In this subsection, proceeding as in the 1-dimensional case, we study the relations be-
tween the tau function and the theta function. The first step is the study of the evolution
under the action of I'™ x A of an element of the Grassmannian coming from a Riemann

surface via the Krichever construction.

Proposition 2.10. Let (X,L,P;,z;, ¢;) € J. Then

2" K(X, L, P zi, 01) = KX, L® Lip, Pi, zi, 01 @ 9. O

Proof. 1Itis the same as the 1-dimensional case. |

In order to compare the two functions T and 6, we have to observe that through
the maps L and Z, n can be seen as a Kp-invariant function defined on F(f) @ A, which
verifies the formula (8). Our strategy is to reduce T to have the same property.

We first study the case H%(X,L) = {0}. This condition is equivalent to W =
KX, L, Py, zi, i) € Wo so we can choose Tw = Tgyw).

Proposition 2.11. If HO(X, L) = {0}, u,A € A, k,f € HY, and (k,A) € K, then

—=S(f,ap (k]

Ty (@) = el Ne )ty e Twale"). (11)

Proof. We observe that z*e *W = e~ ®®W and hence that

TWMu(ek*f) z M e~ Tkgo(W) = ooz M He T W) = enMgy(eFz7*W)

= 1,,(f) ernMe~Tz R (W) = ,,(f) e Sh oM e—Fz=keark g, (W)

£T0Z ‘0S AINC UoesId Ip IPNIS 1jBap e1SeAIUN T2 /610 [euIno [pJo JXo uiw 1//:dny Wwouy papeo lumoq


http://imrn.oxfordjournals.org/

788 Andrea Maffei

= Tu(ef)’f}\(ek)efs(f'a”(k” e~fe—kz—Hz-Agy(W)

= e(p, Ntule)ma(eM)e STt e—fe-kz—u-Agy (W),

and the claim follows. [ |

This formula has the same structure as (8). In order to give a geometric inter-
pretation of the coefficients, we first study the case A = 0 and use the isomorphism []

described in (10). Proceeding as in the 1-dimensional case and noticing that

J k)Y = J K1Y+ 2ming; J K = J k),

j G G G

we obtain the following lemma.

Lemma 2.12. (1) For all k,1 € Ky, whatever 1, and k., related to 1 and k,
S(k, a(l)) — S(1, a(k)) = S(k, loo) — S(1, kso) = 27ti[l] A [KI.

(2) For all f,g € HY,

S(f, clg)) = —mh(Z(g), Z(f)). O

Thus if, in the case H°(X, L) = {0}, we set

T (1:) — T(ef)e(l/Z)S(f'b(k”,

we obtain
(1) T (f + %) = 11 () 71 (k) e=5c® for all f € HY and k € Ky,
(2) T1(f + k) = 1, () 71 (k) for all f, k € Ky,
(3) 3 p: HYY > C a C-linear map such that T, (k) = e?™, for all k € Kyo;

hence, if
To(f) = Tl(f)e_p(ﬂ — T(f)e(l/z)s(f,b(f))—p(f))

we then have that
(1) T2(f + k) = 1o(f) for all k € Ky and for all f € H(f),
(2) To(f 4 k) = T2(f) T2(k) e M) = 1y (f) Ty (k) ™20 20 for all f € HY and k € K,
(3) T2(0) # 0.
Following the characterization of 1, there exist C € C* and a C-linear map
ow: H™ — Cand B € C¢ such that

Tw(ef) -C eocw(f)f(1/2)S(f,b(f)) n(Z(f) _ B) (12)

Now we can give the relation between T and 0.
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Theorem 2.13. Let (X,L,Pi,zi, i) € J and W = K(X,L, P;, z, ;). If /2, € HY(X, O) are
so that @ = —W9! + exp,(x/2) and exp;;1(l) = L — (g — 1)Py € J, then 3,C € C* and

37 v H(f) —> C a C-linear map such that
~ K
T\/V,)\(ef) _ CWAeocw,A(f)—(l/2)5(f,b(f))+g(Z(f),Z(f)) 9 <Z(f) —A-P—t+ §> ,

where g(u,v) = —mi'uGv, and G = Px'P is the bilinear form introduced in the previous

subsection. O

Proof. First we observe that by Propositions 2.8 and 2.10, for each V € X(J), there exists
age H(}:) such that og(e?V) # 0, and therefore the set of these elements g is an open dense
subset of H". Noticing that H[” is a Baire space, the set of g € H{" such that o(e92*W) # 0,
for all A € A, is dense in H(f). Let g be such an element and set 6y = ﬁGO(eQW). Hence,

by formula (12), we have

Téw,h(ef) = To‘o(z*)‘eQW),O(ef+g)T00(egW).0(Z)\)
— CW}\e&WA(ﬂef(l/Z)S(f,b(f))n(Z(f) _ B)

— CW)\eocw)\(f)7(1/2)5(f,b(f))Jrg(z(f),z(f)) e(Z(f) _ B)

In order to calculate 3, we observe that Ty, (f) = 0 < oplz e W) = 0 & HOL ® L)) #
{0} & Z(f) € =W 40+ | AiPi;and thatn(Z(f)—B) =0 & Z(f)—p € © = —Wo-D 4 /2 &
Z(f) € =Wl 4 B + k/2.

