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Abstract. We prove a coarea inequality for Lipschitz maps between stratified groups. As
a consequence we obtain a Sard-type theorem and the nonexistence of nontrivial coarea formulae
between Heisenberg groups. In the case of real valued Lipschitz maps on the Heisenberg group we
get a coarea formula using the Q − 1 spherical Hausdorff measure restricted to level sets, where
Q is the homogeneous dimension of the group.

Introduction

Recently, several classical problems of geometric measure theory in Euclidean
spaces have been studied in general metric spaces, see for instance [1], [2], [3], [8],
[19], [22], [30]. Following this path, one starts testing the generality of a geometric
concept in spaces which lack some classical features of Riemannian metric spaces,
but still keep “enough structure”.

The stratified groups, also known as Carnot groups, are good examples of
spaces to be investigated in this perspective. More precisely they are graded
nilpotent simply connected Lie groups. There are many recent contributions on
the study of these groups and the more general Carnot–Carathéodory spaces:
[10], [13], [14], [15], [16], [20], [21], [23], [25], [28], [29], [31] (the list is surely not
complete). However, several classical facts of geometric measure theory are still
not well understood. We mention for instance two open problems as the coarea
formula for Lipschitz maps between stratified groups or the question of finding a
reliable notion of current. So, the development of new general tools in this context
is still at an early stage.

In this paper we deal with the problem of coarea formula for Lipschitz maps
between stratified groups. Some observations about this problem are in order. We
distinguish between the case of real valued maps and the group valued maps, where
both are defined on stratified groups. For real valued maps there are different
coarea formulae in the literature, as for functions of bounded variation, [13], [16],
[22], [25], and for smooth maps, [18]. In the first case the “surface measure” of
the level sets is the perimeter measure, so one can ask whether it is possible to
replace this measure with a Hausdorff type measure when the map is Lipschitz,
as in the Euclidean case. This problem is raised in Remark 4.9 of [25], where
another assumption is the use of the length metric (namely the geodesic metric)
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to build the spherical Hausdorff measure. As application of our coarea inequality
we answer this question in the case of real valued Lipschitz maps on the Heisenberg
group (Theorem 3.11), considering the Q − 1 spherical Hausdorff measure with
respect to an arbitrary R -invariant metric (Definition 3.7) and proving that the
length metric is R -invariant (Proposition 3.15). Another key tool to get the coarea
formula is a blow-up theorem for the perimeter measure in the Heisenberg group,
see Theorem 4.1 in [15]. The validity of this theorem for general stratified groups
would imply the coarea formula in the same groups without relevant changes on our
proofs. Unfortunately, the extension of the blow-up theorem to general stratified
groups is still not well understood.

In the general case of group valued Lipschitz maps the validity of a coarea
formula is completely open and it seems that none of the classical methods can be
used to solve this problem. Here we give a first partial answer, showing that the
following coarea inequality holds

(1)

∫

M

ΦQ−P
(
A ∩ f−1(ξ)

)
dΦP (ξ) ≤

∫

A

CP (dxf) dΦQ(x),

where CP (dxf) is the coarea factor of dxf (see Definition 1.11) and Φa gen-
eralizes the Hausdorff measure to a Carathéodory measure (see Definition 1.9).
However, it is interesting to observe that in some special cases (1) permits to get
the nonexistence of nontrivial coarea formulae for group valued Lipschitz maps
(see Subsection 2.1).

Our technique to prove (1) is based on differentation theorems for measures.
Basically we generalize the blow-up method used in Lemma 2.96 of [4], reaching
explicit estimates. We use the generalization of the Hausdorff measure Φa to
emphasize the general method adopted.

Another application of (1) is a weak version of Sard’s theorem. We prove
that any Lipschitz map between stratified groups has a negligible set of singular
points in almost every level set. We emphasize the attention on the fact that for
Lipschitz maps, even in the Euclidean case, one cannot obtain more information.
In fact, the classical stronger result, namely Sard’s theorem, requires sufficiently
smooth maps.

Let us give a brief description of the paper. In Section 1 we introduce some
known facts of geometric measure theory and some basic notions about stratified
groups. In Section 2 we prove the coarea inequality, getting the Sard-type theorem
and the nonexistence of nontrivial coarea formulae between different Heisenberg
groups. In the last section we obtain the coarea formula for real valued Lipschitz
maps on the Heisenberg group.

Acknowledgments. I thank Luigi Ambrosio for his precious comments. I
am grateful to Fulvio Ricci for his important suggestions about the geometry of
the Heisenberg group. I also thank Bernd Kirchheim who proposed me to study
the validity of the coarea formula between different Heisenberg groups.
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1. Definitions and some results

In this section we first introduce some well-known tools of geometric measure
theory in metric spaces, then we recall the main notions about stratified nilpotent
Lie groups.

Definition 1.1. For each metric space (X, d) we denote the open ball with
center x and radius r by Ux,r = {y ∈ X | d(y, x) < r} and Ur = Ue,r , if
some particular element e of the space is understood. Analogously we denote by
Bx,r = {y ∈ X | d(y, x) ≤ r} the closed ball.

Throughout the paper we mean by measure on a space X a countably sub-
additive nonnegative set function defined on all the subsets of the space. The
existence of a σ -algebra of measurable sets induced by µ is well known.

Definition 1.2 (Density points). Consider a metric space with a measure
(X, d, µ) and a measurable set A ⊂ X . We define I (A) as the set of points
x ∈ X such that

µ(A ∩Bx,r)
µ(Bx,r)

→ 1 as r → 0.

We call every element of I (A) a density point.

Note that in a doubling space we always have µ
(
A \ I (A)

)
= 0 when A is

measurable, see for instance [11]. Now we recall briefly Carathéodory’s construc-
tion in our particular case, see [11] for the general definition.

