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Abstract. We extend Dudley’s characterization of convex functions to the frame-
work of h-convex distributions on stratified groups. Precisely, we prove that every
distribution with nonnegative horizontal Hessian is defined by an h-convex function.

1. Introduction

In Euclidean spaces, the first distributional characterization of convexity goes back
to L. Schwartz in [16], who proved that a distribution in R is a convex function if
and only if its second derivative is a nonnegative Radon measure. Bakel’man showed
that all second order distributional derivatives of a convex function in Rn are signed
Radon measures, [1]. Subsequently, Reshetnyak established that a locally summable
function is defined by a convex function if and only if its distributional Hessian is
nonnegative, [14]. This characterization has reached its full generality thanks to a
result by Dudley, who proved that every distribution with nonnegative Hessian in the
distributional sense is defined by a convex function, [5].

In the framework of stratified groups, the natural notion of convexity is that of
h-convexity. An h-convex function u : Ω→ R defined on an open set Ω of a stratified
group G satisfies the property of being classically convex along all horizontal lines
contained in Ω. More information on convexity in stratified groups can be found in
the seminal papers by Danielli, Garofalo and Nhieu [4] and by Juutinen, Lu, Manfredi
and Stroffolini [9], [10].

In all stratified groups, every h-convex function has nonnegative horizontal Hessian
in the distributional sense, as observed in [4] and [9]. Surprisingly, the converse of this
statement, namely, establishing whether a distribution with nonnegative horizontal
Hessian is given by an h-convex function has not been addressed yet. This note gives
a full answer to this question. Our first result in this direction extends Reshetnyak’s
characterization to all stratified groups.

Theorem 1.1. If µ ∈ D′(Ω) is a Radon measure, then µ is defined by an h-convex
function if and only if it is an h-convex distribution.
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Our scheme is elementary, although it differs from the standard approach: we con-
sider the group convolution of the measure µ, but instead of computing its horizontal
Hessian by direct differentiation, we consider its distributional version. This respects
the noncommutativity of the convolution operator. As a byproduct of Theorem 1.1,
we have the following basic fact.

Corollary 1.2. If u ∈ L1
loc(Ω) is h-convex in the distributional sense, then outside a

negligible set it coincides with a locally Lipschitz continuous h-convex function on Ω.

This result shows that the condition vi) in Theorem 3.1 of [10] implies the condition
i) of the same theorem, along with the stronger local Lipschitz continuity, although
the upper semicontinuity assumption of Theorem 3.1 is not used. The reason of
this resides in the theory of subharmonic functions of [2], that is applied to the
characterizations in Theorem 3.1 of [10] and that requires the upper semicontinuity
as an underlying assumption.

To reach the complete distributional characterization of h-convexity, we combine
Corollary 1.2 and Lemma 2.3 below. By means of the fundamental solution of the sub-
Laplacian ∆H in stratified groups, [6], this lemma shows that an h-convex distribution
T is the sum of a ∆H-harmonic function and a locally summable function. Since ∆H-
harmonic functions are smooth by Hörmander’s theorem, [8], we can conclude that
T is given by a function in L1

loc(Ω) and then Corollary 1.2 applies.
We should remark that this approach might be of interest also in the classical

context, since it gives a different proof of Dudley’s theorem, [5]. Recall that Dudley’s
argument uses a “simplex construction” that cannot be extended to general stratified
groups, although the rich properties of Heisenberg groups allow to carry out Dudley’s
argument in these groups, see [17]. We have now arrived at our main result.

Theorem 1.3. Let Ω be an open set of G. If T ∈ D′(Ω) is h-convex, then T is defined
by an h-convex function on Ω.

Recall that all measurable h-convex functions are locally Lipschitz continuous, [15].
Thus, Theorem 1.3 shows that the class of h-convex measurable functions coincides
with that of h-convex distributions that are locally Lipschitz continuous h-convex
functions. Although we still do not know whether one can find h-convex functions
in higher step groups that are nonmeasurable, these functions in any case would not
be included in the family of h-convex distributions. This should clarify that either
measurability or local boundedness from above have to be included in the definition
of h-convexity. In fact, both these conditions imply that any h-convex function is
indeed Lipschitz continuous. Finally, this note should be thought of as a further
contribution in showing the interesting interplay between the well developed theory
of subharmonic functions in stratified groups and the theory of h-convex functions,
that is still far from being completely understood.
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2. H-convex distributions

