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Abstract

In the geometries of strati�ed groups, we show that H-convex functions locally

bounded from above are locally Lipschitz continuous and that the class of v-convex

functions exactly corresponds to the class of upper semicontinuous H-convex functions.

As a consequence, v-convex functions are locally Lipschitz continuous in every stra-

ti�ed group. In the class of step 2 groups we characterize locally Lipschitz H-convex

functions as measures whose distributional horizontal Hessian is positive semide�nite.

In Euclidean space the same results were obtained by Dudley and Reshetnyak. We

prove that a continuous H-convex function is a.e. twice di�erentiable whenever its

second order horizontal derivatives are Radon measures.
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1 Introduction

The notion of convexity plays an important role in several areas of Mathematics, as Cal-
culus of Variations, Di�erential Geometry, Real Analysis, Optimal Control Theory, Partial
Di�erential Equations and other more. In the setting of strati�ed groups, di�erent no-
tions of convexity have been recently proposed by Danielli, Garofalo and Nhieu, [9], and
by Lu, Manfredi and Stro�olini, [23]. A strati�ed group is a nilpotent simply connected
Lie group G with a graded Lie algebra G = V1 � � � � � V� and a natural family of dilations
�r : G �! G which are compatible with the group operation, [14]. The sub-Riemannian
geometry of a strati�ed group is determined by its �rst layer V1, which yields the so-called
\Carnot-Carath�eodory distance", [5]. Directions spanned by vector �elds of V1 are called
\horizontal directions". Their privileged role appears in the following de�nition.

A \weakly H-convex" (weakly horizontally convex) function, [9], or a \CC-convex"
(Ca�arelli-Cabr�e convex) function, [23], u : G �! R satis�es the inequality

u
�
x��(x

�1y)
� � (1� �)u(x) + �u(y) (1)

whenever x; y 2 G, 0 � � � 1 and the geometrical constraint x�1y 2 V1 � G holds,
where V1 = expV1 � G is the subset of horizontal directions, see Section 2 for precise
de�nitions. In the sequel, we will refer to functions satisfying (1) simply as \H-convex
functions". This notion amounts to require that the restriction of the function to all
\horizontal lines" t �! x�th with h 2 V1 is a one-dimensional convex function, as we
will precisely illustrate in Proposition 3.9. We note that in groups of step higher than
two, horizontal lines introduced in De�nition 3.7 are not always lines in the usual sense
with respect to graded coordinates. For instance, in Remark 3.8 we show an example of
horizontal line that is de�ned by a parabola with respect to a system of graded coordinates.
The most interesting geometric phenomenon related to H-convex functions is the validity
of the following principle: the information on the behaviour of a function on the subset
of horizontal directions satisfying the H�ormander condition yields a \global" information
on the function in terms of the Carnot-Carath�eodory distance, which is in turn generated
by curves moving along horizontal directions. The explanation of this phenomenon comes
from the well known Chow theorem, according to which the H�ormander condition on a set
of vector �elds, that is a \local" condition, implies the connectedness by horizontal curves,
that is a \global condition", see for instance [5]. In a deeper and more general form the
previous observations constitute part of the leading themes of [17].

Our �rst result in this direction is given in Theorem 3.18. Here we prove that every
H-convex function which is locally bounded from above is locally Lipschitz with respect to
the Carnot-Carath�eodory distance. Here we use in a suitable way the following \generating
property": let h1; h2; : : : ; hm be elements of V1 such that (exp

�1 h1; : : : ; exp
�1 hm) is a basis

of V1. Then every direction v 2 G in the closed unit ball can be written as the following
ordered product

v = �a1hi1�a2hi2 � � � �aNhiN ;
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where N 2 N and (i1; : : : ; iN ) 2 f1; 2; : : : ;mgN depend only on G and the vector a =
(a1; : : : ; aN ) depends on v and it varies in a compact neighbourhood of the origin in RN .
This allows us to extend the one-dimensional Lipschitz property along horizontal lines to
all the space. Note that the Lipschitz continuity result of Theorem 9.1 in [9] does not apply
directly to H-convex functions which are locally bounded from above in that one needs to
prove �rst that they are at least in L1

loc. In fact, locally summable H-convex functions are
locally Lipschitz continuous, after rede�nition on a set of measure zero, see Proposition 6.6.
Rickly has recently proved that only measurability of H-convex functions su�ces to prove
Lipschitz continuity, [31].

Another interesting approach is that of [23], according to which a \v-convex function"
(convex in the viscosity sense) is an upper semicontinuous function u : G �! R such that

r2
Hu � 0 in the viscosity sense. (2)

The symmetrized horizontal Hessian r2
Hu of a function u of class C2 is the matrix of

elements (XiXju + XjXiu)=2, for every i; j = 1; 2; : : : ;m, where (X1; X2; : : : ; Xm) is an
orthonormal basis of V1. Condition (2) means that for every x 2 
 and every ' 2 C2(G)
such that ' � u in a neighbourhood of x and u(x) = '(x), we have r2

H'(x) � 0. Here
it is rather natural wondering whether the class of v-convex functions coincides with that
of upper semicontinuous H-convex functions. The second main result of the paper gives
a positive answer to this question, see Theorem 4.5. Recently, di�erent proofs of this
result have been given in [21], [30] and [36]. As a consequence of Theorem 4.5 and of
Corollary 3.19, it follows that v-convex functions are locally Lipschitz continuous in every
strati�ed group. Let us briey describe our approach. Proposition 4.3 shows that upper
semicontinuous H-convex functions are v-convex in every strati�ed group. The di�cult part
is to prove the converse to this statement. This is the heart of the proof of Theorem 4.5.
Reasoning by contradiction, we assume that u is not H-convex, then we look for a point
� 2 G and a test function � of class C2 that touches u from above at � and that satis�es
the condition X2

1�(�) < 0. The horizontal direction X1 corresponds to that direction
where the function u fails to be one-dimensional convex. Working in graded coordinates,
see De�nition 2.2, and performing a left translation, it is not restrictive to assume that
u(0) > maxfu(�; 0; : : : ; 0); u(�; 0; : : : ; 0)g, with � < 0 < �. The general scheme of our
proof is that of [4], where remarkable modi�cations are added, due to the complexity of
strati�ed groups. Let us briey recall this scheme. We consider suitable smooth functions
 " and open neighbourhoods O" of the segment ](�; 0; : : : ; 0); (�; 0; : : : ; 0)[ such that jX2

1 "j
restricted to O" is less than or equal to a constant independent of ". The shape of O" shrinks
around the direction of x1 as "! 0+, in addition the upper semicontinuity of u allows for
proving that u < �"0 = �Cx21 +  "0 on @O"0 for suitably small positive numbers "0 and
C. The constant C can be chosen so that X2

1 (�Cx21 +  "0) < 0 on O"0 . Finally, the strict
inequality between u and �"0 on @O"0 gives a number �0 such that � = �0 + �"0 touches u
from above at some point � 2 O"0 and X

2
1�(�) < 0.