Definition 1.3 (Carathéodory measure). Let (X, d) be a metric space and
let F be a family of subsets of X . We fix a ≥ 0 and define for every t > 0 the
measures

Φat (E) = βa inf

{ ∞∑

i=1

diam (Di)
a | E ⊂

∞⋃
i=1

Di, diam (Di) ≤ t, Di ∈ F

}
,

Φa(E) = lim
t→0

Φat (E),

with E ⊂ X and βa > 0. We assume that the family F has the following
property

(2) Θ−1
a H a ≤ Φa ≤ ΘaH

a,

where Θa > 0 and H a is the Hausdorff measure built with F = P(X) , βa =
ωa/2

a ,

ωa =
πa/2

Γ(1 + a/2)
and Γ(s) =

∫ ∞

0

rs−1e−r dr.

For instance, if F is the family of closed (or open) balls and βa = ωa/2
a the

corresponding measure, Φa satisfies the latter estimate with Ca = 2a . Indeed,
in this case Φa is the well-known spherical Hausdorff measure, which we denote
by S a .

In the sequel we will use a general coarea estimate which holds for Lipschitz
maps in arbitrary metric spaces. In fact, after a work of Davies [9], the assumptions
in paragraph 2.10.25 of [11] are needless.
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Theorem 1.4 (Coarea estimate). Let f : X → Y be a Lipschitz map of
metric spaces and consider A ⊂ X , with 0 ≤ P ≤ Q . Then the following estimate
holds

(3)

∫ ∗

Y

H Q−P (A ∩ f−1(ξ)
)
dH P (ξ) ≤ Lp(f)

ωQ−PωP
ωQ

H Q(A).

The symbol
∫ ∗

denotes the upper integral (see for instance [11]). We can
easily transform (3) using our measures Φa from Definition 1.3, obtaining

(4)

∫ ∗

Y

ΦQ−P
(
A ∩ f−1(ξ)

)
dΦP (ξ) ≤ Lp(f)

ωPωQ−P
ωQ

ΘQ−P ,ΘPΘQΦQ(A).

1.1. Brief digest on stratified groups. Here we recall some notation and
basic facts on stratified groups. Consider a graded nilpotent simply connected
Lie group G with Lie algebra G , where G is the direct sum of subspaces Vi ,
i ∈ N . An important generating condition is assumed: [Vi, V1] = Vi+1 and Vi = 0
for i > n . The integer n is called the degree of nilpotency of the group and V1

represents the space of the so-called horizontal directions. The stratified structure
of the algebra allows us to define a one parameter group of dilations δr: G → G
as δr(v) =

∑n
i=1 r

iui , where v =
∑n
i=1 ui , ui ∈ Vi and r > 0. So δr◦δs = δrs

holds for r, s > 0 and δr is a homomorphism of the algebra G . The same group of
dilations is easily transfered on G by the exponential map exp: G → G , which is
a diffeomorphism for simply connected Lie groups. Under these assumptions one
can define a left invariant distance on G , which is homogeneous with respect to
dilations. Namely, we have

(1) d(x, y) = d(ux, uy) for every u, x, y ∈ G ,
(2) d(δrx, δry) = r d(x, y) for every r > 0.

A distance with these properties is called homogeneous distance. There are many
bi-Lipschitz equivalent homogeneous distances one can define. Among homoge-
neous metrics there is the length metric, that is, for each couple of points x, y ∈ G ,
there exists a rectifiable curve which connects them, whose length is equal to the
distance between the points. We fix a scalar product on the space G , so we can
define the Lebesgue measure L q , where q is the topological dimension of G .
With a slight abuse of notation we denote by L q the measure exp] L

q defined
on G and we do the same for all the Euclidean Hausdorff measures defined on G .
The group operation preserves the volume, so L q is left invariant with respect
to the translations of the group. By definition of dilation it is not difficult to see
that L q(Br) = rQ L q(B1) , where Q =

∑n
i=1 i dim(Vi) and Br is a ball of radius

r with respect to the homogeneous distance. Hence, the measure H Q built with
the homogeneous distance is proportional to L q (they are both Haar measures).
Clearly the Hausdorff dimension of the space with respect to the homogeneous dis-
tance is Q . Now it is clear that one can identify G with G , thinking as a unique
object Rq with two different structures: the addition of the vector space with the
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Euclidean distance and the operation of the group with the homogeneous distance.
In fact, the group operation of G can be translated on G by the exponential map
and the Baker–Hausdorff–Campbell formula yields an explicit polynomial function
for the operation. See [6], [17] and [18] for more details.

In our study we consider two stratified groups, so we fix another one M
with homogeneous distance % and topological dimension p . We denote by M its
Lie algebra, which is the direct sum of subspaces Wj , j = 1, . . . ,m . As above,
the Lebesgue measure L p and the Hausdorff measure H P with respect to the
homogeneous distance % are defined with P =

∑m
i=1 i dim(Wi) . We will not use

different notation to distinguish between dilations of M and that one of G .

1.2. Differentiability and coarea factor. We state the extension of
Rademacher’s theorem on stratified groups and introduce the notion of coarea
factor for suitable “linear maps” between stratified groups.

Definition 1.5. Let L: G→M be a map of stratified groups. We say that
L is homogeneous if δr(Lx) = L(δrx) for every r > 0.

Definition 1.6 (G -linear maps). We say that a map L: G→M is G-linear
if it is a homogeneous Lie group homomorphism.

The G -linear maps generalize the linear maps of Euclidean spaces. Indeed
they coincide with linear maps when the stratified groups are Euclidean spaces
(abelian simply connected Lie groups). An elementary characterization holds:
every G -linear map is Lipschitz in the metrics of the groups and conversely any
Lipschitz Lie groups homomorphism is a G -linear map (see [21]).

Definition 1.7. We say that a map f : A ⊂ G → M is differentiable at
x ∈ I (A) ∩A if there exists a G -linear map L: G→M such that

(5) lim
y∈A, y→x

%
(
f(x)−1f(y), L(x−1y)

)

d(x, y)
= 0.

The following generalization of Rademacher’s theorem on stratified groups
is due to Pansu [27], assuming that the domain of the Lipschitz map is open.
An extension of this theorem to the general case of arbitrary domains is done
in [21] and [31]. It is helpful to note that this improvement cannot be a trivial
consequence of a Lipschitz extension theorem, because this one lacks in stratified
groups.

Theorem 1.8 (Differentiability). Every Lipschitz function f : A ⊂ G → M
is differentiable H Q -almost everywhere.

