
IMRN International Mathematics Research Notices
1996, No. 16

The Multicomponent KP and Fay Trisecant Formula

Andrea Maffei

The n-component KP hierarchy is a system of nonlinear partial differential equations that

generalizes the classical equation of Kadometsev-Petviashvili. Kac and van de Leur [7]

studied the algebraic aspect of this generalization, giving many equivalent formulations.

C. De Concini pointed out to me that one of the equations found by Kac and van de Leur

has the same structure as the Fay trisecant formula. From this observation and from the

well-known relation between KP equations and the theory of theta functions, a way to

prove the trisecant formula is suggested.

In the first part of this paper we complete the work of Kac and van de Leur, show-

ing the relation between the action of a group on a Grassmannian Gr and the solutions of

the n-KP. In particular, we prove that a generalized Sato tau function evaluated along the

orbit of this action solves the n-KP in the Hirota form. In the second part we generalize

Krichever’s construction to the case of n points on a Riemann surface, and the relation

between the tau function and the theta function defined on the Jacobian of the curve is

proved in this case. This relation allows us to prove that the theta function solves the

n-component KP. Finally, we give a geometric interpretation of some of these formulas. In

particular, using the Plücker equations which appear in the hierarchy, a Fay generalized

trisecant formula is proved (see, for a more precise version of this formula, the article of

R. C. Gunning [6]).
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770 Andrea Maffei

1 From the Grassmannian to the n-component KP in the Hirota form

H(n) is the topological vector space on which the Grassmannian will be constructed. If

we set the following notation:

S2 = C ∪ {∞} is the Riemann sphere and z is the coordinate on S2,

Dε = {z ∈ S2: |z−1| < ε},

D∗
ε = Dε − {∞},

the definition of H(n) is given by

H(n) = H(n)
+ ⊕ H(n)

− = lim→ Γ (D∗
ε),

H(n)
+ = {f ∈ O(C) and f(0) = 0}n,

H(n)
− = C{z−1}n, the set of holomorphic germs in z = ∞.

We also set v
( j)
k = (. . . , zk, . . .) and vk in the 1-dimensional case, and we define the linear

operator e
(i j)
kl by e

(i j)
kl v(h)

m = δhjδlmv(i)
k .

Remark 1.1. H(n) ' H = H(1) and the isomorphism maps (f1, . . . , fn) into z1−nf1(zn) + · · · +
fn(zn). We observe also that this isomorphism preserves the decomposition of the space

H: the image of H(n)
+ is H+ and the image of H(n)

− is H−. Finally, v(i)
l is mapped in vi+n(l−1)

and e
(i j)
kl corresponds to ei+n(k−1), j+n(l−1).

Now we can use the results of the 1-dimensional case ([1] or [2]), and we observe

that in a standard way the space H(n) turns out to be a locally convex topological vector

space as well as the relative spaces of continuous operators Hµλ = L(Hλ, Hµ) = {L: Hλ →
Hµ linear and continuous} for λ, µ ∈ {+, −}. Furthermore, it is possible to define a trace

and a determinant on certain ideals of maps. If

T+ = {t ∈ H++ and t = uv with u ∈ H+− and v ∈ H−+},

D+ = {1 + t: t ∈ T+},

following [1] or [2], we have the following lemma.

Lemma 1.2. Let a ∈ D+ and t = a − 1 ∈ T+; then:

(1) If F is a Fredholm operator then F + t is Fredholm, too, and index(F + t) =
index(F).

(2) The trace of
∧i

t is defined for all i.

(3) Det a = 1 +∑∞
i=1 tr(

∧i
t) converges.
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The Multicomponent KP and Fay Trisecant Formula 771

(4) Det a 6= 0 ⇔ a is an isomorphism.

(5) For g ∈ GL(H+), we have tr(gtg−1) = tr t and Det(gag−1) = Det a.

(6) If t is of finite rank, then Det is the usual determinant.

(7) Finite rank maps are dense in H+−.

It is possible now to define the Grassmannian Gr:

Gr = {W: W is a closed subspace of H s.t. π+|W is Fredholm of index 0}

where π+ is the projection of H on H+ along H−. Gr turns out to be an holomorphic

manifold modeled on H−+. Even though Gr is not compact, its only holomorphic sections

are the constant ones. It is worth observing that Gr may be defined also as

Gr ' D

GD+
where D = {w : H+ → H : π+ ◦ w : H+ 7→ H+ ∈ D+ and w is an embedding} is the set

of admissible bases and GD+ = D+ ∩ GL acts on D by composition on the right. This

characterization allows us to define the line bundle det on Gr, as in the finite-dimensional

case.

Definition 1.3. We have

det = D × C
∼

where ∼ is the following relation in D × C: for u ∈ D and t ∈ D+, (ut; δ) ∼ (u; δ Det t).

Thus it follows that

det∗ = D × C
∼′ ,

(ut; δ) ∼′ (u; δ Det t−1) for u ∈ A and t ∈ D+.

To make explicit computations, it is useful to give a complete set of local charts

for Gr and det, which will be labelled by the following set:

I0 = {I ∈ ZN: I = (i1, i2, . . .) and i1 < i2 < · · · and il = l definitively}.

If I ∈ I0 and HI = 〈{vj: j ∈ I}〉, and HI− = 〈{vj: j /∈ I}〉, it is easy to show that HI ∈ Gr and

that H = HI

⊕
HI−. We also establish an isomorphism between H+ and HI in the following

way:

φ+
I (vl) = vil for l > 0;

and in the same way we define φ−
I where · · · < i−1 < i0. At this point, and after observing

that, given A ∈ L(HI, HI−), its graph is in Gr, we can finally introduce the following open

subsets of Gr:

WI = {W: W is the graph of some A ∈ L(HI, HI−)},
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772 Andrea Maffei

and we call W0 the subset obtained with I = N. We make some remarks and set some

notation:

(1) WI = {W ∈ Gr: πI : W → HI is an isomorphism} = {W ∈ Gr: W ∩ HI− = {0} }
where πI: H → HI is the projection with kernel HI−. Similarly, we also define πI− and

$+
I = (φ+

I )−1 ◦ πI, $
−
I = (φ−

I )−1 ◦ πI−.

(2) WI ' H−+, where the isomorphism ΦI maps A ∈ H−+ in the graph of φ−
I ◦ A ◦

(φ+
I )−1. We will denote with AI

W the inverse of this isomorphism. Hence, if for W ∈ WI we

set MI
W = j+I ◦ φ+

I + j−I ◦ φ−
I ◦ AI

W, where j+I and j−I are the inclusions of H+
I and H−

I in H,

then MI
W is a representative element of W in D.

(3) In particular, if W ∈ WI ∩ WJ, we have the following crossing maps:

M
J
W = MI

W ◦ ($+
J ◦ MI

W )−1

A
J
W = $−

J ◦ (φ+
I + φ−

I ◦ MI
W ) ◦ ($+

J ◦ (φ+
I + φ−

I ◦ MI
W ))−1.