Several obstacles are hidden along this path in the case of general strati�ed groups.
First of all, the group operation is far from being manageable due to the nontrivial Baker-
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Campbell-Hausdor� formula, [19]. The �rst idea is of using a family of test functions
containing the polynomial coe�cients of the vector �eld X1 itself

 "(x) = "�2

24 mX
j=2

x2j +

qX
s=m+1

�
x2s + a1s(x)

2
�35 ; (3)

where X1 = @x1 +
Pq

s=m+1 a1s(x) @xs . After this choice, the demanding technical part is
�nding a constant C > 0 such that supO"

jX2
1 "j < C for every " > 0 suitably small. This

requires the study of the second order di�erential operator X2
1 . Here a nontrivial technical

piece appears in Lemma 4.4, where we study some partial derivatives of coe�cients of X1,
which are of crucial importance to the estimate ofX2

1 " onO". To do this, we systematically
use the relation between the homogeneous polynomials appearing in the Baker-Campbell-
Hausdor� formula and the coe�cients of X1, as we recall in formula (19). The fact that
the set O" is de�ned by

O" =
n
x 2 Rq

���� < x1 < �;  "(x) < M + 1
o

(4)

permits us to estimate all the factors "�2a1ja1s and "
�2xja1s appearing in the expression

of X2
1 ", see (50) and (51). In fact, due to (3) and (4) we clearly have

sup
x2O"

�
max

�jxj a1s(x) "�2j; ja1j(x) a1s(x) "�2j		 � (M + 1)

2
:

The constant M is the maximum of u on some �xed compact neighbourhood of the seg-
ment [(�; 0; : : : ; 0); (�; 0; : : : ; 0)]. For " suitably small the open set O" is contained in this
neighbourhood, then the de�nition of O" and a suitable rescaling of u, which preserves v-
convexity, imply that u(x) < �Cx21+ "(x) for every x 2 @O", where C only depends onM
and on the �xed rescaling of u. This conicts with v-convexity of u, proving Theorem 4.5.

The third main result of the present paper studies the relationship between H-convexity
and the horizontal Hessian. In Euclidean space Bakel'man, [3], proved that the distribu-
tional second derivatives of a convex function are signed Radon measures. Reshetnyak
established that a locally summable function is equivalent to a convex function if and only
if its distributional Hessian is positive semide�nite, [29]. The characterization of distribu-
tions with positive semide�nite Hessian as convex functions is due to Dudley, [11]. Clearly
the same question can be tackled considering H-convex functions and the distributional
horizontal Hessian D2

H , see De�nition 5.3. It has been proved in [9] and [23] that for
every locally summable H-convex function u the matrix of distributions D2

Hu is nonnega-
tive, hence it is formed by Radon measures. The natural way to obtain this result is the
approximation by convolutions

u"(x) =

Z
G

"�Q#(�1="y)u(y
�1x) dy =

Z
G

"�Q#
�
�1="(xy

�1)
�
u(y) dy;
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where # is a smooth nonnegative function with compact support which satis�es
R
G
# = 1

and Q is the Hausdor� dimension of the group. In fact, H-convexity is preserved by left
translations, then one easily checks that the H-convexity of u implies the H-convexity of u"
for every " > 0 and this fact along with L1

loc convergence of u" to u su�ces to prove that
D2
Hu � 0. However, this method fails if used to show that locally summable functions u

with D2
Hu � 0 are equivalent to locally Lipschitz H-convex functions. It su�ces to check

that the equality

XiXj

�
#
�
�1="(xy

�1)
��

= "�2(XiXj#)
�
�1="(xy

�1)
�

in general does not hold, when y is �xed and the operators Xi di�erentiate with respect to
the variable x. In fact, Xi are not right invariant di�erential operators. To overcome this
problem, one simply de�nes the di�erent convolution

u"(x) =

Z
G

"�Q#(�1="y)u(xy
�1) dy =

Z
G

"�Q#
�
�1="(y

�1x)
�
u(y) dy; (5)

that satis�es

r2
Hu"(x) =

Z
G

(r2
H#")(y

�1x) u(y) dy; (6)

where #"(y) = "�Q#(�1="y). From the assumption D2
Hu � 0, we would be tempted to infer

from (6) that r2
Hu"(x) � 0, but we are not allowed for this conclusion. In fact, to use the

hypothesis D2
Hu � 0, the horizontal Hessian r2

H inside the integral (6) must di�erentiate
with respect to the variable y. To overcome this di�culty, we seek those strati�ed groups
and those molli�cators # such that the following key property holds

(r2
H#)(y) = (r2

H#)(y
�1): (7)

In Euclidean space (7) becomes trivial for even functions, because r2
H coincides with the

usual r2. The situation changes in the case of noncommutative strati�ed groups, where
the form of r2

H depends on the algebraic structure of the group. In Theorem 5.6 we prove
(7) for all 2 step strati�ed groups. The proof of this result relies on a detailed analysis of
the operators XiXj in the case of 2 step groups. Due to (7) we have

r2
Hu"(x) =

Z
G

(r2
H#")(x

�1y) u(y) dy =

Z
G

r2
yH

�
#"(x

�1y)
�
u(y) dy; (8)

where the symbol ryH speci�es that the operator r2
H di�erentiates with respect to the

variable y. This allows us to desume that r2
Hu" � 0, then u" is H-convex. The rest of

the proof follows by standard compactness arguments and the estimates (9), which are dis-
cussed below. All these considerations can be extended without di�culty to distributions
represented by signed Radon measures, instead of locally summable functions. Then we
are arrived at our main result, stated in Theorem 5.7. Here we prove that in every step 2
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strati�ed group a distribution T represented by a signed Radon measure is de�ned by a lo-
cally Lipschitz H-convex function if and only if D2

HT � 0. This proves the sub-Riemannian
versions of Dudley's and Reshetnyak's theorems in all step 2 strati�ed groups.