In the case of stratified groups we will consider a particular class of Carathéo-
dory measures, introduced in Definition 1.3.

Definition 1.9. We fix a compact neighbourhood D ⊂ G of the unit element
and define the family F0 = {xδrD | x ∈ G, r > 0} . Given a ≥ 0 we apply the
construction of Definition 1.3 with F equal to F0 or P(G) , denoting with Φa

the corresponding measure on G .
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Proposition 1.10. The measure Φa defined above satisfies the estimate (2)
and the following ones

(1) Φa(δrE) = raΦa(E) for E ⊂ G , r > 0 ,
(2) Φat (δrE) ≤ raΦat (E) , for E ⊂ G , r, t > 0 and r < 1 ,
(3) Φa(xE) = Φa(E) , for any x ∈ G (left invariance).

Proof. In case F = P(G) clearly Φa = H a , so (2) is trivial. If F = F0 it
is enough to observe that there exist two positive constants c1 and c2 such that
Bc1 ⊂ D ⊂ Bc2 and compare Φa with S a . Properties (1) and (2) follow from
the fact that for any s, r > 0 and x ∈ G one has diam (δrE) = r diam (E) and
δs(xδrD) = δsxδsrD ∈ F . Finally, by the left invariance of the homogeneous
metric property (3) follows.

Throughout the paper we will refer to the measures Φa of Definition 1.9
defined on G and M . Next, we adapt the implicit notion of coarea factor in [2]
to our framework.

Definition 1.11 (Coarea factor). Consider a G -linear map L: G→M , with
Q ≥ P . The coarea factor CP (L) of L is the unique constant such that

(6) ΦQ(B1)CP (L) =

∫

M

ΦQ−P
(
B1 ∩ L−1(ξ)

)
dΦP (ξ).

In view of the following proposition the definition of coarea factor is well
posed.

Proposition 1.12. For each G -linear map L: G→M there exists a unique
nonnegative constant CP (L) such that (6) holds. Moreover, the number CP (L)
is positive if and only if L is surjective (non-singular) and in this case we have

(7) CP (L) =
ΦQ−P

(
L−1(0) ∩B1

)

H q−p
| · |

(
L−1(0) ∩B1

)det(LL∗)1/2
.

Proof. Consider the dilation δr restricted to the subspace L(G) and note
that the jacobian of δr is rP

′
, where P ′ =

∑m
i=1 i dim

(
L(Vi)

)
. It follows that

H p′

| · |
(
Br ∩ L(G)

)
= rP

′
H p′

| · |
(
B1 ∩ L(G)

)
,

where H p′

| · | stands for the Euclidean Hausdorff measure (p′ is the topological

dimension of L(G)). In case L is not surjective it follows that

P ′ =

m∑

i=1

i dim
(
L(Vi)

)
<

m∑

i=1

i dim(Wi) = P,

hence the Hausdorff dimension of L(G) is less than P , and by (2) we get CP (L) =
0. Now assume that L is surjective. We start proving that ΦQ−P is proportional
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to the Euclidean Hausdorff measure H q−p
| · | on the subspace N = L−1(0). Note

that N has topological dimension q − p and a graded structure N = N1 ⊕N2 ⊕
· · · ⊕Nn , where Ni is a subspace of Vi . Reasoning as above we have that

H q−p
| · | (Br ∩N) = rQ

′
,H q−p
| · | (B1 ∩N),

where Q′ =
∑n
i=1 i dim(Ni) . The fact that L is surjective implies that n ≥ m ,

dim(Vi) ≥ dim(Wi) and dim(Ni) = dim(Vi)− dim(Wi) , i = 1, . . . ,m , so

Q′ =
n∑

i=1

i dim(Ni) =
m∑

i=1

i
(
dim(Vi)− dim(Wi)

)
+

n∑

i=m+1

i dim(Vi) = Q− P.

It is clear that ΦQ−P xN is a left invariant measure, because the metric d on G
is left invariant. The measure H q−p

| · | xN is left invariant because translations pre-

serve the volume even if they are restricted to subspaces. It follows that ΦQ−P xN
and H q−p

| · | xN are proportional:

(8) ΦQ−P xN = αQ,PH q−p
| · | xN,

where αQ,P = ΦQ−P xN(B1)/H q−p
| · | xN(B1) . For any ξ ∈ M we can write

L−1(ξ) = xN , where L(x) = ξ , so taking into account that left translations
are isometries, one concludes that the constant αQ,P remains unchanged if one
replaces N with L−1(ξ) in formula (8). As a result we find that the measure

ν(A) =

∫

M

ΦQ−P
(
A ∩ L−1(ξ)

)
dΦP (ξ)

is positive on open bounded sets, while inequality (4) guarantees that ν is finite
on the sets A ⊂ G with ΦQ -finite measure. By a change of variable involving left
translations it is not difficult to see that ν is a left invariant measure on G , so
there exists a positive constant CP (L) such that ν = CP (L)ΦQ . Now we want
to compute explicitly the factor CP (L) . We know that ΦP is proportional to
the Lebesgue measure L p on M . Thus, we can replace these equalities in the
definition of coarea factor obtaining∫

M

ΦQ−P
(
B1 ∩ L−1(ξ)

)
dΦP (ξ) = αQ,PβQ,P

∫

M

H q−p
| · |

(
B1 ∩ L−1(ξ)

)
dL p(ξ),

where βQ,P = ΦP (B1)/L p(B1) . From the classical coarea formula we get∫

M

ΦQ−P
(
B1 ∩ L−1(ξ)

)
dΦP (ξ) = αQ,P det(L L∗)1/2

ΦP (B1),

finally Definition 1.11 leads us to the claim.

Remark 1.13. If G and M are Euclidean spaces it follows that CP (L) =

det(LL∗)1/2
, where L is a linear map. Therefore, the coarea factor coincides with

the classical jacobian of the Euclidean coarea formula. For G -linear maps, by (4),
we always have

(9) CP (L) ≤ ωQ−PωPΘQ−PΘPΘQ

ωQΦQ(B1)
Lp(L).
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2. Coarea inequality

This section is devoted to the proof of coarea inequality; as a corollary we
show a Sard-type theorem for Lipschitz maps between stratified groups. In the
sequel we will fix a closed set A ⊂ G and a Lipschitz map f : A→M . Indeed one
can always extend a Lipschitz map to the closure of its domain when the target is a
complete metric space. For any closed set A ⊂ G the map ξ → ΦQ−Pt

(
A∩f−1(ξ)

)

is a Borel map, hence we can state the following definition.