(4) Local charts for det and det∗ can be given as follows:

χI: det |WI
−→ H−+ × C and χ∗

I : det∗ |WI
−→ H−+ × C

χI(w, δ) = (AI
w, det($+

I ◦ w)δ) χ∗
I (w, δ) = (AI

w, det($+
I ◦ w)−1δ).

The transition maps are then given by

χJ χ
−1
I (AI

W, δ) = (AJ
W, det($+

J MI
W )δ),

χ∗
J χ

∗−1
I (AI

W, δ) = (AJ
W, det($+

J MI
W )−1δ).

With this notation, it is easy to define sections of det∗. We observe that det, as in

the finite-dimensional case, has no section.

Definition 1.4. If I ∈ I0, we define

σI(w) = (w; det $I ◦ w) for w ∈ D

is a well-given section of det∗ and we define σ0 = σN.

Proposition 1.5. (1) If σ1, σ2 ∈ Γ (Gr, det∗) and Zero(σ1) = Zero(σ2), then σ1 = λσ2 with

λ ∈ C∗.

(2) W ∈ WI ⇔ σI(W) 6= 0.

(3) {σI} is a linearly independent set.
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The Multicomponent KP and Fay Trisecant Formula 773

The action of the linear group

First notice that, through the decomposition H = H+
⊕

H−, given ϕ ∈ gL(H), we can think

of ϕ as a two-by-two operators matrix:

ϕ =
(

ϕ++ ϕ+−
ϕ−+ ϕ−−

)
with ϕλµ ∈ Hλµ.

Definition 1.6. We have

G = {g ∈ GL(H): g++ is a Fredholm operator of index zero}

G+ = {g ∈ G: g−+ = 0} G− = {g ∈ G: g+− = 0}

Γ (n)
+ =

eA with A =


f1 0

. . .

0 fn

 and


f1

...

fn

 ∈ H(n)
+

 ⊂ G+,

Γ (n)
− =

eA with A =


f1 0

. . .

0 fn

 and


f1

...

fn

 ∈ H(n)
−

 ⊂ G−.

We call these elements ef. We define also

Λ = {λ = (λ1, . . . , λn) ∈ Zn: λ1 + · · · + λn = 0},

and we think of Λ as a discrete subgroup of GL(n, H); and for λ ∈ Λ we denote

zλ =


zλ1 0

. . .

0 zλn

 ,

which is easily seen to be in G.

We introduce also the following central extension of G:

1 → C∗ → Ĝ → G → 1, (1)

where

Ĝ = E

SD+ ,

and SD+ = {t ∈ GD+: det t = 1}, E = {(g, q) ∈ G × GL(H+): gq−1 ∈ D}, and SD+ acts

on E on the left by t(g, q) = (g, tq). We observe that G acts transitively on Gr in the
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774 Andrea Maffei

natural way, and that Ĝ acts on the line bundles det and det∗ in a compatible way, indeed

(g, q)(ω, δ∗) = (gωq−1, δ∗). The homomorphism from Ĝ to Aut(det∗), which is determined

by this action, is easily seen to be injective. We can define a section on the subgroups G+
and G−, and evidently also on their subgroups Γ (n)

+ and Γ (n)
− , to Ĝ via g 7→ ĝ = (g, g++). As

far as Λ, we have to further investigate the possibility of the existence of a section to Ĝ.

In order to do this we need a lemma.

Definition 1.7. For 1 ≤ i ≤ n, let δi = (0, . . . , 1, . . . , 0), and for 1 ≤ i, j ≤ n, λi j = δi −δj ∈ Λ.

Proposition 1.8. If ẑν, ẑµ ∈ Ĝ, then

ẑνẑµ = (−1)
tµνẑµẑν.

Proof. We observe that ẑνẑµẑν−1
ẑµ−1 is an automorphism of det over id, so it must be

ẑνẑµ = c(ν, µ)ẑµẑν,

and c(ν, µ) is independent of the choices we have made of ẑν over zν and of ẑµ over zµ. If

ẑν = (zν, qν) and ẑµ = (zµ, qµ), then c(ν, µ) = det(qνqµq−1
ν q−1

µ ). Since c is a symmetric and

bimultiplicative function, it is enough to prove that c(λi j, λhk) = (−1)δik+δih+δjk+δjh . Let

A = zν =
∑
l6=i, j

∞∑
m=−∞

e(ll)
mm +

∞∑
m=−∞

e(ii)
m+1,m +

∞∑
m=−∞

e
( j j)
m−1,m

A++ =
∑
l6=i, j

∞∑
m=1

e(ll)
mm +

∞∑
m=1

e(ii)
m+1,m +

∞∑
m=2

e
( j j)
m−1,m

A+− = e(ii)
1,0 A−+ = e

( j j)
0,1 A0 = e

(i j)
11

qν = q = A++ + A0

B = zµ =
∑
l6=h,k

∞∑
m=−∞

e(ll)
mm +

∞∑
m=−∞

e(hh)
m+1,m +

∞∑
m=−∞

e(kk)
m−1,m

B++ =
∑

ll 6=h,k

∞∑
m=1

e(ll)
mm +

∞∑
m=1

e(hh)
m+1,m +

∞∑
m=2

e(kk)
m−1,m

B+− = e(hh)
1,0 B−+ = e(kk)

0,1 B0 = e(hk)
11

qµ = p = B++ + B0.

We have

A0B0 = δjhe(ik)
11
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The Multicomponent KP and Fay Trisecant Formula 775

A0B++ = e
(i j)
11 B++ =


e

(i j)
11 if j 6= h, k

0 if j = h

e
(i j)
12 if j = k

A++B0 = A++e(hk)
11 =


e(hk)

11 if h 6= i, j

0 if h = j

e(hk)
21 if h = i.

We observe that zλzµ = zµzλ; hence

A++B++ tA++ tB++ = B++A++ tA++ tB++ + B+−A−+ tA++ tB++ − A+−B−+ tA++ tB++

and A++ tA++ = I − e(ii)
11 and B++ tB++ = I − e(hh)

11 . Then

B++A++ tA++ tB++ = I − e(hh)
11 − B++e(ii)

11
tB++ =


I − e(hh)

11 − e(ii)
11 if i 6= h, k

I − e(hh)
11 − e(ii)

22 if i = h

I − e(hh)
11 if i = k

B+−A−+ tA++ tB++ = e(hh)
10 e

( j j)
01

tA++ tB++ = e(hh)
10 0 tB++ = 0

A+−B−+ tA++ tB++ = e(ii)
10 e(kk)

01
tA++ tB++ = δike

(ii)
12

tB++ = δike
(ii)
11 .

Cases i = j , j = k , i = h, and j = k or i = k and j = h are trivial. We have to

study the cases

i = h and j 6= k i = k and j 6= h

j = k and i 6= h j = h and i 6= k.