The last part of the present paper concerns the a.e. existence of second derivatives of
H-convex functions. In the Euclidean setting the celebrated Aleksandrov-Busemann-Feller
theorem (shortly, ABF theorem) states that convex functions on a �nite dimensional space
are a.e. twice di�erentiable. We precisely consider the version of Theorem 1 in Section 6.4
of [12]. The problem of obtaining ABF theorem on strati�ed groups has been raised in
several recent papers [1], [4], [9], [23]. In particular, Ambrosio and the author pointed out
in [1] that the validity of the following L1-estimates

sup
y2B�;r

ju(y)j � C

Z
B�;cr

ju(y)j dy and krHukL1(B�;r) �
C

r

Z
B�;cr

ju(y)j dy (9)

for every H-convex function u, along with the second order di�erentiability in the L1 sense

lim
r!0+

1

r2

Z
Bx;r

ju(y)� P[x](y)j dy = 0 (10)

for a.e. x, where P[x] is a polynomial of homogeneous degree less than or equal to 2, would
imply the following second order pointwise di�erentiability

lim
y!x

ju(y)� P[x](y)j
�(x; y)2

= 0 (11)

for a.e. x. We give a complete proof of this fact, see Theorem 6.5. Inequalities (9) have
been established in [9], [23] and [21]. The validity of (10) for a.e. x has been proved
in [1] for the class of functions with locally H-bounded second variation, see also [25].
Guti�errez and Montanari have proved that H-convex functions have locally H-bounded
second variation, �lling the gap to obtain Aleksandrov theorem, [16]. Extension of this
result to step two Carnot groups has been established by Danielli, Garofalo, Nhieu and
Tournier, [10]. Recently, Trudinger has achieved a further improvement for free divergence
H�ormander vector �elds of step two, [33].

2 Basic materials on strati�ed groups

In this section we present essential materials needed for the paper. A strati�ed group is
a simply connected nilpotent Lie group G endowed with a graded Lie algebra G, which is
decomposed into a direct sum of subspaces Vj subject to the conditions Vj+1 = [Vj ; V1] for
every j 2 N n f0g and Vj = f0g whenever j is greater than a positive integer. We denote
by � the maximum integer such that V� 6= f0g and we call it the nilpotence degree of the
group or the step of the group. The left translation lx : G �! G is de�ned by lx(y) = xy
for every x; y 2 G. The assumption that G is simply connected and nilpotent ensures that
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the exponential map exp : G �! G is a di�eomorphism. The inverse map of exp is denoted
by ln : G �! G. The subset of horizontal directions in the group is de�ned by V1 = expV1.

The underlying metric of the group is a left invariant Riemannian metric g such that
the subspaces Vj are orthogonal each other. We will always refer to these metrics, called
graded metrics. The Riemannian volume measure on G with respect to a graded metric
will be denoted by vg. We also write jAj = vg(A) for every measurable subset A � G. It
is clear that vg is left invariant, hence it is the Haar measure of the group. For ease of
notation, we will use the symbol dx when the integration is considered with respect to the
Riemannian volume vg. The averaged integral of a summable map u : A �! R is de�ned
as uA =

R
A u = jAj�1 RA u.

The grading of G allows us to de�ne dilations on the group as follows.

De�nition 2.1 (Dilations with sign) For every t > 0 we consider the family of maps
~�t : G �! G de�ned as ~�t(

P�
j=1 vj) =

P�
j=1 t

jvj ; where the sum
P�

j=1 vj 2 G is the
unique representation of a vector of G, provided that vj 2 Vj for every j = 1; : : : ; �. This
notion is motivated by the fact that the composition �t := exp �~�t� ln : G �! G is a group
homomorphism and satis�es the one parameter group law �r (�sy) = �rsy for every r; s > 0
and every y 2 G. If t < 0, then we de�ne �ty := �jtjy

�1 for every y 2 G. Denoting by e the
unit element of the group we also de�ne �0y := e for every y 2 G.
By virtue of the left invariance of g we can construct a natural left invariant distance on G
in such a way that it is 1-homogeneous with respect to dilations. To do this, we consider
the class of horizontal curves, e.g. absolutely continuous curves  : [a; b] �! G, such
that for a.e. t 2 [a; b] they satisfy 0(t) =

Pm
i=1 ci(t)Xi ((t)), where

Pm
i=1 c

2
i (t) � 1 and

(X1; : : : ; Xm) is an orthonormal basis of V1. The fact that the Lie algebra generated by V1
coincides with G ensures that any pair of points of G can be joined by an horizontal curve.
Hence we can de�ne the �nite number

�(x; y) := inf
n
b�a

���  : [a; b] �! G is horizontal and (a) = x, (b) = y
o

for any x; y 2 G. One can verify that d is a distance on G. This is the so-called Carnot-

Carath�eodory distance. Throughout the paper we will always refer to this distance. The
usual Euclidean norm is denoted by j � j. The distance �(y; e), where e is the unit element
of the group, is simply denoted by �(y), hence �(e) = 0. The left invariance of Carnot-
Carath�eodory distance on strati�ed groups yields the symmetry property �(y�1) = �(y).
This equality and the notion of dilation with sign give the useful formula

�(�ty) = jtj �(y) (12)

for every t 2 R and every y 2 G. The open ball of center x 2 G and radius r > 0 with
respect to the Carnot-Carath�eodory distance is denoted by Bx;r. Balls of radius r centered
at e will be denoted simply by Br. The symbols Dx;r and Dr denote closed balls with
analogous meanings. Note that we have

jBx;rj = jB1j rQ (13)
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for every x 2 G and any r > 0. One can check that the integer Q is the Hausdor� dimension
of G with respect to the Carnot-Carath�eodory distance and it is strictly greater than the
topological dimension q of the group whenever G is not Abelian. More information on
strati�ed groups can be found for instance in [14] and [32].

De�nition 2.2 (Graded coordinates) We de�ne ni = dimVi and mi =
Pi

j=1 nj for
any i = 1; : : : �. We also de�ne m0 = 0 and m1 = m. We say that a basis (X1; : : : ; Xq) of
G is an adapted basis if (Xmj�1+1; Xmj�1+2; : : : ; Xmj ) is a basis of Vj for any j = 1; : : : �.
We say that (X1; : : : ; Xq) is a graded basis if it is an adapted and orthonormal basis with
respect to a graded metric. The graded coordinates with respect to the basis (X1; : : : ; Xq)
are given by the di�eomorphism F : Rq �! G de�ned by

F (x) = exp
� qX
j=1

xjXj

�
:

The degree of the coordinate xj is the unique integer dj such that Xj 2 Vdj .
We will assume throughout that (X1; : : : ; Xq) represents a graded basis of G and that
(X1 : : : ; Xm) is an orthonormal basis of the �rst layer V1. The notions of polynomials on
stratifed groups and of homogeneous degree will be important tools throughout the paper.
Here we briey recall these notions, referring to Chapter 1.C of [14]. A polynomial on G is
function P : G �! R such that P �F is a polynomial on Rq, where F is a system of graded
coordinates. For every polynomial P : G �! R we have the expression