Definition 2.1. For any t > 0 we define a measure on G as follows: for any
D ⊂ G

νt(D) =

∫

M

ΦQ−Pt

(
D ∩A ∩ f−1(ξ)

)
dΦP (ξ).

By the estimate (4) the measure νt is locally finite uniformly in t > 0. The
next lemma is a simple variant of Lemma 2.9.3 in [11].

Lemma 2.2. Let ν be a locally finite measure on a doubling space (X,µ)
which is absolutely continuous with respect to µ and let α be a positive number.
Then for any subset

A ⊂
{
x ∈ X

∣∣∣ lim inf
r→0

ν(Bx,r)

µ(Bx,r)
< α

}

it follows that ν(A) ≤ αµ(A) .

Definition 2.3. For each map f : A → M and x0 ∈ A , we define the r -
rescaled of f at x0 as the map fx0,r: δ1/r(x

−1
0 A)→M defined as

fx0,r(y) = δ1/r
(
f(x0)−1f(x0δry)

)
.

Proposition 2.4. Consider a map f : A→M , a differentiability point x0 ∈
I (A) and a sequence of positive numbers (rj) which tends to zero. For every
ζ ∈M , j ∈ N define the compact set

Kj(ζ) =
⋃
m≥j

(
B1 ∩ f−1

x0,rm(ζ) ∩ δ1/rm(x−1
0 A)

)
.

Then it follows that
⋂
j≥1Kj ⊂ B1 ∩ (dx0f)−1(ζ) .

Proof. Pick an element y ∈ ⋂j≥1Kj , getting a subsequence (%l) of (rj) and

a sequence (yl) such that yl ∈ B1 ∩ f−1
x0,%l

(ζ) ∩ δ1/%l(x−1
0 A) , yl → y . Thus, by

Theorem 1.8 and equation (5) it follows that

fx0,%l(yl)→ dx0f(y),

but fx0,%l(yl) = ζ for every l ∈ N , then ζ = dx0f(y) .
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Theorem 2.5 (Density estimate). In the above assumptions, for any t > 0
we have

(10) lim inf
r→0

νt(Bx0,r)

ΦQ(Bx0,r)
≤ CP (dx0f).

Proof. We start considering the quotient

νt(Bx0,r)r
−Q =

∫

M

ΦQ−Pt

(
A ∩Bx0,r ∩ f−1(ξ)

)
r−Q dΦP (ξ).

The map Tx0,r: G → G , y → x0δry is the composition of an isometry and a
dilation δr . Thus, choosing r < 1, by property (2) of Proposition 1.10 it follows
that

ΦQ−Pt

(
A ∩Bx0,r ∩ f−1(ξ)

)
= ΦQ−Pt

(
Tx0,r

(
Ax0,r(ξ)

))
≤ rQ−PΦQ−Pt

(
Ax0,r(ξ)

)
,

where Ax0,r(ξ) = {y ∈ B1 | f(x0δry) = ξ} ∩ δ1/r(x−1
0 A) . This implies

νt(Bx0,r)r
−Q ≤

∫

M

ΦQ−Pt

(
Ax0,r(ξ)

)
r−P dΦP (ξ).

Defining Rx0,r: M → M , ξ → δ1/r
(
f(x0)−1ξ

)
= ζ and using property (1) of

Proposition 1.10 we obtain (Rx0,r)](Φ
P ) = rPΦP ; hence

νt(Bx0,r)r
−Q ≤

∫

M

ΦQ−Pt

(
Ax0,r(R

−1
x0,r(ζ)

)
dΦP (ζ).

By the definition of r -rescaled function we have

Ax0,r

(
R−1
x0,r(ζ)

)
=
{
y ∈ B1 | f(x0δry) = f(x0)δrζ

}
∩ δ1/r(x−1

0 A)

= B1 ∩ f−1
x0,r(ζ) ∩ δ1/r(x−1

0 A),

νt(Bx0,r)r
−Q ≤

∫

Bh

ΦQ−Pt

(
B1 ∩ f−1

x0,r(ζ) ∩ δ1/r(x−1
0 A)

)
dΦP (ζ).(11)

The family of functions {fx0,r}r>0 is uniformly Lipschitz with bound Lp(f) = h
on the Lipschitz constants; hence fx0,r(B1) ⊂ Bh for any r > 0. Now choose a
sequence (rj) such that rj → 0 and for each j ∈ N define the functions

(12) gtj(ζ) = ΦQ−Pt

(
B1 ∩ f−1

x0,rj (ζ) ∩ δ1/rj (x−1
0 A)

)

and the following decreasing sequence of compact sets

Kj(ζ) =
⋃
m≥j

(
B1 ∩ f−1

x0,rm(ζ) ∩ δ1/rm(x−1
0 A)

)
.
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In view of Proposition 2.4 we obtain

⋂
j≥1

Kj(ζ) ⊂ B1 ∩ L−1(ζ),

where L = dx0f is the differential of f at x0 . By results of paragraph 2.10.20
in [11] it follows that

(13)
lim sup
j→∞

gtj(ζ) ≤ lim
j→∞

ΦQ−Pt

(
Kj(ζ)

)
≤ ΦQ−Pτ

( ⋂
j≥1

Kj(ζ)

)

≤ ΦQ−Pτ

(
B1 ∩ L−1(ζ)

)

with τ < t . Each measure Φaτ , with τ, a > 0, is finite on bounded sets, then the
sequence of nonnegative functions (gtj)j∈N is uniformly bounded by ΦQ−Pτ (B1)
on Bh . This fact together with Fatou’s theorem and inequality (13) implies

(14) lim sup
j→∞

∫

Bh

gtj(ζ) dΦP (ζ) ≤
∫

Bh

ΦQ−Pτ

(
B1 ∩ L−1(ξ)

)
dΦP (ζ).