We complete the calculations only in the second case, noticing that the remaining ones

are similar:

qpq−1p−1 = (A++B++ + A++B0 + A0B++ + A0B0)

· (tA++ tB++ +t A++ tB0 + tA0
tB++ + tA0

tB0)

= (A++B++ + e(hk)
11 + e

(i j)
11 + 0)(tA++ tB++ + e

( jh)
11 + 0 + 0)

= A++B++ tA++ tB++ + A++B++e
( jh)
11 + e(hk)

11
tA++ tB++

+ e
(i j)
11

tA++ tB++ + e(hk)
11 e

( jh)
11 + e

(i j)
11 e

( jh)
11

= I − e(hh)
11 + A++e

( jh)
11 + 0 + e(hk)

12
tB++ + e(ih)

11 = I − e(hh)
11 + e(hi)

11 + e(ih)
11 ,

and then det(qpq−1p−1) = −1.
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776 Andrea Maffei

The last proposition shows that there is no group section from Λ to Ĝ. However,

it is useful to introduce an inverse map of the projection of Λ̂ to Λ. If i 6= j, let

z̃λi j = (zλi j , (zλi j )++ + e
(i j)
11 ) = (zλi j , qi j) ∈ Ĝ. (2)

Definition 1.9. For λ = (λ1, . . . , λn) ∈ Λ, we define

ẑλ = z̃λ21
λ2 · · · z̃λn1

λn
iλ

2
1−λ1 .

We define also ε to be the bimultiplicative function on Zn × Zn such that

ε(δi, δj) =
{

−1 if i > j

1 if i ≤ j.

In particular, we have ẑλi j = ε(δi, δj)z̃λi j and the following proposition.

Proposition 1.10. If ν, µ ∈ Λ, then

ẑν+µ = ε(ν, µ)ẑνẑµ.

We have the following commutation rules.

Proposition 1.11. If f ∈ H(n)
+ and f̃ ∈ H(n)

− , then as a relation of elements of Aut(det∗), we

have that

êfêf̃ = eS(f,f̃)êf̃êf

where

S(f, f̃) = 1

2πi

∫
|z|=ε−1

〈f, f̃′〉dz = 1

2πi

∫
|z|=ε−1

n∑
i=1

fi f̃i

′
dz.

Proof. It follows obviously from the same formula in the n = 1 case (see, for example,

[10]).

Proposition 1.12. Let f ∈ H+ or f ∈ H− and λ ∈ Λ. Then

êfẑλ = ẑλêf.

Proof. The formula can be proved by working as in the proof of the commutation rule

for Λ̂.

We study also the commutation rules between Λ or Γ and the section σ0 of det∗.
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The Multicomponent KP and Fay Trisecant Formula 777

Proposition 1.13. (1) If f ∈ H−, then σ0(efW) = êfσ0(W).

(2) We have

ẑλi j ◦ σ0 = ε(δi, δj) (−1)(i+1)(δi j+1) σ
z
λi jH+

◦ zλi j .

Proof. (1) Easy. (2) We prove the formula for z̃λi j . Let I ∈ I0 such that HI = zλi jH+ and

σ = z̃λi j ◦ σ0 ◦ z−λi j .

σ is a section of det∗ and σ(W) = 0 if and only if σI(W) = 0. Hence, it must be σ = C σI. In

particular, we can calculate C by evaluating σ and σI on HI.

The duality

On the space H(n), it is possible to define a perfect pairing ( ; ) by the formula

(f; g) = Res
z=∞(f(z)|g(z))dz−1 = Res

z=∞

n∑
i=1

fi(z)gi(z)dz−1

where f = (f1, . . . , fn), g = (g1, . . . , gn).

We observe that (v(i)
h ; v

( j)
k ) = δi jδh+k,1 or equivalently (vi+(h−1)n; vj+(k−1)n) = δi jδh+k,1.

In particular, ( ; ) is a perfect pairing between H+ and H−, which are totally isotropic

subspaces of H. If i∗ is the only integer such that (vi; vj) = δji∗ , we can define for I ∈ I0

I⊥ = {i∗ ∈ Z: i /∈ I} ∈ I0 in order to have HI⊥ = (HI)
⊥,

and observe that the duality gives isomorphisms, denoted as F+
I and F−

I , between HI and

(HI⊥−)∗ and between HI− and (HI⊥ )∗. For I = N, let F+ = F+
N and F− = F−

N.

Proposition 1.14. (1) W ∈ Gr :⇒ W⊥ ∈ Gr.

(2) W ∈ WI ⇔ W⊥ ∈ WI⊥ .

Proof. Easy.

Definition 1.15. By means of the above proposition, we can define a map µ: Gr → Gr by

µ(W) = W⊥.

It is easy to see that this map is an holomorphic one. By considering the charts

WI and WI⊥ , we have that Φ−1
I⊥ ◦ µ ◦ ΦI is given by

A 7−→ −(φ−
I⊥ )−1 ◦ (F−

I⊥ )−1 ◦ t(φ+
I )−1 ◦ tA ◦ t(φ−

I ) ◦ FI⊥ ◦ (φ+
I⊥ ).
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778 Andrea Maffei

In order to study the relations between the duality and det, we define a permu-

tation ρ = ρI of the set {n ≤ 0}: If I ∈ I0 with I = {i1 < i2 < · · ·} , I− = {· · · < i−1 < i0} and

i⊥l are the relative indices for I⊥, then ρ is defined by

iρl
= (i⊥l∗ )∗ for l ≤ 0. (3)

We observe also that

FI⊥ = tFI−, FI⊥− = tFI,

$+
I⊥ = F−1

+ ◦ t( j−I ) ◦ F, $−
I⊥ = F−1

− ◦ t( j+I ) ◦ F.

Proposition 1.16. There exists exactly one automorphism µ̃ of det∗ over µ such that

µ̃ ◦ σ0 = σ0 ◦ µ.

Furthermore, we have µ̃ ◦ σI = ε(ρ)(−1)`(I)σI⊥ ◦ µ where `(I) = ∑l≥1 l − il. (These

numbers are well known in the theory of the Grassmannian, since they are related to the

computation of the cohomology.)

Proof. Following the required commutation rule between σ0, µ, and µ̃ in the charts W0,

the map µ̃ must be given by the formula µ̃: (A; λ) 7−→ (−F−1
− tAF+; λ). Therefore, in the open

set W0 ∩ WI the map µ̃ is expressed as follows:

χI⊥ ◦ µ̃ ◦ χ−1
I : (AI

W ; λ) 7−→
(

AI⊥
W⊥ ;

det(π+MI⊥
W⊥ )

det(π+MI
W )

λ

)
.

