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Abstract

We show that the metric version of Pansu's di�erentiability result for Lipschitz

maps fails - this illustrates an interesting di�erence between Euclidean domains

and domains that are nonabelian strati�ed groups.
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Introduction

Di�erentiability of Lipschitz maps is a basic tool to tackle several questions in Geo-
metric Measure Theory. In fact, Lipschitz maps allow a natural generalization of the
notion of surface in a general metric space, considering subsets of the space which
are parameterized by Lipschitz maps de�ned on some Euclidean space. These subsets
are called recti�able. When the target is another Euclidean space, by Rademacher's
di�erentiability theorem, many of the classical properties of smooth surfaces can be
extended to recti�able sets (see [4] or [14] for a complete presentation of the subject).
Recently, some properties of recti�able sets as the existence a.e. of tangent spaces, the
regularity of their Hausdor� measure, area and coarea formulae have been extended to
general metric spaces, see [1], [9] and [10]. The key idea is to replace the notion of dif-
ferentiability with a weaker one, namely metric di�erentiability, and to prove that any
metric valued Lipschitz map de�ned on an Euclidean space is metrically di�erentiable.

On the other hand, in [15] Rademacher's theorem was generalized from the Eu-
clidean to the setting of nonabelian strati�ed groups. This boosted the development
of geometric measure theory methods in such groups, we quote for instance [2], [6],
[7], [11], [12], [13], [16], [17], [18].

In [16] a further extension of the metric di�erentiability into this nonabelian frame-
work is achieved and used as the main tool to obtain the nonexistence of quasi-isometric
embeddings of nonabelian strati�ed group into Alexandrov metric spaces with non-
negative or nonpositive curvature in the sense of Topanogov. More precisely, in [16]
a partial metric di�erentiability of Lipschitz maps along the so-called horizontal di-

rections of the group is proved, leaving open the question of the complete metric
di�erentiability, as posed in same paper in Remark 3.

The question whether the full metric version of Pansu's extension of Rademacher's
theorem is valid arises also in another connection. In [3], Section 11.4, G.David and
S.Semmes note that metric di�erentiabilty is the perhaps most powerful tool to �nd
bi-Lipschitz pieces of mappings and to decide which metric spaces look down on others.
In [8], Question 22, J.Heinonen and S.Semmes asked in particular whether the three-
dimensional Heisenberg group looks down on all other spaces. Of course, this would
be an easy consequence of the metric di�erentiability.

In this note we present however a counterexample showing that the metric di�eren-
tiability of Lipschitz maps may fail when the domain of the map is a nonabelian
strati�ed group, instead of an Euclidean space.

Acknowledgements. The second author is grateful to Bruce Kleiner for a stimulating
conversation on the metric di�erentiability problem and also thanks the Max Plank
Institute in Leipzig for the kind hospitality during this joint collaboration.
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1 Some basic de�nitions

In this brief section we recall the main notions we are going to use. A strati�ed group

is a graded, nilpotent, simply connected Lie group G, such that there exists a subspace
of left invariant vector �elds which generate all of the Lie algebra G with respect to the
Lie product of vector �elds. We have a grading G = V1

L � � �LVn and a one-parameter
group of dilations, setting �r : G �! G,

�r

� nX
i=1

vi

�
=

nX
i=1

ri vi ; r > 0 ;

where vi 2 Vi, for i = 1; : : : ; n. The integer n is called the degree of nilpotency of
the group (see [5] for more information on strati�ed groups). These types of groups
can be endowed with a natural left invariant distance d : G�G �! [0;+1[ which is
homogeneous with respect to the group of self-similarities, that is

d(�rx; �ry) = r d(x; y) ;

for any r > 0, x; y 2 G. Note that we have identi�ed the group with its Lie algebra,
using the fact that G is simply connected, hence there exists a di�eomorphism between
G and G.

Now we introduce the de�nition of metric di�erentiability generalized to strati�ed
groups.

De�nition 1.1 We say that a map � : G �! [0;+1[ is a homogeneous seminorm if
for each x; y 2 G and r > 0 we have

1. �(�rx) = r �(x) ;

2. �(xy) � �(x) + �(y) :

De�nition 1.2 Let (Y; �) and (G;d) be a metric space and a strati�ed group, respec-
tively. We say that a map f : A �! Y , where A is an open subset of G, is metrically

di�erentiable at x 2 A, if there exists a homogeneous seminorm �x such that

� (f(x�tv); f(x))

t
�! �x(v) as t! 0+ ;

uniformly in v which varies in a compact neighbourhood of the unit element.