P (x) =
X
�

c� x
�; (14)

where � 2 Nq, x� = x�11 � � �x�qq and only a �nite number of coe�cients c� 2 R do not
vanish. For every � 2 Nq we de�ne the homogeneous degree of � as follows

d(�) =

qX
k=1

dk �k

and the homogeneous degree of a polynomial P : G �! R with expression (14) by

h-deg(P ) := maxfd(�) j c� 6= 0g:

We de�ne the vector space

PH;k(G) = fP j P is a polynomial on G with h-deg(P ) � kg:

Throughout the paper the remarkable Baker-Campbell-Hausdor� formula will be needed.
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Theorem 2.3 (Baker-Campbell-Hausdor� formula) Let X;Y 2 G, where G is the

nilpotent Lie algebra of a simply connected group G of step � and de�ne

ln
�
expX expY

�
= X } Y :

Then we have

X } Y =
�X

n=1

(�1)n+1

n

X
1�j�j+j�j��

(AdX)�1(AdY )�1 � � � (AdX)�n(AdY )�n�1(Y )

�!�! j�+ �j ; (15)

where for any Z 2 G the map AdZ : G �! G is the linear operator de�ned by AdZ(W ) =
[Z;W ] and for any � 2 Nn we have assumed the convention �! =

Qn
l=1 �l and j�j =Pn

l=1 �l.

A proof of this important formula can be found for instance in [34]. In order to obtain
manageable expressions of vector �elds (X1; : : : ; Xm) with respect to graded coordinates
we will also use a less explicit form of (15). In fact, there are uniquely de�ned homogeneous
polynomials Ps : R

q � Rq �! R with h-deg(P ) = ds, such that

exp
� qX
j=1

xjXj

�
exp

� qX
j=1

yjXj

�
= exp

� qX
s=1

Ps(x; y)Xs

�
: (16)

Recall that a homogeneous polynomial P with h-deg(P ) = k satis�es the homogeneity
formula P (�rx) = rkP (x) for every r > 0 and every x 2 G. By de�nition of graded
coordinates with respect to (X1; : : : ; Xq) we have

F�1 (F (x)F (y)) =

qX
s=1

Ps(x; y) es := Q(x; y); (17)

where x; y 2 Rq and (e1; e2; : : : ; eq) is the canonical basis of R
q. The vector �eld Xj with

respect to graded coordinates is de�ned by ~Xj = F�1� Xj , where for every p 2 N the formula

f�X(p) = df(f�1(p))
�
X
�
f�1(p)

��
de�nes the image of X under f , whenever f : M �! N is a C1 di�eomorphism of di�e-
rentiable manifolds and X is a vector �eld of M . The vector �eld ~Xj is left invariant with
respect to left translations on Rq de�ned by y �! Q(x; y), then

~Xj(x) =
�
@yjQ

�
(x; 0)

and a careful calculation leads to the formula

~Xj = @xj +

qX
s=m+1

ajs(x1; x2; : : : ; xs�1) @xs (18)
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for every j = 1; : : : ;m. The functions ajs are homogeneous polynomials with degree ds�dj
and are de�ned by the formula

ajs(x) = (@yjPs)(x; 0); (19)

see p.621 of [32] for more details. Throughout the paper, we will often identify vector �elds
~Xj on R

q with vector �elds Xj on G.

De�nition 2.4 (Horizontal gradient) Let 
 be an open set of G and let � 2 
. The
horizontal gradient of u 2 C1(
) at � is the vector rHu(�) = (X1u(�); : : : ; Xmu(�)), where
(X1; X2; : : : ; Xm) is an orthonormal basis of V1.

The notion of horizontal Hessian naturally appears when one considers the Taylor expansion
with respect to the horizontal coordinates. To see this in a more rigorous form, let us
consider u : 
 �! R of class C2 and �x � 2 
. We wish to obtain the Taylor expansion of
u at � in the horizontal submanifold �V1. Let (X1; X2; : : : ; Xm) be an orthonormal basis
of V1 and consider the following function of class C2

h �! f(h) = u
�
� exp

� mX
j=1

hjXj

��
along with its Taylor expansion

f(h) = f(0) + hrf(0); hi+ 1

2
hr2f(0)h; hi+ o(jhj2) (20)

It is easy to check that rf(0) = rHu(�). Consider the canonical basis (e1; : : : ; em) of R
m

and note that

d2

dt2
f (t(ei + ej))jt=0 = (Xi +Xj)

2u(�) =
�
@xi + @xj

�2
f(0):

Then we obtain the formula

fxixj (0) =
1

2
(XiXju(�) +XjXiu(�)) : (21)

The previous relation motivates the following de�nition.

De�nition 2.5 (Horizontal Hessian) Let 
 be an open set of G and let � 2 
. Consider
u 2 C2(
) and an orthonormal basis (X1; X2; : : : ; Xm) of V1. The horizontal Hessian of u
at � is de�ned by the matrix�r2

Hu(�)
�
ij
=

1

2
(XiXju(�) +XjXiu(�)) (22)

where i; j = 1; : : : ;m.

In view of previous de�nition and the Taylor expansion (20) we get

u
�
� exp

� mX
j=1

hjXj

��
= u(�) + hrHu(�); hi+ 1

2
hr2

Hu(�)h; hi+ o(jhj2): (23)
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3 Lipschitz continuity of H-convex functions

In this section we recall the notion of H-convex function and of H-convex set, see [9], [23].
The main result is stated in Theorem 3.18, where we prove that H-convex functions locally
bounded from above are locally Lipschitz continuous.

De�nition 3.1 (H-convex set) We say that C � G is H-convex if for every x; y 2 C
such that x�1y 2 V1 we have x�t(x

�1y) 2 C for every t 2 [0; 1].

The following proposition is a straightforward consequence of De�nition 3.1

Proposition 3.2 Let C � G be H-convex. Then for every x 2 G and every r > 0 the set

x (�rC) is H-convex.

Convex sets in Euclidean space are authomatically connected. On the contrary, this is not
true for H-convex sets in strati�ed groups, as the following example shows.

Example 3.3 Consider the Heisenberg group H3 with coordinates (x; y; t) and the group
operation (x; y; t)(�; �; �) = (x+�; y+�; t+�+x��y�): Let us de�ne the closed disconneted
subset C = L [M with L = [0; 1]� f0g � f0g and M = [0; 1]� f0g � f1g. It is immediate
to check that C is H-convex, in that for every (x; y) 2 L �M we have x�1y =2 V1, due to
the expression V1 = f(x; y; 0) j x; y 2 Rg. It is also easy to see that the individual subsets
L and M are H-convex, hence C is H-convex, but it is not connected.