If i1 < · · · < is < 1 ≤ is+1 · · · ır = r < · · · and · · · < i−r = −r < · · · < i−s < 1 ≤ i1−s < · · · < i0,

then we have

det(π+MI
W ) = det(π+ ◦ ( j+I φ+

I + j−I φ−
I AI

W ))

= det

(
r∑

l=s+1

eill +
r∑

l=1

0∑
h=1−s

ahleihl

)
= (−1)

∑r
l=s+1 il+l det(ahl) h=0···1−s

l=1···s

det(π+MI⊥
W⊥ ) = det(((φ−

I )−1π−
I − A(φ+

I )−1(π+
I )) ◦ j−) det(t(F+)−1 t(φ+

I⊥ )tFI⊥φ−
I )

and

det((φ−
I )−1π−

I − A(φ+
I )−1(π+

I )) = det

( −s∑
l=−r

elil −
s∑

l=1

0∑
h=−r

ahlehil

)
= (−1)s+

∑−s
l=−r

il+l det(ahl) h=0···1−s
l=1···s

and

B = t(F+)−1 t(φ+
I⊥ )tFI⊥φ−

I = F−1
− (φ+

I⊥ )FI−φ−
I .
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Hence B: viρl
7→ v(i⊥

l∗ )∗ 7→ vl and det B = ε(ρ) and

det(π+MI⊥
W⊥ )

det(π+MI
W )

= ε(ρ)(−1)s+
∑−s

l=−r
il+l +∑r

l=s+1 il+l
.

It is independent from A. So µ̃ is an holomorphic automorphism of det and det∗. We

remark that s +∑−s
l=−r il + l +∑r

l=s+1 il + l ≡ `(I) (mod 2), and the local expression of µ̃ in

the chart WI is

µ̃: (AI
W ; λ) 7−→

(
AI⊥

W⊥ ; ε(ρ)(−1)`(I)λ
)

.

The assertion on the commutation rule with σI is now straightforward.

Finally, we study the commutation rules between the duality and Ĝ.

Proposition 1.17. (1) If f ∈ H(n), then (efW)⊥ = e−fW⊥.

(2) If λ ∈ Λ, then (zλW)⊥ = z−λW⊥.

Proof. Easy.

Proposition 1.18. (1) If f ∈ H(n)
+ , µ̃ ◦ êf = ê−f ◦ µ̃.

(2) If λ ∈ Λ, µ̃ ◦ ẑλ = ẑ−λ ◦ µ̃.

Proof. (1) For the preceding proposition, µ̃ ◦ êf ◦ µ̃ ◦ êf is an isomorphism of det∗ over Id.

So it is a multiple of the identity. To calculate this constant, we evaluate the two members

on σ0(H+). The claim is thus proved by the following calculations:

µ̃ ◦ êf σ0(H+) = µ̃ ◦ êf

((
I

0

)
, 1

)
= µ̃σ0(H+) = σ0(H+),

ê−f ◦ µ̃ σ0(H+) = ê−fσ0(H+) = σ0(H+).

(2) As in the previous case, we have

µ̃ ◦ ẑλ = c(λ) ẑ−λ ◦ µ̃

as actions on det∗. Expanding µ̃ ◦ ẑλ1+λ2 , we immediately notice that c is a character of Λ,

and so it is enough to prove the statement in the case λ = λi j. Evaluating the two terms

of the previous relation on H+ in this case, we obtain

c(λi j) = ε(δj, δi)ε(δi, δj)ε(ρ)(−1)i+ j(−1)`(z
λi jH+ )

where ρ(l) = l for l ≤ −n, and in {−n + 1, . . . , 0} ρ is given by the cycle ρ = (0 − 1 −
2 . . . 2 − n 1 − n). Hence ε(ρ) = (−1)n−1 and `(zλi jH+) = (−1)i+ j+n and finally c(λi j) = 1.

 at U
niversita degli Studi di Pisa on July 30, 2013

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


780 Andrea Maffei

The tau function and the n-KP

In this subsection, we introduce an n-component version of the tau function of Sato and

of the ψ-Baker function. (The n = 1 case is treated, for example, in [10].)

Definition 1.19. Let δ∗
W ∈ det∗

W be a nonzero element of the fiber of the line bundle det∗

over W and λ ∈ Λ; we define τδ∗
W

,λ: G+ −→ C by

τδ∗
W

,λ(g) = σ0(g z−λW)

ĝẑ−λδ∗
W

and τδ∗
W

= τδ∗
W

,0. In particular, τ is defined on Γ (n)
+ .

Sometimes τW will be defined but to a multiplicative constant as a generic τδW
.

Proposition 1.20. We have

τµ̃δ∗
W

,λ(ef) = τδ∗
W

,−λ(e−f).

Proof. It automatically follows by Proposition 1.18.

Definition 1.21. If W ∈ Gr and λ ∈ Λ, let us define

Γ (n)
+W (λ) = {g ∈ Γ (n)

+ : g−1z−λW ∈ W0} = Γ (n)
+z−λW

.

We observe that g ∈ Γ (n)
+W (λ) ⇔ σ(g−1z−λW) 6= 0; and Γ (n)

+W (λ) is an open subset of

Γ (n)
+ . We define Ψ̃W (λ) and ΨW (λ): Γ (n)

+W (λ) → gl(n, H) in the following way: If g ∈ Γ (n)
+W (λ),

i ∈ {1 · · ·n} and

Ψ̃i(λ, g) =


Ψ̃1i(λ, g)

...

Ψ̃ni(λ, g)


is the only element of g−1z−λW such that it has the form v(i)

1 + wi with wi ∈ H(n)
− , then let

us define

Ψ̃W (λ, g) = (Ψ̃i j(λ, g)) and ΨW (λ, g) = gzλΨ̃W (λ, g).

Remark 1.22. We introduce the following conventional notation, which coincides with

the ones common in the n = 1 case. We observe that each element of Γ (n)
+ could be ex-

pressed in the form
∑n

i=1

∑∞
l=1 x(i)

l v(i)
l . Hence, we can think of ΨW, Ψ̃W, and τW as functions

either in the variable g ∈ Γ (n)
+ or in the variables x(i)

l , and we will write ΨW (λ, x) to mean

ΨW (λ, ex·z) where

ex·z =


e
∑∞

1 x
(1)
l

zl

0
. . .

0 e
∑∞

1 x
(n)
l

zl

 ∈ Γ (n)
+ .
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The Multicomponent KP and Fay Trisecant Formula 781

We observe also that Ψ̃(λ, x, z) = zI +∑∞
m=0 Am(λ, x)z−m with Am ∈ Matn×n(C) and

that Ψ(λ, x, z) = ex·zzλΨ̃(λ, x, z).

Definition 1.23. Let qζ(z) = 1 − z/ζ and let

Qi
ζ(z) =



1 0
. . .

qζ(z)

1

0
. . .


∈ gl(n, H+) ∩ G+.

Proposition 1.24. If W ∈ Gr λ ∈ Λ and g ∈ Γ (n)
+W (λ), then

Ψ̃ji(λ, g, ζ) = ε(λi j, λ) ε(δj, δi)ζ
δi j

τW,λ+λi j
(gQ

j

ζ)

τW,λ(g)
. (4)

Proof. First notice that by choosing δz−λg−1W = σ0(z−λg−1W), we have the relation

τW,λ+λi j
(gQ

j

ζ)

τW,λ(g)
= ε(λi j, λ)τg−1z−λW,λi j

(Qj

ζ).

