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Abstract. We observe that a vanishing geodesic distance arising from a weak
Riemannian metric in a Hilbert manifold can be constructed.

It is a well known fact that in a connected and finite dimensional Riemannian
manifold taking the infimum among all lengths of curves connecting two points yields a
distance. Understanding whether the analogous procedure still gives a distance for an
infinite dimensional manifold is considerably more difficult, when a weak Riemannian
metric is fixed. These metrics are smooth symmetric tensors g on TM , with the
property that

gp(v, v) > 0

for every p ∈ M and v ∈ TpM \ {0}. However, it is not required that the associ-
ated dual mapping from TpM → TpM

∗, v → gp(v, ·) is an isomorphism of Hilbert
spaces. Such additional condition only occurs for strong Riemannian metrics, see
[AMR88, Definition 5.2.12] for more information. If a manifold M modelled on an
infinite dimensional Fréchet space E is endowed with a strong Riemannian metric,
then the model E has a Hilbert space structure and the geodesic distance is actually
a distance, see [Kli95], [Lan99] and [Bru16] for more information. Clearly strong and
weak Riemannian metric coincide on finite dimensional manifolds.

Given two points in a connected and possibly infinite dimensional manifold M
equipped with a weak Riemannian metric, we can clearly define the associated length
functional in the usual way. For p, q ∈ M we define the class Γ(p, q) of all piecewise
smooth curves γ : [0, 1]→M such that γ(0) = p and γ(1) = q. If

Lg(γ) =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt

is the standard lengh of a piecewise smooth curve in M , we set

dg(p, q) = inf {Lg(γ) : γ ∈ Γ(p, q)} .
In infinite dimensional manifolds dg is a pseudometric. In general it may vanish on
distinct points. Important cases where this phenomenon occurs are diffeomorphism
groups and spaces of immersions, that have also interesting applications in shape
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analysis [BBM14] and computational anatomy [GM98]. Examples of vanishing geo-
desic distances have been provided in [EP93], [MM05] and [MM06], see also [JM19a],
[JM19b] and [BHP19] for other recent results. Here the vanishing geodesic distances
were constructed in Fréchet manifolds.

It is rather natural to ask whether simple examples of vanishing geodesic distances
can be found in Banach or Hilbert manifolds. Our motivations go back to the aim of
understanding some aspect of the geometry of homogeneous groups in infinite dimen-
sions. In connection with a Rademacher-type differentiability theorem, some exam-
ples of infinite dimensional homogeneous groups have been provided in [MR14], using
product of spaces of sequences `p. These Banach Lie groups can be also equipped
with a left invariant distance, that is homogeneous with respect to the groups dila-
tions. We have an additional motivation in understanding whether these Banach Lie
groups admit weak Riemannian metrics that give a geodesic distance. More general
constructions of infinite dimensional metric Lie groups can be found in [LDLM18].
Many recent works have considered sub-Riemannian manifolds of infinite dimensions
under different perspectives. We mention only a few of them, as [GMV15], [Arg16],
[AT17], see also references therein. Clearly the list could be enlarged.

We provide an answer to the above question, by showing a simple example of
Hilbert manifold equipped with a weak Riemannian metric whose geodesic distance
is everywhere vanishing.

Let `2 be the linear space of real-valued and square-summable sequences. We equip
`2 with the standard scalar product 〈· , ·〉, whose norm is ‖x‖ = (

∑∞
k=1 |xk|

2)1/2 for
any x ∈ `2. Let A : `2 → `2 be the operator that maps x ∈ l2 to Ax ∈ l2, defined as

(Ax)k =
1

k4
xk

for all k ≥ 1. Let B : `2 × `2 → R be the bilinear, symmetric map given by
B(x, y) = 〈x,Ay〉.

We consider `2 as Hilbert manifold, hence for p in `2 and v, w ∈ Tp(`2), we define
the weak Riemannian metric

gp(v, w) = e−‖p‖
2

B(v, w),

where have canonically identified the tangent spaces of `2 with `2 itself.
We will show that for any two distinct points p and q of `2 we have dg(p, q) = 0.

Consider the standard orthonormal basis {en}∞n=1 of `2, where e1 = (1, 0, . . .), e2 =
(0, 1, 0, . . .) and so on. For each positive integer n ∈ N, we consider the line segment
from p to p+ nen, i.e., the curve

αn(t) = p+ tnen,

where t ∈ [0, 1]. Then we take the line segment from p+ nen to q + nen given by

βn(t) = p+ nen + t(q − p)
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and finally the line segment γn from q + nen to q given by

γn(t) = q + (1− t)nen,
where t always varies in [0, 1]. We join the three curves αn, βn, and γn, then obtaining
a curve εn that connects p to q. We observe that

α′n(t) = nen, β′n(t) = q − p, γ′n(t) = −nen
Our claim follows if we show that Lg(αn), Lg(βn), and Lg(γn) converge to zero as
n→∞. Indeed, we get

Lg(αn) =

∫ 1

0

e
−‖αn(t)‖2

2

√
B(nen, nen) dt

≤
∫ 1

0

√
B(nen, nen) dt =

√
〈nen,

1

n3
en〉 =

1

n
.

In the same way, we obtain

Lg(γn) =

∫ 1

0

e
−‖γn(t)‖2

2

√
B(−nen,−nen) dt ≤

∫ 1

0

√
B(nen, nen) dt =

1

n
.

Another simple computation can be carried out for βn. We have

Lg(βn) =

∫ 1

0

e
−‖βn(t)‖2

2

√
B(q − p, q − p) dt

≤
√
B(q − p, q − p)

∫ 1

0

e−
n2

2
+n‖p+t(q−p)‖ dt

≤
√
B(q − p, q − p)e−

n2

2
+n(‖p‖+‖q−p‖).

We have shown that Lg(εn) converges to zero therefore dg(p, q) = 0.
We have proved the following.

Theorem. There exists a weak Riemannian metric g on `2, such that dg ≡ 0.
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