Throughout the section the open set 
 will be assumed to be H-convex.

De�nition 3.4 (H-convex function) We say that a function u : 
 �! R is H-convex if
for every x; y 2 
 such that x�1y 2 V1 and every 0 � � � 1 we have

u
�
x��(x

�1y)
� � (1� �)u(x) + �u(y): (24)

Example 3.5 Let H3 be the Heisenberg group and choose graded coordinates (x; y; t)
with the group operation (x; y; t)(�; �; �) = (x+ �; y+ �; t+ � +�2x�+2y�): Then the left
invariant gauge de�ned by

N(x) =
�
(x21 + x22)

2 + 16x23
�1=4

(25)

is homogeneous and it satis�es the triangle inequality with respect to the group operation.
This function is clearly not convex in the usual sense. However, it has been proved in [9]
that this function is H-convex in the more general class of H-type groups.

The H-convexity of the gauge provides us an easy way of constructing an example of H-
convex open set which is not connected.
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Example 3.6 We consider the metric balls Bx;r in H
3 de�ned using the gauge (25). Due

to Proposition 7.4 of [9] these balls are open H-convex sets. Let us de�ne zh = (0; 0; h)
with h > 0. Using the group operation (x; y; t)(�; �; �) = (x+ �; y+ �; t+ � +�2x�+2y�);
one can check that the intersections

fx�1 � zh � y j x; y 2 B"g \ V1 and B" \Bzh;"

are empty for h > 0 su�ciently large and " > 0 su�ciently small. Then the union B"[Bzh;"

is open, H-convex and not connected.

De�nition 3.7 (Horizontal line) For every x 2 
 and every h 2 V1 we say that the
function lx;h : R �! G de�ned by lx;h(t) = x�th is an horizontal line of direction h.

Remark 3.8 Note that in groups of step higher than 2 horizontal lines do not appear as
\Euclidean lines" when read through a system of graded coordinates. Let us consider the
Engel group E4 with the only nontrivial bracket relations

[X1; X2] = X3; [X1; X3] = X4 (26)

where the Lie algebra e
4 = V1�V2�V3 is formed by V1 = spanfX1; X2g, V2 = spanfX3g and

V3 = spanfX4g. Using graded coordinates (x1; x2; x3; x4), the Baker-Campbell-Hausdor�
formula (15) for 3 step groups shows that

e2 � te1 = (0; 1; 0; 0) � (t; 0; 0; 0) = (t; 1;�t=2; t2=12)

and F (e2 � te1) = (expX2)�t(expX1) where expX1 2 V1. In other words, the horizontal
line t �! (expX2)�t(expX1) 2 E4 becomes a parabola if read in graded coordinates.

Proposition 3.9 (Characterization) A function u : 
 �! R is H-convex if and only if

for every (x; h) 2 
�V1 the composition u � lx;h is convex on all disjoint open intervals of

l�1x;h(
) � R.

Proof. Assume that u is H-convex. By continuity of lx;h, the set l�1x;h(
) is a family of
disjoint intervals fJ j J 2 Ig, where I is countable or �nite. Let us choose an interval
J 2 I. We wish to prove that J 3 t �! u(lx;h(t)) is convex. We �x two points t; � 2 J .
The assumption h 2 V1 implies that

�t+�h = exp((t+ �) lnh) = exp(t lnh+ � lnh) = exp(t lnh) exp(� lnh) = �th ��h;

where we have used the trivial equality [lnh; lnh] = 0 and the Baker-Campbell-Hausdor�
formula (15). We have proved that

�t�+(1��)�h = ��+�(t��)h = ��h �� (t��)h = ��h ��
�
(��h)

�1�th
�
= ��h ��

�
lx;h(�)

�1lx;h(t)
�

12



for every � 2 [0; 1]. It follows that

lx;h(t�+ (1� �)�) = x�t�+(1��)�h = lx;h(�) ��
�
lx;h(�)

�1lx;h(t)
�
:

Clearly lx;h(�)
�1lx;h(t) 2 V1, then the de�nition of H-convexity gives us the inequality

u(lx;h(t�+ (1� �)�) � (1� �)u(lx;h(�)) + �u(lx;h(t)):

This proves the convexity of u � lx;h on J . Conversely, assume that u � lx;h is convex on all
the intervals where it is de�ned and for every choice (x; h) 2 
�V1. Choose x; y 2 
 such
that x�1y 2 V1. By H-convexity of 
, de�ning h = x�1y, we have lx;h(�) 2 
 for every
� 2 [0; 1], then it follows that u

�
x��(x

�1y)
�
= u � lx;h(�) � � u(y) + (1 � �) u(x): This

completes the proof. 2

Remark 3.10 Note that H-convexity expressed in terms of one-dimensional convexity of
restrictions to horizontal lines does not require that the open set 
 is necessarily H-convex.
In the sequel, we will refer to this notion when H-convex functions are considered on an
arbitrary open set.

Lemma 3.11 Let u : 
 �! R be an H-convex function and let L = supz2@B�;3r[@B�;R
ju(z)j

be a �nite number, where D�;R � 
 and 0 < 3r < R. Then for every x; y 2 B�;r such that

x�1y 2 V1, de�ning Mr;R = 2L=(R� 3r), we have

ju(x)� u(y)j �Mr;R �(x; y): (27)

Proof. Let us �x two arbitrary points x; y 2 B�;r such that x�1y 2 V1 n feg and de�ne
h = x�1y. Notice that h 2 B2r and that the horizontal line lx;h(t) is contained in B�;3r

for every t 2 [0; 1]. In particular we have lx;h(0) = x and lx;h(1) = y. For elementary
topological reasons the horizontal line lx;h meets the boundaries @B�;3r and @B�;R, then
there exist numbers t2 < t1 < 0 < 1 < T1 < T2 such that lx;h(t2) 2 @B�;R, lx;h(t1) 2 @B�;3r,
lx;h(T1) 2 @B�;3r and lx;h(T2) 2 @B�;R. We can �nd an open interval I � l�1x;h(
) containing
the subset fti; Ti j i = 1; 2g and by Proposition 3.9 the restriction of the function ' = u�lx;h
to I is convex. From convexity of ' we reach the inequality

j'(t)� '(t0)j
jt� t0j � max

� j'(t2)� '(t1)j
jt2 � t1j ;

j'(T2)� '(T1)j
jT2 � T1j

�
: (28)

for every t; t0 2 [t1; T1] such that t 6= t0. Now a delicate step appears: due to the condition
h 2 V1, we have the equality

�(x�th; x�t0h) = jt� t0j �(h) = jt� t0j �(x; y): (29)