Joining inequalities (11), (12) and (14), and taking into account the inequality
Φaτ ≤ Φa it follows that

lim inf
r→0

νt(Bx0,r)r
−Q ≤ lim sup

j→∞
νt(Bx0,rj )r

−Q
j ≤

∫

M

ΦQ−P
(
B1 ∩ L−1(ζ)

)
dΦP (ζ).

From Definition 1.11 we obtain

(15) lim inf
r→0

νt(Bx0,r)r
−Q ≤ CP (dx0f)ΦQ(B1).

Finally, by inequality (15) and the property (1) of Proposition 1.10 the proof is
complete.

Theorem 2.6 (Coarea inequality). Let A ⊂ G be a measurable set and
consider a Lipschitz map f : A→M . Then we have

∫

M

ΦQ−P
(
A ∩ f−1(ξ)

)
dΦP (ξ) ≤

∫

A

CP (dxf) dΦQ(x).

Proof. We start proving the measurability of g(x) = CP (dxf) . For any t > 0
we consider the Borel function defined on G -linear maps

L→ ΦQ−Pt

(
L−1(0) ∩B1

)
.

The limit as t→ 0 is a measurable function, so by the measurability of x→ dxf
and the representation (7) one concludes this verification. Furthermore, in view
of (9) the map g is bounded. Now we define A′ ⊂ I (A) ∩ A as the set of
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differentiability points, hence by Theorem 1.8 we have ΦQ(A \A′) = 0 and by (4)
it follows that

(16)

∫

M

ΦQ−P
(
A ∩ f−1(ξ)

)
dΦP (ξ) ≤

∫

M

ΦQ−P
(
A′ ∩ f−1(ξ)

)
dΦP (ξ).

Consider a measurable step function ϕ =
∑k
i=1 αi1Ai ≥ g , αi ≥ 0,

⊔k
i=1Ai = A′

(disjoint union). By estimate (10), for any i = 1, . . . , k we have

lim inf
r→0

νt(Bx,r)

ΦQ(Bx,r)
≤ αi

for each x ∈ Ai . Inequality (4) implies the absolute continuity of the measure νt
with respect to ΦQ , so for every i = 1, . . . , k we can apply Lemma 2.2, getting

νt(Ai) ≤ αiΦQ(Ai).

Since our estimates are independent of t > 0, we can allow t → 0. Therefore,
summing over i = 1, . . . , k we find

∫

M

ΦQ−P
(
A′ ∩ f−1(ξ)

)
dΦP (ξ) ≤

∫

A′
ϕ(x) dΦQ(x).

By (16) and the measurability of g the proof is complete.

2.1. Applications. Sard’s classical theorem states that the image of the
singular set of a smooth map is negligible. This statement is easily generalized to
the case of Lipschiz maps between stratified groups f : G → M , when P > Q .
In fact, the area formula holds under these assumptions [21], [29]. The subtle
question comes up when one deals with the case P < Q . A consequence of Sard’s
classical theorem is that for almost every element of the target, the intersection of
its counterimage with the singular set of the map is empty. A weaker version of
this statement adapted for Lipschitz maps is as follows.

Theorem 2.7 (Sard-type theorem). Let f : A→M be a Lipschitz map, with
A ⊂ G . Define the set of singular points S0 = {x ∈ A | dxf is not surjective} .
Then, for H P -a.e. ξ ∈M it follows H Q−P (S0 ∩ f−1(ξ)

)
= 0 .

The proof follows immediately from the coarea inequality. As a result, in
almost every fiber the set of non-singular points has full measure.

Let us notice that for a regular value t ∈ R of a countinuously differentiable
function f : G → R the set S0 ∩ f−1(t) may be not empty. In this case singular
points coincide with characteristic points of the level set. By the fact that real
valued continuously differentiable maps on G are Lipschitz with respect to the
homogeneous distance, we can apply our weak version of Sard’s theorem, obtaining
that in a.e. fiber the set of characteristic points is negligible for the Q−1 Hausdorff
measure. This observation fits a recent general result due to Balogh [5], where it
is proved that any C1 hypersurface in the Heisenberg group has a negligible set
of characteristic points with respect to the Q− 1 Hausdorff measure.
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Our coarea inequality can also be used to get information about the existence
of trivial coarea formulae between stratified groups. In fact, it may happen that
for two particular stratified groups, all G -linear maps L: G →M , with Q ≥ P ,
are not surjective. Hence the coarea factor of the differential is always vanishing.
In this case, by (1) we have

∫

M

ΦQ−P
(
A ∩ f−1(ξ)

)
dΦP (ξ) = 0,

so the coarea formula becomes trivial. This trivialization happens considering
coarea formulae between different Heisenberg groups, as the following theorem
shows.

Theorem 2.8. Let L: Hn → Hm be a G -linear map, with n > m . Then L
is singular, i.e. it is not surjective.

Proof. We use complex notation to represent the Heisenberg group, writing
(z, s), (w, s) ∈ Cn ×R as elements of Hn . The groups law reads as follows

(z, s) · (w, t) = (z + w, s+ t+ 2 Im
(
z · w)

)
.

By the homogeneity of L we have L(z, s) = (Az, αs) , where A: Cn → Cm is a
real linear map and α ∈ R . The homomorphism property implies that

L(z, s) · L(w, t) = L
(
z + w, s+ t+ 2 Im(z · w)

)
,

in particular
α Im(z · w) = Im(Az ·Aw )

for any z, w ∈ Cn . Taking an element u in the kernel of A , for z = u and w = iu
we get α = 0, then L is not surjective.

In view of Theorem 2.8 we infer that there cannot exist nontrivial coarea
formulae between different Heisenberg groups.