A finite dimensional connected and simply connected nilpotent Lie group can be
thought of as a vector space G equipped with a polynomial group operation, that is
given in turn by the Baker-Campbell-Hausdorff formula. Let G be the Lie algebra of
G and set n = dimG. We say that G is stratified if G = V1 ⊕ · · · ⊕ Vι, where Vj =
[V1, Vj−1], for all 1 < j ≤ ι and Vj = {0} if and only if j > ι. Thus, G is canonically
equipped with a structure of graded vector space, with G = H1 ⊕H2 ⊕ · · · ⊕Hι and
Hj = {v ∈ G : v = X(0) andX ∈ Vj}. We can define a natural family of dilations
δr : G → G compatible with the group operation, see [7]. We fix (X1, . . . , Xm) as
a basis of V1. Open balls with respect to a fixed homogeneous distance d will be
denoted by Bx,r and we simply write Br when x is the origin.

We denote by Hx the left translation of H1 by x, namely Hx = xH1. For every
h ∈ H1 we define the horizontal segment {th, t ∈ [0, 1]} through the short notation
[0, h]. Moreover for every x ∈ G we set x · [0, h] = {xδth, t ∈ [0, 1]}.
Definition 1. We say that u : Ω → R is h-convex if for every x, y ∈ Ω such that
x ∈ Hy and x · [0, x−1y] ⊂ Ω, we have u(xδλ(x

−1y)) ≤ λu(y) + (1 − λ)u(x), for all
λ ∈ [0, 1].

Recall that D(Ω) corresponds to C∞c (Ω) topologized in the standard way, where Ω
is an open set of a stratified group thought of as a differentiable manifold. We denote
by D′(Ω) the topological vector space of distributions on Ω.

Remark 1. Let (X1, . . . , Xm) denote an orthonormal basis of the first layer V1 and
let T ∈ D′(Ω). The vector fields Xj have formal adjoint X?

j = −Xj, so this justifies
the following definition

〈XjT, φ〉 := −〈T,Xjφ〉, φ ∈ D(Ω).

Definition 2. Let T ∈ D′(Ω). The distributional Hessian of T is the matrix valued
distribution 〈D2

HT, ψ〉 := 〈T, ∇2
Hψ〉 with entries〈

1

2
(XjXi +XiXj)T, ψ

〉
:=
〈
T,

1

2
(XiXj +XjXi)ψ

〉
for every i, j = 1, . . . ,m and every ψ ∈ D(Ω).

Definition 3. We say that the distributional Hessian of T ∈ D′(Ω) is nonnegative if
for every nonnegative test function ψ ∈ D(Ω) the matrix 〈T, ∇2

Hψ〉 is nonnegative.
In this case we write D2

HT ≥ 0 and say that the distribution T is h-convex.

In the smooth case, a simple computation shows that a nonnegative horizontal
Hessian characterizes h-convexity, see for instance [12].

Definition 4. Let φ ∈ D(G) be a nonnegative function, whose support is contained
in the unit open ball of G with respect to the fixed homogeneous norm and such that∫

G φ(y) dy = 1. For every ε > 0, we set φε(x) = ε−Qφ(δ 1
ε
x). We say that {φε}ε>0 is a

family of mollifiers.
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Throughout, we denote by d(x) the distance d(x, 0) for every x ∈ G.

Lemma 2.1 (Remark 3.10 of [13]). Let G be a stratified group of step ι. Let w, h ∈ G
and let ν > 0 be such that d(w), d(h) ≤ ν. Then there exits a constant C(ν), also

depending on G, such that d(w−1hw) ≤ C(ν)d(h)
1
ι .

We will use the notation Ω−r = {x ∈ Ω : dist(x,Ωc) > r} for any r > 0.

Proof of Theorem 1.1. We first suppose that Ω is bounded. Let h > 0 be such that
Ω−h is nonempty and notice that

µε(x) =

∫
Ω

φε(xy
−1) dµ(y)

is well defined on Ω for all ε > 0. For any ψ ∈ D(Ω−h) , we get∫
Ω−h

∇2
Hψ(x) µε(x) dx =

∫
Ω

(∫
Ω−h

φε(xy
−1) ∇2

Hψ(x) dx

)
dµ(y)

(
x = zy

)
=

∫
Ω

(∫
Bε

φε(z) ∇2
Hψ(zy) dz

)
dµ(y)

=

∫
Bε

φε(z)

(∫
Ω

∇2
H [ψ(zy)] dµ(y)

)
dz

≥ 0 ,

since y → ψ(zy) is smooth and compactly supported in Ω. In fact, let ω ∈ Ωc, then
Lemma 2.1, with ν = C(Ω) = supx∈Ω d(x), yields

d(y, ω) ≥ d(zy, ω)− d(y−1zy) > h− C(Ω)ε
1
ι > 0.

for all ε
1
ι < h

C(Ω)
. Then it follows from Proposition 5.1 in [12] that µε is h-convex.