So it is enough to prove the proposition for λ = 0 g = 0 and W = Graph(A) ∈ W0.

Moreover, if Q
j

ζ = (
a b

0 d

) ∈ G+ and m1 · · ·mn ≥ 0, then

b


z−m1

...

z−mn

 =


0

(z−mjq−1
ζ (z))+
0

 and (z−mjq−1
ζ (z))+ = z

ζmj+1 q−1
ζ (z),

and finally a−1b(f1 . . . fn) = ((fj(ζ))/ζ) v( j)
1 .

We observe now that

τσ0(W),λi j
(0) = ε(δj, δi) det t,

where if i 6= j, t = (I − e
( j j)
11 + e

( j j)
10 A tqji + a−1b(e(i j)

01 + (zλji )−−A tqji)) = I + B + a−1bC and

qji = (zλji )++ + e
( ji)
11 ; while if i = j, t = I + a−1bA. In the case i = j, since the image of a−1b

is generated by v
( j)
1 , we have

det t = 1 + tr(a−1bA),

and by following the definition of Ψ̃ we get Av
( j)
1 = (Ψ̃1 j(z), . . . , Ψ̃j j(z) − z , . . . , Ψ̃n j(z)) and

a−1bA v
( j)
1 = ((Ψ̃j j(ζ) − ζ)/ζ) v( j)

1 . Hence

det t = Ψ̃j j(ζ)

ζ
.
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If i 6= j, proceeding as above, we calculate

Bv
( j)
1 = −v

( j)
1 + e

( j j)
10 Av(i)

1 = −v
( j)
1 + Ψ̃ji(0)v( j)

1

a−1bCv
( j)
1 = a−1b(v(i)

1 + (zλji )−− Av(i)
1 )

= 0 + a−1b(Ψ̃1i(z), . . . , z−1Ψ̃ii(z), . . . , zΨ̃ji(z) − zΨ̃ji(0), . . . , Ψ̃ni(z))

= (Ψ̃ji(ζ) − Ψ̃ji(0))v( j)
1 .

Therefore, (B + a−1bC)v( j)
1 = (Ψ̃ji(ζ) − 1)v( j)

1 , and finally

Det t = Ψ̃ji(ζ).

If we adopt the conventions introduced in Remark 1.2.2, we can write the formula

(4) in the following way:

Ψ̃ji(λ, g, ζ) = ε(λi j, λ) ε(δj, δi)ζ
δi j

τW,λ+λi j

(
x(1)

l , . . . , x
( j)
l − ζ−l

l
, . . . , x(n)

l

)
τW,λ(x)

.

Proposition 1.25. If W ∈ Gr; λ, µ ∈ Λ and g ∈ Γ (n)
+W (λ) and h ∈ Γ (n)

+W⊥ (µ), then

Res
z=∞

tΨW (λ, g) ΨW⊥ (µ, h) dz−1 = 0. (5)

Proof. Let ΨW j(λ, g) = t(Ψ1 j · · ·Ψnj) and similarly ΨW⊥ j. We observe that

Res
z=∞ stΨW (λ, g) ΨW⊥ (µ, h) dz−1 = (

( ΨWi(λ, g) ; ΨW⊥ j(µ, h) )
)
i, j=1···n .

Now the claim follows by observing that ΨWi(λ, g) ∈ W and ΨW⊥ j(µ, h) ∈ W⊥.

Proposition 1 allows us to write the equation (5) as an equation in τ. In order to

make this result more explicit, we use the following simple lemma.

Lemma 1.26. If f is an holomorphic function in the variables x1, x2, . . ., then

f(x1 + y1, x2 + y2, . . .) = (e
∑

i yi(∂/∂xi)f)(x).
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Following Propositions 1.24 and 1.18, we have

ΨWji(λ, u, z) = ε(λi j, λ)ε(δj, δi)z
δi j+λje

∑∞
l=1 u

( j)
l

zl e
−∑∞

l=1(z−l/l) (∂/∂u
( j)
l

)
τW,λ+λi j

(u)

τW,λ(u)
,

ΨW⊥ jh(−µ, −v, z) = ε(λi j, µ)ε(δj, δh)zδhj+µje
−∑∞

l=1 v
( j)
l

zl e
∑∞

l=1(z−l/l)(∂/∂v
( j)
l

)
τW,µ−λhj

(v)

τW,µ(v)
.

With the following substitutions: y = (u − v)/2, x = (u + v)/2, α = λ + δi, β = µ − δh, and

if Sk(y1, . . .) =∑p multindex and [p]=k(1/p!)yp (where [p] = p1 +2p2 +3p3 +· · ·) is defined by the

identity e
∑∞

l=1 yiz
i = ∑∞

l=0 Sl(y)zl, then from Proposition 1.25 we obtain the n-component

KP in the Hirota form (see [7]): If α, β ∈ Zn are such that (δ|α) = 1 and (δ|β) = −1 where

(δ = δ1 + · · · + δn) and if x, y ∈ H(n)
+ , then

n∑
j=1

ε(δj, α + β) Pα,β, j

(
y(h)

l ,
∂

∂u(h)
l

)
(τW,α−δj

(x + u) τW,β+δj
(x − u))

∣∣∣∣∣
u=0

= 0 (6)

where

Pα,β, j

(
y(h)

l ,
∂

∂u(h)
l

)
= Qα,β, j

(
y(h)

l ,
∂

∂u(h)
l

)
◦ e
∑n

k=1
∑∞

l=1 y
(k)
l

(∂/∂u
(k)
l

)

and

Qα,β, j

(
y(h)

l ,
∂

∂u(h)
l

)
=

∞∑
k=0

Sk(2y( j)) Sk−1+(δj|α−β)

(
−1

l

∂

∂u
( j)
l

)
.

In these equations, the y’s are indeterminates, so we have an equation for each

monomial in y. If we want to obtain pure algebraic equations in τ, we must consider the

coefficient of y0 and choose α and β in such a way that (δj|α−β) ≤ 1 for each j = 1, . . . , n.

For such α and β, we get

n∑
j=1

(δj|α−β)=1

ε(δj, α − β) τW,α−δj
(x) τW,β+δj

(x) = 0, (7)

which is a class of Plücker relations.

2 The theta function and the n-component KP

In this section, Krichever’s construction is generalized to the case of n points on a Rie-

mann surface (for the n = 1 case see, for example, [10]). Then we find a generalization of

the classical Fay trisecant formula.
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784 Andrea Maffei

Let X be a Riemann surface of genus g, and L a line bundle of Chern class g − 1

(c(L) = g − 1) on it. Let P1, . . . , Pn be distinct points of X, and zi: Ui ˜−→S2 local charts for

X where Pi ∈ Ui, zi(Pi) = ∞ and Ui ∩ Uj = ∅. To proceed with Krichever’s construction,

we fix also ϕ1, . . . , ϕn trivializations of L in U1, . . . , Un, where ϕi: L|Ui
→ D∞ × C is such

that ϕi = (zi ◦ π, φi), where π: L → X is the projection of the line bundle on X and φiP is a

linear map for all P ∈ Ui. We set also the following notation:

Xi = z−1
i (D∞) = z−1

i (D1), Xiε = z−1
i (Dε), Ciε = ∂Xiε = z−1

i (∂Dε),

X0 = X \ ∪{Pi}, X0ε = X \ ∪ ◦
Xiε .