3. Perimeter measure and coarea formula on Hn

Our objective in this section is the proof of the coarea formula for Lipschitz
maps in the Heisenberg group, where we replace the perimeter measure of the level
sets with the spherical Q−1 Hausdorff measure. But not all homogeneous metrics
can be chosen to build the spherical Q − 1 Hausdorff measure and fit the coarea
formula. In fact, we have found a particular class of homogeneous metrics which
can be used for our aim. These metrics possess an invariant property with respect
to “horizontal isometries” (Definition 3.5). Now, we recall briefly that Hn is a
stratified group endowed with a structure of 2n+ 1-dimensional real vector space.
Identifying the Lie algebra with the group we have the stratification Hn = V1⊕V2 ,
where the horizontal space V1 is generated by the vector fields

Xj =
∂

∂ξj
+ 2ξn+j

∂

∂ξ2n+1
, Yj =

∂

∂ξn+j
− 2ξj

∂

∂ξ2n+1
, j = 1, . . . n,
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and V2 is spanned by the vertical direction Z = ∂/∂ξ2n+1 = − 1
4 [Xj , Yj ] . In this

case an easy computation shows that the Hausdorff dimension of Hn is Q = 2n+2,
see for instance [6], [17]. We recall the notion of function of bounded variation in
this context, see [7], [13], [15], [16].

Definition 3.1. Let Ω ⊂ Hn be an open set and let f : Ω → R be a
summable function. We say that f is a function of H-bounded variation in Ω if

|∇Hf |(Ω) := sup

{∫

Ω

f divHϕdL
2n+1

∣∣∣ ϕ ∈ C1
0 (Ω)2n, sup

Ω
|ϕ| ≤ 1

}
<∞,

where divHϕ =
∑n
j=1Xjϕj + Yjϕn+j . The set of all functions of H -bounded

variation in Ω will be denoted by BVH(Ω). We denote by BVH,loc(Hn) the set
of locally summable functions which have H -bounded variation when restricted
to any relatively compact open set contained in Ω.

By the Riesz representation theorem there exists a vector valued Radon mea-
sure ∇Hf on Ω such that

(17)

∫

Ω

f divHϕdL
2n+1 = −

∫

Ω

〈ϕ, d∇Hf〉

for any ϕ ∈ C1
0 (Ω)2n . The symbol |∇Hf | denotes the total variation of the

measure ∇Hf . If 1E ∈ BVH,loc(Hn) we say that E is a set of H -finite perimeter
and denote with |∂E|H the corresponding variation measure |∇H1E | , namely
the H -perimeter measure. Moreover we can express the vector variation of E as
∇H1E = νE|∇H1E | , where νE is a |∂E|H -measurable function with unit modulus
at |∂E|H -a.e. point, namely the generalized inward normal of E . Next, we state
the BV-coarea formula (see [13], [16]).

Theorem 3.2. For each g ∈ BVH,loc(Hn) and every bounded open set
U ⊂ Hn we have

(18) |∇Hg|(U) =

∫

R

|∂Et|H(U) dt,

where Et = {y ∈ Hn | g(x) > t} .

An immediate consequence is that for a.e. t ∈ R the set Et has H -finite
perimeter in U . By Theorem 1.8 one verifies that all Lipschitz functions have
distributional derivatives which coincide almost everywhere with the differential.
Furthermore we have

(19) |DHf |L 2n+1 = |∇Hf |,

where |DHf | =
(∑n

i=1(Xig)2 + (Yig)2
)1/2

is the modulus of the differential.
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Now we introduce the H -reduced boundary, denoted by ∂∗HE . This is defined
as the set of points x ∈ Hn such that there exists

(20) lim
r→0

∫
Ux,r

νE d|∂E|H
|∂E|H(Ux,r)

= νE(x) and |νE(x)| = 1.

By a recent result in [1] we can say that the H -reduced boundary ∂∗HE is defined
independently of the homogeneous metric up to |∂E|H -negligible sets and

(21) |∂E|H(Hn \ ∂∗HE) = 0.

In fact, all the homogeneous metrics are bi-Lipschitz equivalent and the asymptot-
ically doubling property of the perimeter measure stated in Corollary 4.5 of [1] is
bi-Lipschitz invariant. So, if d′ is a homogeneous metric in Hn , by Theorem 2.8.17
of [11], the measure |∂E|H and the family of closed balls form a Vitali relation
(in the terminology of [11]). It follows that condition (20), in the metric d′ , holds
for |∂E|H -a.e. point of Hn . The crucial fact we use is a particular consequence
of the blow-up Theorem 4.1 in [15]. We state this theorem as follows.

Theorem 3.3. Given a set E of H -finite perimeter and x ∈ ∂∗HE , then

νEx,r |∂Ex,r|H: ⇀ νE(x)H 2n
| · | xΠx as r → 0.

The rescaled set Ex,r is defined as Ex,r = δ1/r(x
−1E) , where Πx is a vertical

hyperplane in Hn of the form Πx =
{

exp
(∑n

i=1 ξiXi + ξn+iYi + ξ2n+1Z
)
∈ Hn |

〈ξ, αx〉 = 0
}

and αx ∈ R2n+1 \ {0} , (αx)2n+1 = 0.

Theorem 3.4. Let d′ be a homogeneous metric in Hn and assume that E
is a set of H -finite perimeter. Then for |∂E|H -a.e. x ∈ Hn we have

(22) lim
r→0

|∂E|H(Ux,r)

rQ−1
= H 2n

| · | (U1 ∩Πx),

where the open balls Ux,r are defined with respect to the metric d′ .

Proof. By equation (21) it is enough to prove that the limit (22) holds
for each point x ∈ ∂∗HE . The measure H 2n

| · | xΠx is finite on compact sets, so

H 2n
| · | xΠx(∂Ut) = 0 for a.e. t > 0. We fix some t > 0 with H 2n

| · | xΠx(∂Ut) = 0, so
by Theorem 3.3 it follows that

∫

Ut

νEx,r d|∂Ex,r|H → νE(x)H 2n
| · | (Ut ∩Πx) as r → 0.

By a direct calculation, using formula (17) and the homogeneous property of d′ ,
that is Utr = δrUt , we obtain

∫

Ut

νEx,r d|∂Ex,r|H =
1

rQ−1

∫

Ux,tr

νE d|∂E|H.



On a general coarea inequality and applications 135

Finally, using the definition of H -reduced boundary we get

lim
r→0

|∂E|H(Ux,tr)

(tr)Q−1
=

1

tQ−1
lim
r→0

1

rQ−1

∣∣∣∣
∫

Ux,tr

νE d|∂E|H
∣∣∣∣

=
H 2n
| · | (Ut ∩Πx)

tQ−1
= H 2n

| · | (U1 ∩Πx).