In fact, if we consider h = exp v with v 2 V1, then we have �th = exp tv and

(�th)
�1�t0h = exp(�t)v exp t0v:

13



Since the vectors (�t)v and t0v are proportional, the Baker-Campbell-Hausdor� formula
becomes trivial giving, (�th)

�1�t0h = exp(t0 � t)v. The condition v 2 V1 also implies that
�(t0�t) exp v = exp(t0 � t)v, then (29) follows. Here we have used dilations with sign and
relation (12). We divide inequality (28) by �(x; y), then formula (29) yields

j'(t)� '(t0)j
� ((lx;h(t); lx;h(t0))

� max

� j'(t2)� '(t1)j
� ((lx;h(t2); lx;h(t1))

;
j'(T2)� '(T1)j

� ((lx;h(T2); lx;h(T1))

�
: (30)

Taking into account that dist(@B�;3r; @B�;R) � R� 3r > 0 and considering (30) with t = 1
and t0 = 0, it follows that

ju(y)� u(x)j
�(x; y)

� 1

R� 3r
max fju(lx;h(t2))� u(lx;h(t1))j; ju(lx;h(T2))� u(lx;h(T1))jg :

By hypothesis, the previous inequality becomes

ju(y)� u(x)j � 2L

R� 3r
�(x; y): (31)

This ends the proof. 2

In order to extend the Lipschitz property (27) to all points x; y 2 B�;r without the geometric
constraint x�1y 2 V1, the following proposition will be of crucial importance. It will be also
applied in Theorem 3.17, in order to obtain boundedness of H-convex functions bounded
from above.

Proposition 3.12 (Generating property) Let h1; h2; : : : ; hm be elements of V1 such

that lnh1; : : : ; lnhm is a basis of V1. Then there exists a positive integer N , a vector

of integers (i1; : : : ; iN ) 2 f1; 2; : : : ;mgN and an open bounded neighbourhood of the origin

O � RN such that the following set(
NY
s=1

�ashis

��� (a1; a2; : : : ; aN ) 2 O
)
; (32)

is an open neighbourhood of e 2 G, where the product of elements is understood respecting

their numbering order.

The proof of Proposition 3.12 is contained in Lemma 1.40 of [14], see also the proof of
Corollary 3.3 in [28]. Using notation of this proposition, we de�ne the map F : RN �! G,

F(a1; a2; : : : ; aN ) =
NY
s=1

�ashis : (33)

According to the previous proposition we observe that there exists r0 > 0 such that @Br0 =
F(C0), where C0 is compact set of RN which is contained in O. For every r > 0 the map
F satisifes the homogeneity property

F(ra1; : : : ; raN ) = �r

 
NY
s=1

�ashis

!
= �r (F(a1; : : : ; aN )) : (34)
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This immediately implies that F is surjective and that the compact set C1 = r�10 C0 satis�es
the condition

F(C1) = @B1: (35)

Theorem 3.13 Let u : 
 �! R be an H-convex function such that supD�;R
juj < 1,

where D�;R � 
. Then there exists c > 0 depending only on the group such that for every

0 < r < R=3c and every x; y 2 B�;r we have

ju(x)� u(y)j � sup
D�;R

juj
�

c

R� 3 c r

�
�(x; y): (36)

Proof. Let us consider F : RN �! G de�ned in (33) and let C1 � RN denote the compact
subset which satis�es condition (35). Let us de�ne the numbers

�0 = max
b2C1

jbj ; �1 =
NX
s=1

�(his) and c = 2 �0 �1 (37)

We arbitrarily choose two di�erent points x; y 2 B�;r and we de�ne the number � =
�(x; y) > 0. By (34) we can write y = xF(�b) for some b 2 C1, then condition 3 c r < R
implies that for every k = 1; 2; : : : ; N we have

x
kY

s=1

��bshis 2 B�;c r: (38)

In view of Lemma 3.11 there exists a constant Mc r;R such that for every z; w 2 B�;c r with
z�1w 2 V1 we have

ju(z)� u(w)j �Mc r;R �(z; w): (39)

We de�ne the points x0 = x and xk = x
Qk

s=1 ��bshis for every k = 1; : : : ; N , observing that
x�1k�1xk = ��bkhik 2 V1 and xN = y. Thus, from conditions (38) and (39) we conclude that

ju(xk)� u(xk�1)j � Mc r;R �(xk; xk�1) � Mc r;R jbkj �(hik) �(x; y)

for every k = 1; 2; : : : ; N . Due to (37) we arrive at the following estimate

ju(xk)� u(xk�1)j � Mc r;R �0 �(hik) �(x; y):

The expression of Mc r;R given in Lemma 3.11 and the triangle inequality yield

ju(xN )� u(x0)j = ju(y)� u(x)j � 2L�0 �1
R� 3 c r

�(x; y) =
c L

R� 3 c r
�(x; y); (40)

where L = supz2@B�;3cr[@B�;R
ju(z)j. The arbitrary choice of x; y 2 B�;r leads us to the

conclusion. 2

15



Remark 3.14 Note that the factor supD�;R
juj in (36) could be precisely replaced by

supz2@B�;3cr[@B�;R
ju(z)j

Corollary 3.15 Let u : 
 �! R be an H-convex function such that supD�;4cr
juj <1 and

D�;4cr � 
, where c is de�ned in Theorem 3.13. Then u is locally Lipschitz and for every

x; y 2 B�;r we have

ju(x)� u(y)j � 1

r
kukL1(D�;4cr) �(x; y): (41)

Remark 3.16 The Lipschitz condition (41) implies the a.e. intrinsic di�erentiability of u,
see [28] for the general result. As a consequence, we have

jrHu(x)j � 1

r
kukL1(D�;4cr): (42)

Theorem 3.17 (Boundedness) Let u : 
 �! R be an H-convex function and assume

that it is locally bounded from above. Then it is locally bounded.