Hence —W9 ! + B +k/2=-W9 14+ 0+A-Pandp—{—A-P+«k/2 e H (X Z).
Unicity and thesis follow. ]

The trisecant formula

From the relation between the tau and the theta function of Theorem 2.13 and from
formula (6), we obtain a hierarchy of equations for the theta function. In this last part
we attempt to interpret some of these formulas by looking at geometric properties of
the Kummer variety. These properties are expressed as linear relations in the vectors
a§i)é(w + l5j), where w range in some subvarieties of ] and 6;” = z*(—(1/21)(a/au§“)) =
Z*(Dgi)) = Z(—(1/ 21)v§”). In the last identity we have identified the derivations on J with
C9, and we have used the linearity of Z. We can compute these derivations explicitly in
terms of the Abel map. Let @ be a basis of H(X, Q!) and P;(¢) = P; + ®i(0) = Py + LZ;:I(O a
and let us have @; expressed in Taylor series as ®;(¢) = 2(V{'¢ 1 + VI ¢2 +...).
We have L,_;, = —P + ®({o), and by Abel’s lemma we obtain that

1
11 4 1[G

10 G 1>0
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We have the following lemma.

Lemma 2.14. (1) 3 = V{" and Z0v{") = —21V".
(2) 3 # 0. .

Following Theorem 2.13, the KP equation (6) is now given by the following equa-

tion:

n
0 _ _
(h) oo (W—xp 5. (W—Slu,b(u)
D CapiPap (Ul 7 | ™
= oy,

- 20ZWZWIP(x 4 Z(u) + Pj — - P)O(x — Zw) — Py — B -P)| _, =0

(13)

for each x € C? and where Cqpj = Ca-s;Cps;€(05, ¢ + B) # 0.

If we apply the Riemann identity, we see that as we claimed above this is a linear
equation in the vectors a;ill) e a;i:)é(wjt P;). We will examine now the equations that appear
as coefficients of y° in the previous hierarchy of formulas. We observe that it depends
only on o — 3, and the most general formula is obtained when o« — = A16; + - - + A0, —
8141 — -+ — 8ryn—2, where Ay > 1 and N = Y |, A;. If we apply the Riemann identity, we

obtain

N
Z Ca,[g,js)\jfl(ZD{]))e%“Bi (u)—oc[3+5j(u)—S(u,b(u))ezg(Z(u),Z(u))é(Z(u) +w+ ﬁj)|u=0 -0 (14)
j=1

for each w € (1/2)(Wn-2 — 3_i_; MPi).
In conclusion, we illustrate some examples where classical results are obtained.
If \; =--- = Ay = 1, we obtain a weak form of the generalized trisecant formula
obtained by R. C. Gunning in [6]: for each Py,...,Pn € X and for each w € (1/2)(Wn_2 —

ZF:I Pi)v
BOw +Py),...,0W+ Py)

lie in an (N — 2)-dimensional space.

If N = 3,A; = 2, and A, = 1, we obtain the existence of a family of lines tangent
to the Kummer variety: for each P;,P, € X and for each w € (1/2)(W; — 2P; — P,), the line
through 6(w + P;) and 6(w + P,) is tangent to the Kummer variety in B(w + Py).

If N = 3 and A; = 3, we obtain the existence of a family of flexes of the Kummer
variety: for each P € X and for each w € (1/2)(W; — 3P), the line through 6(w + P) with

direction a(ll)é(w + P) is a flex for the Kummer variety.

References

€10z ‘0€ AINnC uoesd 1p 1piS 116p eISIBAIUN T /BI0SEUINO [pIOXO"UIW//:dNY WO pepeojumod


http://imrn.oxfordjournals.org/

(1]

(2]

[3]

(4]

(5]

[6]

(7]

[8]
[9]
[10]

The Multicomponent KP and Fay Trisecant Formula 791

E. Arbarello and C. DeConcini, “Geometrical aspects of the Kadomtsev-Petviashvili equation”
in Global geometry and Mathematical Physics, Springer-Verlag, Berlin, 1989, 95-137.

E. Arbarello, C. DeConcini, V. Kac, and C. Procesi, Moduli spaces of curves and representation
theory, Comm. Math. Phys. 117 (1988), 1-36.

E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equa-
tion” in Nonlinear Integrable System: Classical Theory and Quantum Theory, World Scientific,
Singapore, 1983, 39-119.

B. A. Dubrovin, Theta functions and non linear equations, Russian Math. Surveys 36:2 (1981),
11-92.

J. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Math. 352, Springer-Verlag,
Berlin, 1973.

R. C. Gunning, Some identities for abelian integrals, Amer. J. Math. 108 (1986), 39-74.

V. Kac and J. van de Leur, “The n-component KP hierarchy and representation theory” in Im-
portant Developments in Soliton Theory, ed. by A. S. Fokas and V. E. Zakharov, Springer Ser.
Nonlin. Dynam., Springer-Verlag, Berlin, 1993, 302-343.

G. R. Kempf, Complex Abelian Varieties and Theta Functions, Springer-Verlag, Berlin, 1991.
D. Mumford, Tata Lectures on Theta II, Progr. Math. 43, Birkhduser, Boston, 1984.

G. Segal and G. Wilson, Loop groups and equations of KAV type, Inst. Hautes Etudes Sci. Publ.
Math. 61 (1985), 5-65.

Dipartimento di Matematica, Universita di Roma “La Sapienza,” 00185 Roma, Italy; maffei@mat.

uniromal.it

£T0Z ‘0S AINC UoesId Ip IPNIS 1jBap e1SeAIUN T2 /610 [euIno [pJo JXo uiw 1//:dny Wwouy papeo lumoq


http://imrn.oxfordjournals.org/