The latter equality is due to the fact that Πx contains the vertical direction, hence
the dilations scale with a power Q− 1. This completes the proof.

Next we prove that the limit (22) is independent of x for a class of homoge-
neous metrics. In the following definition we use the complex representation for
elements of Hn as (z, s) ∈ Cn ×R .

Definition 3.5. We say that T : Hn → Hn is a horizontal isometry if there
exists a unitary operator U : Cn → Cn such that for any (z, s) ∈ Hn we have
T (z, s) =

(
U(z), s

)
. We define R as the set of all horizontal isometries.

Remark 3.6. Let us observe that any horizontal isometry is a G -linear map,
i.e. it is a group homomorphism and it commutes with dilations. Furthermore,
since any horizontal isometry is in particular an isometry of R2n+1 with respect
to the Euclidean norm, the Hausdorff measures H a

| · | on Hn , a ≥ 0, are preserved.

Definition 3.7. A homogeneous metric d on Hn is called R -invariant if
T (U1) = U1 for every T ∈ R , where U1 is the unit open ball in the metric d .

Lemma 3.8. Given an R -invariant metric d on Hn , there exists Υd > 0
such that

(23) Υd = H 2n
| · | (U1 ∩Πα),

for any Πα =
{

exp
(∑n

i=1 ξiXi + ξn+iYi + ξ2n+1Z
)
∈ Hn | 〈ξ, α〉 = 0

}
with

α ∈ R2n+1 \ {0} and α2n+1 = 0 .

Proof. Observing that Πα is independent of the length of α , it is enough to
observe that for any α, β ∈ R2n+1 \ {0} , with |α| = |β| = 1, α2n+1 = β2n+1 = 0,
there exists a horizontal isometry T : Hn → Hn such that T (Πα) = Πβ . Thus, by
the R -invariance, we have

H 2n(U1 ∩Πβ) = H 2n
(
T (U1 ∩Πα)

)
= H 2n(U1 ∩Πα).

Theorem 3.9. Let E be a set of H -finite perimeter and let d be an R -
invariant metric on Hn . Thus, we have

(24) |∂E|H = γQS Q−1x∂∗HE,

where S Q−1 is the spherical Hausdorff measure in the metric d and γQ =
Υd/ωQ−1 .
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Proof. From Theorem 3.4 and Lemma 3.8, observing that all the blow-up
hyperplanes Πx are of the form supposed in Lemma 3.8, we have the limit

lim
r→0

|∂E|H(Ux,r)

rQ−1
= Υd,

for |∂E|H -a.e. x ∈ Hn . Note that any homogeneous metric on stratified groups
has the property diam(Br) = 2r , r > 0; it is enough to consider a point x ∈
exp(V1) , observing that δ2x = exp(2 lnx) and using the homogeneity of dilations.
Thus, we can apply Theorems 2.10.17(2) and 2.10.18(1) of [11] to the measure
|∂E|H restricted to ∂∗HE and use equation (21); so the proof is complete.

Remark 3.10. The left-hand side of formula (24) is independent of the
metric, so it is clear that the constant γQ takes into account the change due to
the distance.

The following theorem is the main result of this section.

Theorem 3.11 (Coarea formula). Let f : Hn → R be a locally Lipschitz
map and let A ⊂ Hn be a measurable set. Then we have

(25)

∫

A

|DHf | dL 2n+1 = γQ

∫

R

S Q−1
(
f−1(t) ∩A

)
dt,

where S Q−1 is the spherical Hausdorff measure with respect to any R -invariant
distance and γQ = Υd/ωQ−1 (the number Υd is as in Theorem 3.9).

Proof. We compute the coarea factor for a G -linear map and apply the coarea
inequality. Consider a non-singular G -linear map L: Hn → R . It is not difficult
to see that L(ξ) =

∑n
i=1 ξiα1i + ξn+iα2i , where ξ = (ξi)i=1,...,2n+1 . Now define

α = (α1, α2) ∈ R2n and notice that for any t ∈ R

(26) |∂Et|H = |α|H 2n
| · | x∂Et,

with Et = {x ∈ Hn | L(x) > t} and DHL = α 6= 0. This is clear because the
level sets of L are just vertical hyperplanes, hence in particular they are C∞ and
without characteristic points, so the perimeter measure can be computed explicitly
(see for instance [7] or [15]). By equations (24) and (26) we get

|α|H 2n
| · | (∂Et \ ∂∗HEt) = |∂Et|H(∂Et \ ∂∗HEt) = 0.

The inequality S Q−1 ≤ CH 2n proved in [26] gives S Q−1(∂Et \ ∂∗HEt) = 0,
then

(27) |∂Et|H = γQS Q−1xL−1(t).

We restrict L to the bounded open set U and apply formulas (18), (19) and (27)
getting

(28)

∫

U

|DHL| dL 2n+1 = γQ

∫

R

S Q−1
(
L−1(t) ∩ U

)
dt.



On a general coarea inequality and applications 137

Now we choose D = B1 in Definition 1.9 and βQ−1 = γQ (see Definition 1.3),
then ΦQ−1 = γQS Q−1 . The same procedure is possible to get ΦQ = L 2n+1 and
Φ1 = L 1 . Thus, by formula (28) and Definition 1.11 we find C1(L) = |DHL| , so
the coarea inequality (1) gives

(29) γQ

∫

R

S Q−1
(
f−1(t) ∩A

)
dt ≤

∫

A

|DHf | dL 2n+1,

for any measurable set A ⊂ Hn . Using formulas (18), (19) and (24) and observing
that ∂∗HEt ⊂ ∂Et we get the opposite inequality for bounded open sets U ⊂ Hn

(30)

∫

U

|DHf | dL 2n+1 = γQ

∫

R

S Q−1(∂∗HEt ∩ U) dt

≤ γQ
∫

R

S Q−1(f−1(t) ∩A) dt,

where Et = {y ∈ Hn | f(y) > t} . As a result, inequalities (29) and (30) imply
the coarea formula on open bounded sets of Hn . Therefore, by Borel regularity
of the spherical Hausdorff measure we finish the proof.