Definition 2.1. J is the set of data (X; L; P1, . . . , Pn; z1, . . . , zn; ϕ1, . . . , ϕn) described above.

We define K: J → Gr as follows: for f ∈ H(n) defined as a holomorphic function in D∗
ε,

f = (f1, . . . , fn) ∈ K(X; L; P1, . . . , Pn; z1, . . . , zn; ϕ1, . . . , ϕn)

if and only if there exists a g ∈ Γ (X0ε; L) such that g|Ciε = ϕ−1
i (Id; fi ◦ zi) or φi(g|Ciε

) = fi ◦ zi.

The definition is well given by the following proposition.

Proposition 2.2. We have

K(X, L, P1, . . . , Pn, z1, . . . , zn, ϕ1, . . . , ϕn) ∈ Gr.

Proof. As in the 1-dimensional case, we can see that W = K(X, L, Pi, zi, ϕi) ∼= H0(X0, L)

Ker π+|W ∼= H0(X, L) and coKer π+|W ∼= H1(X, L).

Some notation for Riemann surfaces

∧: H1(X,C) × H1(X,C) → C is the usual extension of the cap product defined on H1(X,Z)

by ω ∧ σ = ∫
X

ω ∧ σ.

Let P0; α1 . . . αg,β1 · · ·βg = γ1, . . . , γ2g be a marking of X, J ' Pic0 the Jacobian and

Φ: X → J the Abel map of base point P0. Let (X̃, p) be the universal covering of X, and let

Y ⊂ X̃ be the closure of a connected component of p−1(X − ⋃
γi); so that X ' Y/∼ where ∼

is the identification along ∆ = ∂Y = α̃1β̃1α̃
−1
1 · · · β̃−1

g and γ̃ is a lifting of γ to Y. Let also P̃i

be a point of Y such that π(P̃i) = Pi and let Yi be a subset of Y such that π(Yi) = Xi.

Furthermore, let a1 · · ·ag, b1 · · ·bg = γ∗
1, . . . , γ

∗
2g ∈ H1

(
X,Z

)
↪→H1

DR

(
X

)
be the dual

basis of α1 · · ·βg, and χ the matrix representing the cap product in this basis. We make

all the above-mentioned choices, so that χ = ( 0 I

−I 0

)
and Ω = (I Ω2), where Ω: Z2g → Cg

is the matrix related to δ: H1
(
X,Z

) → H1
(
X, O

)
. We call Ω also the lattice Ω(Z2g). From
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Riemann’s relations it follows Ω2 = tΩ2 and Im Ω2 > 0. We set also

G = Pχ tP̄ = (Ω2 − Ω2)−1, where
(

P

P

)
= (tΩ tΩ̄)−1.

Let θ(x) and θ[ν](x), defined for ν ∈ (1/2)Zg/Zg, be the classical theta functions of first

and second order defined on Cg ↔ H1(X, O), and as usual Θ is the associate divisor.

Furthermore, Eθ = (θ[ν]): J → CP2g−1will be the Kummer map.

In order to relate the theta function with the tau function, we introduce a variant

of the classical theta function (see, for example, [8]), as proposed by Segal and Wilson

[10].

Definition 2.3. Let h: H1(X, O) × H1(X, O) → C be the only Hermitian form such that for

all a, b ∈ H1(X,Z), it holds that Im h(δ(a), δ(b)) = a ∧ b, and let H be the matrix related to

h in the given basis.

Let η: Cg → C be defined by

η(x) =
∑

n,m∈Zg

(−1)
tnme−(1/2) πi h(n+Ω2m;n+Ω2m+2x).

I gather together properties of introduced η in the following two propositions.

Proposition 2.4. (1) H = −2iG = (Im Ω2)−1.

(2) The definition of η is well given and η(x) = Ce−π i txGxθ(x) and C ∈ C∗.

Proof. Easy.

Proposition 2.5. We have

∀x ∈ Cg ∀ω ∈ Ω, η(0)η(x + ω) = η(x)η(ω)eπh(ω,x). (8)

Conversely, if η̃: Cg → C and C̃ ∈ C verify η̃(x + ω) = C̃η̃(x)η̃(ω)eπh(ω,x), then

∃α: Cg → C, a C-linear map, and ∃β ∈ Cg, A ∈ C: η̃(x) = Aeα(x)η(x − β).

Proof. Easy.

Finally, we make some remarks on a class of line bundles. Let P ∈ X, U a neigh-

bourhood of P, and z: U → D∞, a local chart such that z(P) = ∞. If f ∈ H is defined on D∗
ε

and f(x) 6= 0 for all x, we define the line bundle Lf, by means of the associated element of

H1({U∞; U0}; O∗) where U∞ = z−1(D∗
ε) and U0 = X − {P}. We set

(Lf)∞0 = f ◦ z ∈ Γ (U∞ ∩ U0, O
∗). (9)
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Definition 2.6. If f = (f1 · · · fn) ∈ H(n)
+ and λ ∈ Λ, we define

Lf,λ = L1
zλ1ef1

⊗ · · · ⊗ Ln

zλnefn
,

where Li

zλi efi
is the line bundle constructed as in (9) with base point Pi and local chart zi.

We define also a map Z: H(n)
+ ⊕ Λ → H1(X, O) by

Z(f, λ) = Z − (λ · P̃)

where λ · P̃ = λ1Φ̃(P̃1) + · · · + λnΦ̃(P̃n), Φ̃ is a lifting of Φ to X̃, and Z is given by

{Zi0} ∈ H1(X, O) with Zi0 = 1

2πi
fi ◦ zi.

Further, let K0 = Ker Z, KH0 = H(n)
+ ∩ K0, K = Ker L, and KH = H(n)

+ ∩ K.

Remark 2.7. Let ϕf,λ
1 · · ·ϕf,λ

n be standard trivializations of Lf,λ so that, given σi ∈ Γ (Ui, O),

σi will define an element σ ∈ Γ (X, Lf,λ) by σi ◦ zi = φf,λ
i ◦ σ if and only if σi = zλi · efi · σ0.

Proposition 2.8. (1) c(Lf,λ) = 0.

(2) Lf,λ = Lf ⊗ O(−∑n
i=1 λiPi).

(3) L and Z are group homomorphisms so that, in the exponential sequence, we

have expH1 ◦Z = L.

(4) L|
H

(n)
+

and Z|
H

(n)
+

are surjective.