Furthermore, for every compact set K contained in Ω−h we have the uniform estimate∫
K

|µε(x)| dx ≤ |µ(K)| < +∞ .

Then the L∞-estimates in Theorem 9.2 of [4] joined with the classical Ascoli-Arzelà
compactness theorem and the arbitrary choice of h > 0 imply the local uniform
convergence of µε to an h-convex function defined in Ω. In the case Ω is any open
set, we fix an arbitrary M > 0 and consider the set Ω∩BM . The proof proceeds as in
the previous case and by the arbitrary choice of M > 0, the conclusion follows. �

We say that a distribution τ ∈ D′(Ω) is homogeneous of degree α if for every
φ ∈ D(Ω) and r > 0 we have 〈τ, φ ◦ δr〉 = r−α−Q〈τ, φ〉, where Q =

∑ι
i=1 i dimVi is the

so called homogeneous dimension of G.

Definition 5 ([6]). Consider the sub-Laplacian ∆H =
∑m

i=1X
2
i on G. A distribution

Γ on Ω is a fundamental solution for ∆H if :
(i) Γ ∈ C∞(G \ {0}),
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(ii) Γ is homogeneous of degree 2−Q,
(iii) ∆HΓ = −δ0 in the sense of distributions.

Remark 2. Notice that Γ ∈ L1
loc(G). This follows by conditions (i) and (ii) in the

previous definition, see also Corollary 1.7 in [6].

Theorem 2.2 ([6], Theorem 2.1). Let G be a Carnot group of homogeneous dimension
Q > 2, then there exists a fundamental solution Γ for ∆H .

Lemma 2.3. Let Ω ⊂ G be an open set and let Ω1 ⊂ Ω be a bounded open set such
that Ω̄1 ⊂ Ω. If T ∈ D′(Ω) satisfies ∆HT ≥ 0, then its restriction to Ω1 is given by a
function in L1

loc(Ω1).

Proof. Since ∆HT ≥ 0, we know that there exists a nonnegative Radon measure µ
on Ω such that ∆HT = µ. Let Γ be as in Definition 5, and consider the function

v(x) = −
∫

Ω1

Γ(y−1x)dµ(y).

Since Γ is locally integrable on G, for every compact set K ⊂ Ω1 we have∫
K

|v(x)|dx ≤
∫

Ω1

∫
K

|Γ(y−1x)|dxdµ(y) ≤ µ(Ω1) sup
y∈Ω̄1

∫
K

|Γ(y−1x)|dx < +∞.

Let us show that v satisfies the distributional equality ∆Hv = µ|Ω1
. In fact, for every

φ ∈ D(Ω1) we have

〈∆Hv, φ〉 = −
∫

Ω1

∫
Ω1

Γ(y−1x)∆Hφ(x)dx dµ(y).

Thus, Γ being the fundamental solution for ∆H , we get

〈∆Hv, φ〉 =

∫
Ω1

φ(y)dµ(y).

Hence ∆H (T − v) = 0 in D′(Ω1). Since ∆H is hypoelliptic, [8], the function T − v
coincides a.e. with a smooth ∆H-harmonic function h on Ω1. Finally, we can conclude
that T is represented by an L1

loc function on Ω1. �

We wish to point out that this lemma follows the same lines used to prove rep-
resentation formulae for upper semicontinuous subharmonic functions, see Theorem
9.4.4 in [3]. Combining Lemma 2.3 and Corollary 1.2, we establish the proof of our
main result.

Proof of Theorem 1.3. Let Ω̄n ⊂ Ω, n ∈ N be an increasing sequence of open and
bounded sets. By hypothesis, D2

HT ≥ 0 and in particular ∆HT ≥ 0. Hence,
Lemma 2.3 implies that T is represented by an L1

loc function on Ωn. Finally we
can conclude, by Corollary 1.2, that T is defined by an h-convex function on Ωn.
Since

⋃
n∈N Ωn = Ω, the theorem follows. �
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