Corollary 3.12. In the above assumptions, given a summable map u: Hn →
R it follows that

(31)

∫

A

u|DHf | dL 2n+1 = γQ

∫

R

(∫

f−1(t)∩A
u dS Q−1

)
dt.

Proof. The proof follows by standard approximation arguments, taking in-
creasing sequences of characteristic functions and applying the Beppo–Levi-mono-
tone covergence theorem.

Remark 3.13. The homogeneous metric used in [15] is defined as

d
(
(z, s), (z′, s′)

)
= S

(
(z, s)−1 · (z′, s′)

)
,

where S
(
(z, s)

)
= max{|z|, |s|1/2} . By the homomorphism property of horizontal

isometries it follows that this distance is R -invariant. The R -invariance of this
distance and Theorem 3.9 give the representation of the perimeter measure proved
in [15]. In general, for an arbitrary homogeneous distance we have

|∂E|H = θS Q−1x∂∗E,

where θ(x) = H 2n
| · | (U1 ∩ Πx)/ωQ−1 and Πx is the blow-up plane at the point x .

Hence, it is clear that θ(x) may be not constant if the distance is not R -invariant.

In the Euclidean coarea formula the geodesic distance (Euclidean norm) is
involved, so the natural question is whether the geodesic distance in Hn (namely
the length metric) enjoys the R -invariance, which allows us to get formula (25).
We adopt the general definition of the Carnot–Carathéodory distance applied to
Hn , [12], [24].
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Definition 3.14. We say that an absolutely continuous curve γ: [0, t]→ Hn

is horizontal if for almost every τ ∈ [0, t] and every ξ ∈ R2n+1 we have

(32) 〈γ′(τ), ξ〉2 ≤
n∑

j=1

〈
Xj

(
γ(τ)

)
, ξ
〉2

+
〈
Yj
(
γ(τ)

)
, ξ
〉2
.

For each x, y ∈ Hn we denote by Cx,y the set of all horizontal curves joining x
to y .

From the definition of horizontal curve it follows that γ′(τ) is a linear com-
bination of vectors Xj

(
γ(τ)

)
, Yj

(
γ(τ)

)
and its norm is bounded by the norm of

the vector
(
Xj

(
γ(τ)

)
, Yj
(
γ(τ)

))
j=1,...n

. Chow’s theorem implies that the set Cx,y
is not empty for all x, y ∈ Hn (see for instance [17]), hence we can define the
following distance

dC(x, y) = inf
{
t | γ : [0, t]→ Hn, γ ∈ Cx,y

}
.

The metric dC is called the Carnot–Carathéodory distance. Some remarks on this
definition are in order. From a standard argument using Arzelá–Ascoli’s theorem
it follows that for each couple of points x, y ∈ Hn there exists a curve which
connects them and whose length is equal to dC(x, y) ; hence dC is a length metric.
Furthermore, dC is a homogeneous distance on Hn .

Proposition 3.15. All the horizontal isometries are indeed isometries with
respect to the Carnot–Carathéodory metric. In particular, the Carnot–Carathéo-
dory metric is R -invariant.

Proof. We have to prove that given T ∈ R , for any x, y ∈ Hn it follows that
dC(x, y) = dC(Tx, Ty) . We consider γ: [0, t] → Hn , with γ ∈ Cx,y . The map
lz: Hn → Hn denotes the left translation correspondent to an element z ∈ Hn .
At a differentiability point τ , by the left invariance of the vector fields Xj , Yj ,
inequality (32) becomes

〈
dlγ(τ)c

′(τ), ξ
〉2 ≤

n∑

i=1

〈
dlγ(τ)Xj(0), ξ

〉2
+
〈
dlγ(τ)Yj(0), ξ

〉2
, ξ ∈ R2n+1,

where γ(s) = lγ(τ) exp c(s) for any s ∈ [0, t] , c(τ) = 0. Then we have

〈
c′(τ), ξ

〉2 ≤
n∑

i=1

〈
Xj(0), ξ

〉2
+
〈
Yj(0), ξ

〉2
= |ξ′|2, ξ ∈ R2n+1,

where ξ′ = (ξi)i=1,...,2n . Now we consider the composition Γ = T ◦γ . By Defini-
tion 3.5 the map T restricted to R2n is in particular a real isometry, hence we
have

|ξ′|2 = |T (ξ′)|2 =
n∑

i=1

〈
Xj(0), T (ξ)

〉2
+
〈
Yj(0), T (ξ)

〉2
,



On a general coarea inequality and applications 139

then 〈c′(τ), ξ〉2 ≤ |T (ξ′)|2 for any ξ ∈ R2n+1 . It follows that

〈
Tc′(τ), ξ

〉2 ≤ |ξ′|2 =
n∑

i=1

〈
Xj(0), ξ

〉2
+
〈
Yj(0), ξ

〉2
, ξ ∈ R2n+1,

then

〈
dlΓ(τ)Tc

′(τ), ξ
〉2 ≤

n∑

i=1

〈
dlΓ(τ)Xj(0), ξ

〉2
+
〈
dlΓ(τ)Yj(0), ξ

〉2
, ξ ∈ R2n+1.

Now, the homomorphism property of T permits writing Γ(s) = lΓ(τ)T exp c(s) for
any s ∈ [0, t] ; thus Γ′(τ) = dlΓ(τ)Tc

′(τ) . Hence, the left invariance of Xj , Yj
implies

〈
Γ′(τ), ξ

〉
≤

n∑

i=1

〈
Xj

(
Γ(τ)

)
, ξ
〉2

+
〈
Yj
(
Γ(τ)

)
, ξ
〉2
, ξ ∈ R2n+1.

The last inequality holds at any differentiability point τ ; thus we have proved that
T ◦γ ∈ CT (x),T (y) . The converse is similar, taking T (x) , T (y) and using T−1 ∈ R ,
completing the proof.

In view of the last proposition and Theorem 3.11 we obtain the coarea formula
(25) with respect to the length metric dC .
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Basel, 1996.

[18] Heinonen, J.: Calculus on Carnot groups. - Ber. Univ. Jyväskylä Math. Inst. 68, 1995,
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