Proof. Let C1 be the compact set in (35) and de�ne the compact set [jtj�1t C1 = ~C1. By

formulae (34) and (35) one can easily check that F( ~C1) = D1. Let us de�ne the number
�j = 1 + maxa2 ~C1

jaj j and the interval Ij = [��j ; �j ] for every j = 1; : : : ; N . We set

K0 =
QN

j=1 Ij � RN and we note that D1 � F(K0) = K � G. Let us assume that
K � 
. We choose hi1 de�ned in (33). By Proposition 3.9, the convexity of the function
I1 3 a1 �! u(�a1hi1) gives

�1 = 2u(e)�M � 2u(e)� u(��a1hi1) � u(�a1hi1) (43)

where M = supz2K u(z) is �nite by hypothesis and a1 2 I1. We denote by e the unit
element of G. We �x a1 2 I1 and consider the convex function I2 3 a2 �! u(�a1hi1�a2hi2),
where hi2 is de�ned in (33). It follows that

�2 = 2�1 �M � 2u(�a1hi1)� u(�a1hi1��a2hi2) � u(�a1hi1�a2hi2) (44)

for every (a1; a2) 2 I1 � I2. One can clearly repeat this argument N times, achieving

�N � 2 u

 
N�1Y
s=1

�ashis

!
� u

 
N�1Y
s=1

�ashis ��aNhiN

!
� u

 
NY
s=1

�ashis

!
(45)

where �j = 2�j�1 �M for every j = 2; : : : ; N and (a1; a2; : : : ; aN ) 2 K0. We have proved
that �N � infz2K u(z), hence u is bounded on K. Let � 2 
 and r > 0 such that ��rK � 
.
Then the function K 3 y �! u(��ry) is H-convex and it is bounded on K, namely u is
bounded on ��rK � D�;r. This proves that u is locally bounded. 2
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Theorem 3.18 (Lipschitz continuity) An H-convex function u : 
 �! R which is lo-

cally bounded from above is locally Lipschitz.

Proof. We �rst note that Theorem 3.17 ensures the local boundedness of u. Let � 2 
 and
choose a closed ball D�;R contained in 
. Let us �x 2r = R=4c, so that by Corollary 3.15 u
is Lipschitz on B�;2r. The arbitrary choice of � immediately yields the continuity of u. Let
K be a compact subset of 
 and let C = fB�j ;rj j j = 1; : : : ; �g be a �nite open covering
of K such that u is Lipschitz on B�j ;2rj with Lipschitz constant Lj = (2rj)

�1kukL1(D�;8crj
)

for every j = 1; : : : ; �. We de�ne C1 � C � C as the subfamily of couple of balls B;B0 2 C
such that dist(B;B0) > 0, then we �x the number

M = max
�
max

�
r�1p j p = 1; 2; : : : ; �

	
;maxfdist(B;B0)�1 j (B;B0) 2 C1g

	
: (46)

We denote by M1 the maximum of juj on K. Now we choose two arbitrary points x; y 2
K and we consider the following possible cases. If x; y belong to the same ball, then
ju(x) � u(y)j � maxfLj j j = 1; 2; : : : ; �g �(x; y). If x; y belong to di�erent balls B, B0

with dist(B;B0) > 0 then ju(x) � u(y)j � 2MM1 �(x; y). The last case occurs when
x 2 B�p;rp , y 2 B�k;rk , B�p;rp 6= B�k;rk and dist(B�p;rp ; B�k;rk) = 0. If y 2 B�p;2rp , then
ju(x)� u(y)j � maxfLj j j = 1; 2; : : : ; �g �(x; y), otherwise y =2 B�p;2rp and we have

�(y; x) � �(y; �p)� �(x; �p) � 2 rp � �(x; �p) > rp:

In this case we obtain ju(x) � u(y)j < 2M1 r
�1
p �(x; y) � 2M1M �(x; y). Joining the

estimates obtained in all possible cases we conclude that

ju(x)� u(y)j �
�
2MM1 +maxfLj j j = 1; 2; : : : ; �g

�
�(x; y)

for every x; y 2 K. This �nishes the proof. 2

Corollary 3.19 Every upper semicontinuous H-convex function is locally Lipschitz.

Proof. It su�ces to observe that upper semicontinuous functions are locally bounded
from above, then Theorem 3.18 concludes the proof. 2

4 H-convexity coincides with v-convexity

In this section we compare the notion of H-convexity with that of v-convexity. The notion
of convexity in the \viscosity sense" has been introduced by Lu, Manfredi and Stro�olini
in [23]. We will show that v-convexity and H-convexity are equivalent notions for upper
semicontinuous functions.

De�nition 4.1 (v-convex function) An upper semicontinuous function u : 
 �! R is
v-convex if for every � 2 C2(
) that touches u from above at �, namely u(�) = �(�) and
u � � on a neighbourhood of �, we have r2

H�(�) � 0. In a more concise way we write

r2
Hu � 0 in the viscosity sense. (47)
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The following proposition shows that v-convexity is preserved under intrinsic dilations and
left translations.

Proposition 4.2 Let u : 
 �! R be v-convex. Then for every x 2 
 and every r > 0 the

function ux;r : 
x;r �! R is v-convex, where ux;r(y) = u(�1=r(x
�1y)) and 
x;r = x �r
.

Proof. Suppose that � 2 C2(
) touches ux;r from above at � 2 
x;r. Then the function
�x;r = � � lx � �r touches u from above at � = �1=r(x

�1�) 2 
 and by hypothesis we have
r2
H�

x;r(�) � 0. Observing that r2
H�

x;r(�) = r2r2
H�(�) the thesis follows. 2

Proposition 4.3 Every upper semicontinuous H-convex function u : 
 �! R is v-convex.

Proof. By contradiction, suppose that u is not v-convex. Then there exists � 2 C2(
)
that touches u from above at � 2 
 and r2

H�(�) is not nonnegative. Thus, we have at least
one direction h = (h1; : : : ; hm) such that

d2

dt2
�(��th)jt=0 = hr2

H�(�)h; hi < 0:

where h = exp
�Pm

j=1 hjXj

�
2 V1. By continuity of second derivatives of u we have that

d2

dt2
�(��th)jt=� < 0 for every � 2 [��; �], where � > 0 and ��th 2 
 for every t 2 [��; �].

Then the function [��; �] 3 t �! �(��th) is strictly concave in [��; �]. We can choose �
suitably small, such that u(��th) � �(��th) for every t 2 [��; �]. By strict concavity of
t �! �(��th) we have that

1

2
(u(����h) + u(���h)) � 1

2
(�(����h) + �(���h)) < �(�) = u(�);

hence u cannot be H-convex due to Proposition 3.9. 2

The next technical lemma will be used in the proof of Theorem 4.5, which is the main
result of this section. We will rely on the notions of homogeneous polynomial and on the
explicit formula for vector �elds Xj recalled in Section 2.

Lemma 4.4 Let
P

d(�)=dj�2
c� x

� denote the expression of @x1a1j, where a1j satis�es (18)
and j = m+1; : : : ; q. Then we have c(dj�2;0;:::;0) = 0 and in the case dj = 2 the homogeneous

polynomial @x1a1j vanishes.