Proof. (1), (2), and (3) are easy; we prove (4): The surjectivity of the map L derives from the

fact that L|X−P1 is trivial, because X−P1 is affine. We observe that KH0 is a closed subspace

of H(n)
+ of finite codimension. Let V0 be a supplementary space for KH0. We observe that

L|V0 is a universal covering of J. So Z|V0 must be an isomorphism, and the claim follows.

Remark 2.9. We observe that (f, λ) ∈ K if and only if there exist ϕ ∈ Γ (X0, O
∗) and f∞ ∈ H(n)

−
such that

pzλiefi = (φi ◦ ϕ ◦ z−1
i ) · ef

(i)∞ .

In particular, for (f, λ) ∈ K we have that f∞ − f∞(∞) ∈ V = z−1H(n)
− is uniquely determined.

We define the group homomorphism a: K −→ V by a(f, λ) = f∞ − f∞(∞); and aλ = a( · , λ).

Noticing that K is a set of generators for H(n)
+ as an R-vector space, there exists a unique

R-linear extension a = b + c of a to H(n)
+ ⊕ Λ where b is C-linear and c is C-antilinear. We

observe also that a0 is C-linear on KH0.

Finally we describe the isomorphism between KH/KH0 and H1(X,Z) induced by the

map Z. If f ∈ KH and ef = ϕef∞ , let f0 = f − f∞. We observe that on X̃ we have ϕ = ef
(i)
0 in
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Ci and that for i = 1 · · ·n, 1/(2πi)
∫

Ci
(dϕ/ϕ) = 0. Hence, log ϕ = f0 is defined on the whole

Y0. We have that

n(f, γ) = −
∫
γ

df0 = −
∫
γ

dϕ

ϕ
.

By means of this notation, the isomorphism [ ]: KH/KH0 → H1(X,Z) induced by Z

turns out to be

[f] =
2n∑
i=1

n(k, γi)γ
∗
i . (10)

The tau and the theta functions

In this subsection, proceeding as in the 1-dimensional case, we study the relations be-

tween the tau function and the theta function. The first step is the study of the evolution

under the action of Γ (n)
+ × Λ of an element of the Grassmannian coming from a Riemann

surface via the Krichever construction.

Proposition 2.10. Let (X, L, Pi, zi, ϕi) ∈ J. Then

zλef K(X, L, Pi, zi, ϕi) = K(X, L ⊗ Lf,λ, Pi, zi, ϕi ⊗ ϕf,λ
i ).

Proof. It is the same as the 1-dimensional case.

In order to compare the two functions τ and θ, we have to observe that through

the maps L and Z, η can be seen as a K0-invariant function defined on Γ (n)
+ ⊕ Λ, which

verifies the formula (8). Our strategy is to reduce τ to have the same property.

We first study the case H0(X, L) = {0}. This condition is equivalent to W =
K(X, L, Pi, zi, ϕi) ∈ W0 so we can choose τW = τσ0(W).

Proposition 2.11. If H0(X, L) = {0}, µ, λ ∈ Λ, k, f ∈ H(n)
+ , and (k, λ) ∈ K, then

τW,λ+µ(ek+f) = ε(µ, λ)e−S(f,aλ(k)) τW,µ(ef)τW,λ(ek). (11)

Proof. We observe that z−λe−kW = e−aλ(k)W, and hence that

τW,λ+µ(ek+f) ẑ−λ−µê−f−kσ0(W) = σ0(z−λ−µe−f−kW) = êaλ(k)σ0(e−fz−µW)

= τµ(f) êaλ(k)ê−fẑ−µσ0(W) = τµ(f) e−S(f,aλ(k))ê−fẑ−µêaλ(k)σ0(W)
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= τµ(ef)τλ(ek)e−S(f,aλ(k))ê−fê−kẑ−µẑ−λσ0(W)

= ε(µ, λ)τµ(ef)τλ(ek)e−S(f,aλ(k))ê−fê−kẑ−µ−λσ0(W),

and the claim follows.

This formula has the same structure as (8). In order to give a geometric inter-

pretation of the coefficients, we first study the case λ = 0 and use the isomorphism [ ]

described in (10). Proceeding as in the 1-dimensional case and noticing that∫
Cj

k
( j)
0

′
l
( j)
0 =

∫
Cj

k(i)
0

′
l(i)
0 + 2πini j

∫
Cj

k(i)
0

′ =
∫
Cj

k(i)
0

′
l(i)
0 ,

we obtain the following lemma.

Lemma 2.12. (1) For all k, l ∈ KH, whatever l∞ and k∞ related to l and k,

S(k, a(l)) − S(l, a(k)) = S(k, l∞) − S(l, k∞) = 2πi[l] ∧ [k].

(2) For all f, g ∈ H(n)
+ ,

S(f, c(g)) = −πh(Z(g), Z(f)).

Thus if, in the case H0(X, L) = {0}, we set

τ1(f) = τ(ef)e(1/2)S(f,b(k)),

we obtain

(1) τ1(f + k) = τ1(f) τ1(k) e−S(f,c(k)) for all f ∈ H(n)
+ and k ∈ KH,

(2) τ1(f + k) = τ1(f) τ1(k) for all f, k ∈ KH0,

(3) ∃ ρ: H(n)
+ 7→ C a C-linear map such that τ1(k) = eρ(k), for all k ∈ KH0;

hence, if

τ2(f) = τ1(f)e−ρ(f) = τ(f)e(1/2)S(f,b(f))−ρ(f),

we then have that

(1) τ2(f + k) = τ2(f) for all k ∈ KH0 and for all f ∈ H(n)
+ ,

(2) τ2(f + k) = τ2(f) τ2(k) e−S(f,c(k)) = τ2(f) τ2(k) eπh(Z(k),Z(f)) for all f ∈ H(n)
+ and k ∈ K,

(3) τ2(0) 6= 0.

Following the characterization of η, there exist C ∈ C∗ and a C-linear map

αW : H(n)
+ → C and β ∈ Cg such that

τW (ef) = C eαW (f)−(1/2)S(f,b(f)) η(Z(f) − β). (12)

Now we can give the relation between τ and θ.
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Theorem 2.13. Let (X, L, Pi, zi, ϕi) ∈ J and W = K(X, L, Pi, zi, ϕi). If κ/2, ` ∈ H1(X, O) are

so that Θ = −Wg−1 + expH1 (κ/2) and expH1 (`) = L − (g − 1)P0 ∈ J, then ∃1C ∈ C∗ and

∃1αW,λ H(n)
+ −→ C a C-linear map such that

τW,λ(ef) = CW,λe
αW,λ(f)−(1/2)S(f,b(f))+g(Z(f),Z(f)) θ

(
Z(f) − λ · P̃ − ` + κ

2

)
,

where g(u, v) = −πituGv, and G = PχtP is the bilinear form introduced in the previous

subsection.