Remark 1.3 We point out that if G = Rn, then any Lipschitz map is metrically
di�erentiable a.e. as it is proved in [1], [9] and [10]. Furthermore, in [16] it is shown
that bi-Lipschitz maps are a.e. metric di�erentiable on strati�ed groups if one allows
the direction v to vary only on the elements of V1, namely the horizontal directions.
The latter result of course directly applies also to Lipschitz maps, as they can be easily
turned into bi-Lipschitz ones by adding a suitable (pushforward of the domain's) metric
to the one given on the image of the function. So, it is clear that we will consider
nonhorizontal direction in order to show that the metric di�erentiability does not hold
in general.
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We choose as a strati�ed group to build our counterexample the 3-dimensional Heisen-
berg group H, which can be linearly identi�ed with R3. We denote the elements
�; � 2 H as � = (z; t), � = (w; �), where z = (z1; z2), w = (w1; w2) belong to R2. As
usual, on H we have the nonabelian group operation

(z; t)(w; �) = (z + w; t+ � + 2(z1w2 � z2w1)) :

In this case the nonhorizontal directions are of the type (0; 0; s), with s 6= 0. We
consider G : H �! R, de�ned as G(z; t) = jzj _

p
jtj, where the symbol _ denotes

the \maximum" operation. It is known that d(�; �) = G(��1�), for �; � 2 H, yields
a left invariant distance on the Heisenberg group, see for instance [6]. The dilations
�r : H �! H are de�ned as �r ((z; t)) = (rz; r2t). It is clear that these dilations scale
homogeneously with the distance d.

2 The counterexample

In this section we build a new metric � on H such that the identity map I : H �! H

is a Lipschitz function with respect to the homogeneous distance d on the domain
and the metric � on the codomain, more precisely a 1-Lipschitz function. We will
show that with this distance the metric di�erentiability fails. We have seen that a
homogeneous distance in the Heisenberg group can be de�ned as d(�; �) = G(��1�),
where G(z; t) = jzj _

p
jtj. We obtain our counterexample replacing the square root

function in the de�nition of G with a concave map g : [0;+1[�! [0;+1[ such that
the function S : H �! R, S(z; t) = jzj _ g(jtj) satis�es the following three claims:

1. the function S : H �! R yields a left invariant metric on H which is de�ned as
�(�; �) = S(��1�), �; � 2 H.

2. the map I : (H;d) �! (H; �) is 1-Lipschitz,

3. if we consider the nonhorizontal direction v = (0; 0; 1) 2 H, then for any � 2 H
there does not exist the limit of

�(I(��tv); I(�))

t
=

�(�tv; 0)

t
as t! 0+ ;

in fact, we reach the maximal possible oscillation of the quotient

lim sup
t!0+

�(I(��tv); I(�))

t
= 1 ; lim inf

t!0+

�(I(��tv); I(�))

t
= 0 :

Claim 3 says in particular that the 1-Lipschitz map I : (H; d) �! (H; �) is not me-
trically di�erentiable at any point of H. The following two theorems will prove the
existence of a map g : [0;+1[�! [0;+1[ such that our claims are satis�ed and in
this way establish the counterexample.

Theorem 2.1 Let � : [0;+1[�! [0;+1[ be a convex, strictly increasing function,

which is continuous at the origin and satis�es �(0) = 0. Then, de�ning h(t) = �(t)+t2,
the concave map g = h�1 yields a function S(z; t) = jzj _ g(jtj) which satis�es claims

1 and 2.
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Proof. The convexity and the continuity at the origin of � imply �(t)+�(s) � �(t+s)
for any t; s � 0, hence

h(t+ s) � h(t) + h(s) + 2ts for t; s � 0 : (1)

The function h(t) = �(t) + t2 is strictly monotone, thus g = h�1 is well de�ned and
S(z; t) = jzj _ g(jtj) also. The triangle inequality for the function �(�; �) = S(��1�) is
equivalent to S(��) � S(�)+S(�), for every �; � 2 H. We denote � = (z; t), � = (w; �),
where z = (z1; z2) and w = (w1; w2), then

S(��) = jz + wj _ g(jt+ � + 2(z1w2 � z2w1)j) :

If jz + wj � g(jt+ � + 2(z1w2 � z2w1)j), then we clearly have

S(��) = jz + wj � jzj+ jwj � S(�) + S(�) :

So, our inequality holds if we prove that

g(jt+ � + 2(z1w2 � z2w1)j) � S(�) + S(�) : (2)

We have

jt+ � + 2(z1w2 � z2w1)j � jtj+ j� j+ 2j(z1; z2) � (w2;�w1)j � jtj+ j� j+ 2jzjjwj

and jtj = h(g(jtj)) � h(S(�)), j� j = h(g(j� j)) � h(S(�)), hence

jt+ � + 2(z1w2 � z2w1)j � h(S(�)) + h(S(�)) + 2S(�)S(�) :

The latter inequality and property (1) give jt+ � +2(z1w2� z2w1)j � h(S(�) + S(�)),
which corresponds to g(jt + � + 2(z1w2 � z2w1)j) � S(�) + S(�). It remains to prove
I : (H; d) �! (H; �) is 1-Lipschitz. This fact is equivalent to show that S � G which
is true if g(jtj) � pt, that is jtj � h(

p
jtj) = �(

p
t) + jtj. So the proof is complete. 2

Now, among all the maps � which enjoy the properties assumed in the preceding
lemma, we want to �nd a particular one which produces the oscillation required in
Claim 3. We notice that if v = (0; 0; 1) 2 H, then �(I(��tv); I(�)) = �(�tv; 0) = g(t2),
so Claim 3 is equivalent to require the following

lim sup
t!0+

g(t2)

t
= 1 ; lim inf

t!0+

g(t2)

t
= 0 ; (3)

where g = h�1 and h(t) = �(t) + t2.

Theorem 2.2 There exists a strictly increasing convex map � : [0;+1[�! [0;+1[,
continuous at the origin, with �(0) = 0, such that, de�ning g = h�1, with h(t) =
�(t) + t2, t � 0, the upper and lower limits as given in (3) hold.
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Proof. It is easy to see that the requirement (3) for g is equivalent to the condition

lim sup
t!0+

�(t)

t2
= +1 and lim inf

t!0+

�(t)

t2
= 0 ; (4)

on the corresponding function �. To �nd such a �, we use the following simple obser-
vation. If we are given an a�ne, increasing function � that vanishes at some positive
number t0 very close to zero, then the quotient �(t)=t2 oscillates a lot. Indeed, if t
declines from 1 towards t0 then the quotient �rst gets very large and then approaches
zero. Stopping shortly before t0, we can connect � to another a�ne function with
smaller but still positive slope that vanishes much closer to zero. Thus, the quotient
considered oscillates along the new function even more and the combined function is
convex.

To make this argument precise, we �x two positive sequences ("l) �]0; 1[, (ml) �
]0;+1[, with "l ! 0 and ml ! +1 as l ! 1. We consider an arbitrary number
b0 > 0 and choose t0; a0 > 0 such that t0"0 < b0, a0 < "0t

2
0. Then, we de�ne �0(t) =

a0+ b0(t� t0), observing that �0(t0)=t
2
0 < "0. We consider �1 = a0=t0 < t0"0 < b0 and

�x �1 2]0; t0[ such that �1=�1 > m1. We observe that

lim
b!�+

1

b

�1
+

(�1 � b)t0
�21

=
�1
�1

> m1 ; lim
b!�+

1

t0(b� �1)

b2
= 0

hence we can choose b1 2]�1; b0[ such that

b1
�1

+
(�1 � b1)t0

�21
> m1 and

t0(b1 � �1)

b21
<

1

2
: (5)

Now, we de�ne �1(t) = t0(�1 � b1) + b1t, so by the �rst inequality (5) we have
�1(�1)=�

2
1 > m1 and �1(t0) = �1t0 = a0 = �0(t0). We note that �1(t) = 0 if and only

if t = t0(b1 � �1)=b1 > 0. By the second inequality of (4) we get t < b1=2 and since
�1(�1) > 0 we infer that t < �1. Thus, we can choose t1 2]t;min(�1; b1=2)[ such that
�1(t1) < "1t

2
1 and t1"1 < b1. De�ning a1 = �1(t1), we see that �1(t) = a1 + b1(t� t1)

and we have shown that for every b0; a0; t0;m1 > 0, with a0=t0 < b0, for each "1 > 0
and m1 2 R there exist t1 < �1 in ]0; t0[ and a1 > 0, b1 2]0; b0[ such that

�
�1(t0) = �0(t0) ; �1(�1)=�

2
1 > m1 ;

�1(t1)=t
2
1 < "1 ; �1(t1)=t1 < b1 < b0 ; t1 < b1=2 :

This procedure can be iterated by induction, obtaining for each j � 1 that there exists
�j ; tj > 0, �j 2]tj ; tj�1[, and aj ; bj > 0 such that the map �j(t) = aj+bj(t�tj) satis�es

�
�j(tj�1) = �j�1(tj�1) bj < bj�1
�j(�j)=�

2
j > mj �j(tj)=t

2
j < "j ; tj < 2�jbj :

(6)

We de�ne

�(t) = �0(t)1[t0;+1[(t) +
1X
j=1

�j(t)1[tj ;tj�1[(t) ;
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observing that tj < bj=2
j < b0=2

j ! 0 as j ! 1, so by conditions (6) � is a strictly
increasing convex map de�ned on ]0;+1[. The convexity follows from the continuity
and from the fact that the sequence of slopes (bj) decreases as the intervals get close
to the origin. By the construction of � we have that

lim inf
t!0+

�(t)

t2
� lim sup

j!1

�(tj)

t2j
� lim

j!1
"j = 0 ; (7)

lim sup
t!0+

�(t)

t2
� lim inf

j!1

�(�j)

�2j
� lim

j!1
mj = +1 : (8)

The sequence (�(tj)) converges to zero as j ! 1 and � is monotone, so �(t) ! 0
as t ! 0+ and � is continuous at the origin. Thus, we have proved the existence of
a strictly increasing convex map � : [0;+1[�! [0;+1[ which is continuous at the
origin with �(0) = 0 and which satis�es (7) and (8). These two conditions are of course
just (4), so our proof is �nished. 2
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