Proof. First we observe that by Propositions 2.8 and 2.10, for each V ∈ K(J), there exists

a g ∈ H(n)
+ such that σ0(egV) 6= 0, and therefore the set of these elements g is an open dense

subset of H(n)
+ . Noticing that H(n)

+ is a Baire space, the set of g ∈ H(n)
+ such that σ0(egzλW) 6= 0,

for all λ ∈ Λ, is dense in H(n)
+ . Let g be such an element and set δW = ê−gσ0(egW). Hence,

by formula (12), we have

τδW,λ(ef) = τσ0(z−λegW),0(ef+g)τσ0(egW),0(zλ)

= C̃W,λe
α̃W,λ(f)e−(1/2)S(f,b(f))η(Z(f) − β)

= CW,λe
αW,λ(f)−(1/2)S(f,b(f))+g(z(f),z(f)) θ(Z(f) − β).

In order to calculate β, we observe that τW,λ(f) = 0 ⇔ σ0(z−λe−fW) = 0 ⇔ H0(L ⊗ Lf,λ) 6=
{0} ⇔ Z(f) ∈ −Wg−1+`+∑n

i=1 λiPi; and that η(Z(f)−β) = 0 ⇔ Z(f)−β ∈ Θ = −W(g−1)+κ/2 ⇔
Z(f) ∈ −Wg−1 + β + κ/2.

Hence −Wg−1 + β + κ/2 = −Wg−1 + ` + λ · P̃ and β − ` − λ · P̃ + κ/2 ∈ H1
(
X,Z

)
.

Unicity and thesis follow.

The trisecant formula

From the relation between the tau and the theta function of Theorem 2.13 and from

formula (6), we obtain a hierarchy of equations for the theta function. In this last part

we attempt to interpret some of these formulas by looking at geometric properties of

the Kummer variety. These properties are expressed as linear relations in the vectors

∂(i)
j

Eθ(w + P̃j), where w range in some subvarieties of J and ∂(i)
j = Z∗(−(1/2l)(∂/∂u(i)

j )) =
Z∗(D(i)

j ) = Z(−(1/2l)v(i)
j ). In the last identity we have identified the derivations on J with

Cg, and we have used the linearity of Z. We can compute these derivations explicitly in

terms of the Abel map. Let Eω be a basis of H0(X, Ω1) and P̃i(ζ) = P̃i + Φi(ζ) = P̃i + ∫z−1
i

(ζ)

Pi
Eω

and let us have Φi expressed in Taylor series as Φi(ζ) = 2(V (i)
1 ζ−1 + V (i)

2 ζ−2 + · · ·).
We have Lz−ζ0 = −P + Φ(ζ0), and by Abel’s lemma we obtain that

Z

(
−
∑
l>0

1

l

1

ζ(0)
i

l
v(i)

l

)
= Z

−
∑
l>0

1

l

(
ζi

ζ(0)
i

)l
 = Φi(ζ0).
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We have the following lemma.

Lemma 2.14. (1) ∂(i)
l = V (i)

l and Z(v(i)
l ) = −2lV (i)

l .

(2) ∂(i)
1 6= 0.

Following Theorem 2.13, the KP equation (6) is now given by the following equa-

tion:

n∑
j=1

Cα,β, jPα,β, j

(
y(h)

l ,
∂

∂u(h)
l

)
e

αα−δj
(u)−αβ+δj

(u)−S(u,b(u))

· e2g(Z(u),Z(u))θ(x + Z(u) + Pj − α · P̃) θ(x − Z(u) − Pj − β · P̃)
∣∣
u=0 = 0

(13)

for each x ∈ Cg and where Cα,β, j = Cα−δj
Cβ+δj

ε(δj, α + β) 6= 0.

If we apply the Riemann identity, we see that as we claimed above this is a linear

equation in the vectors ∂
(i1)
j1

· · ·∂(is)
js

Eθ(w+Pj). We will examine now the equations that appear

as coefficients of y0 in the previous hierarchy of formulas. We observe that it depends

only on α − β, and the most general formula is obtained when α − β = λ1δ1 + · · · + λrδr −
δr+1 − · · · − δr+N−2, where λi ≥ 1 and N = ∑r

i=1 λi. If we apply the Riemann identity, we

obtain

r∑
j=1

Cα,β, jSλj−1(2D
( j)
l )e

αα−δj
(u)−αβ+δj

(u)−S(u,b(u))
e2g(Z(u),Z(u))Eθ(Z(u) + w + P̃j)|u=0 = 0 (14)

for each w ∈ (1/2)(WN−2 −∑r
i=1 λiPi).

In conclusion, we illustrate some examples where classical results are obtained.

If λ1 = · · · = λN = 1, we obtain a weak form of the generalized trisecant formula

obtained by R. C. Gunning in [6]: for each P1, . . . , PN ∈ X and for each w ∈ (1/2)(WN−2 −∑N
i=1 Pi),

Eθ(w + P1), . . . , Eθ(w + PN)

lie in an (N − 2)-dimensional space.

If N = 3, λ1 = 2, and λ2 = 1, we obtain the existence of a family of lines tangent

to the Kummer variety: for each P1, P2 ∈ X and for each w ∈ (1/2)(W1 − 2P1 − P2), the line

through Eθ(w + P1) and Eθ(w + P2) is tangent to the Kummer variety in Eθ(w + P1).

If N = 3 and λ1 = 3, we obtain the existence of a family of flexes of the Kummer

variety: for each P ∈ X and for each w ∈ (1/2)(W1 − 3P), the line through Eθ(w + P) with

direction ∂(1)
1

Eθ(w + P) is a flex for the Kummer variety.

References

 at U
niversita degli Studi di Pisa on July 30, 2013

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


The Multicomponent KP and Fay Trisecant Formula 791

[1] E. Arbarello and C. DeConcini, “Geometrical aspects of the Kadomtsev-Petviashvili equation”

in Global geometry and Mathematical Physics, Springer-Verlag, Berlin, 1989, 95–137.

[2] E. Arbarello, C. DeConcini, V. Kac, and C. Procesi, Moduli spaces of curves and representation

theory, Comm. Math. Phys. 117 (1988), 1–36.

[3] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equa-

tion” in Nonlinear Integrable System: Classical Theory and Quantum Theory, World Scientific,

Singapore, 1983, 39–119.

[4] B. A. Dubrovin, Theta functions and non linear equations, Russian Math. Surveys 36:2 (1981),

11–92.

[5] J. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Math. 352, Springer-Verlag,

Berlin, 1973.

[6] R. C. Gunning, Some identities for abelian integrals, Amer. J. Math. 108 (1986), 39–74.

[7] V. Kac and J. van de Leur, “The n-component KP hierarchy and representation theory” in Im-

portant Developments in Soliton Theory, ed. by A. S. Fokas and V. E. Zakharov, Springer Ser.

Nonlin. Dynam., Springer-Verlag, Berlin, 1993, 302–343.

[8] G. R. Kempf, Complex Abelian Varieties and Theta Functions, Springer-Verlag, Berlin, 1991.

[9] D. Mumford, Tata Lectures on Theta II, Progr. Math. 43, Birkhäuser, Boston, 1984.
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