Proof. For every �xed j � m+ 1 the homogeneous polynomial Pj of (16) can be written
as follows

Pj(x; y) =
X

d(�)+d(�)=dj

�;� x
� y�;

where h-deg(Pj) = dj , and the expression (19) yields

a1j(x) = @y1Pj(x; 0) =
X

d(�)=dj�1

�;e1 x
�
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where e1 = (1; 0; : : : ; 0) 2 Nq. The partial derivative of a1j with respect to x1 is written as
follows

@x1a1j(x) =
X

d(s;�)=dj�1

s (s;�);e1 x
(s�1;�) =

X
d(�)=dj�2

c� x
�

where � = (�2; : : : ; �q) 2 Nq�1 and c(dj�2;0;:::;0) = (dj � 1) (dj�1)e1;e1 . The polynomial Pj
can be written in the following form

Pj(x; y) =
X

d(�)=dj�1

�;e1 x
� y1 +R(x; y): (48)

As an immediate application of the Baker-Campbell-Hausdor� formula (15), we observe
that Pj(x1e1; y1e1) = 0 for every x1; y1 2 R, then (48) yields

Pj(x1e1; y1e1) = �0x
dj
1 + (dj�1)e1;e1x

dj�1
1 y1 +

djX
s=2

�s x
dj�s
1 ys1 = 0

for every x1; y1 2 R, then in particular (dj�1)e1;e1 = c(dj�2;0;:::;0) = 0. In the case dj = 2
we achieve

@x1a1j(x) =
X

d(s;�)=1

s (s;�);e1 x
(s�1;�) = e1;e1 = 0:

This concludes the proof. 2

Theorem 4.5 (H-convexity equals v-convexity) Let u : 
 �! R be an upper semi-

continuous function. Then u is H-convex if and only if it is v-convex.

Proof. The �rst implication follows by Proposition 4.3. We have to prove that v-convexity
implies H-convexity. By contradiction, assume that u is not H-convex. In view of Proposi-
tion 3.9, we can �nd p 2 G, h 2 V1 and �; � 2 R such that

p [��h; ��h] := p f�th j t 2 [�; �]g � 
;

� < 0 < � and u(p) > maxfu(p��h); u(p��h)g. By virtue of Proposition 3.2 left translations
preserve H-convex sets and by Proposition 4.2 they also preserve v-convexity, then we can
translate p to the the unit element of the group e and assume that u(e) > maxfu(��h; ��h)g
and [��h; ��h] � 
. Up to rescaling u by u � �r, with a suitable r > 0, we can �nd
a graded basis (X1; : : : ; Xq) of G such that h = expX1. By virtue of Proposition 4.2,
this rescaling preserves v-convexity. The function u will be considered with respect to the
graded coordinates F : Rq �! G associated to the previously �xed graded basis of G. With
this convention we can assume 
 � Rq, [�; �]� f0g � 
 and u(0) > maxfu(�e1); u(�e1)g.
Here we have denoted by (e1; : : : ; eq) the canonical basis of Rq. Adding a constant to u
and multiplying u by a suitable large positive number the H-convexity is preserved and we
can suppose that u(0) = 0 and

maxfu(�e1); u(�e1)g < �1: (49)
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Let K � 
 be a compact neighbourhood of [�; �] � f0g. The upper semicontinuity of u
implies that there exists M = maxK u � 0. De�ne the function

 "(x) = "�2

24 mX
j=2

x2j +

qX
j=m+1

�
x2j + a1j(x)

2
�35 ;

where " > 0 and x = (x1; : : : ; xq) � Rq. The polynomial functions a1j appear in the
representation of the vector �eld X1 with respect to the coordinate system F , namely,
X1 = @x1 +

Pq
j=m+1 a1j(x) @xj . We de�ne the open set

O"(�; �;M) =
n
x 2 Rq

���� < x1 < �;  "(x) < M + 1
o

for every 0 < " < 1. The vector �eld ~X1 = F�1� X1 in Rq has the form (18). For ease of
notation, we will use the same symbol X1 to denote it. Due to (18), by a direct computation
we obtain

X2
1 = @2x1 +

qX
j=m+1

�
@x1a1j @xj + 2 a1j @x1@xj

�
+

qX
l;j=m+1

a1l
�
@xla1j @xj + a1j @xl@xj

�
;

then it follows that

X2
1 " =

qX
j=m+1

@x1a1j @xj " +

qX
l;j=m+1

a1l @xla1j @xj " +

qX
l;j=m+1

a1l a1j @xl@xj ":

We have @xq " = "�22xq and

@xj " = "�2
n
2xj +

qX
s=j+1

2 a1s @xja1s

o
for every j = 1; : : : ; q� 1. We will assume that the formal expression

Pq
s=j+1 �(s) vanishes

for every function � whenever j = q. With this convention we have

X2
1 "
2

=

qX
j=m+1

�
xj @x1a1j "

�2
�
+

qX
j=m+1

qX
s=j+1

�
a1s @x1a1j "

�2
�
@xja1s

+

qX
l;j=m+1

�
xj a1l "

�2
�
@xla1j +

qX
l;j=m+1

qX
s=j+1

�
a1s a1l "

�2
�
@xla1j @xja1s (50)

+

qX
j=m+1

�
a21j "

�2
�
+

qX
l;j=m+1

qX
s=j+1

�
a1l a1j "

�2
� �
@xla1s@xja1s + a1s@xl@xja1s

�
: (51)

20



We wish to prove that in the previous expression all products inside the brackets (� � � ) and
restricted to the open subset O"(�; �;M) are bounded by a constant depending only on M
and , where we have de�ned  = maxfj�j; j�jg. For every x 2 O"(�; �;M) we have

max
�jxj a1s(x) "�2j; ja1j(x) a1s(x) "�2j	 � (M + 1)

2

whenever j; s = m + 1; : : : ; q. Let us consider @x1a1j =
P

d(�)=dj�2
c� x

�. By Lemma 4.4
we have c(dj�2;0;:::;0) = 0 and @x1a1j is identically zero when dj = 2. In the case dj > 2

every monomial c� x
� with c� 6= 0 contains at least one factor x�ll with l > 1 and �l � 1.

Then for every x 2 O"(�; �;M) the estimate

j@x1a1j(x)j � "
X

d(�)=dj�2

jc�j �1 (M + 1)
Pq

s=2 �s = " !j(;M)

holds whenever 0 < " < 1. For every t; � � 0 we de�ne !j(t; �) = 0 whenever dj = 2. This
gives in turn the estimate

max
�jxj @x1a1s(x) "�2j; ja1j(x) @x1a1s(x) "�2j	 � !s(;M)

p
M + 1

for every x 2 O"(�; �;M). The function !j(t; �) is nondecreasing with respect to t � 0.
As a consequence, we can �nd a positive function C(t; �) nondecreasing with respect to t
such that

jX2
1 "(x)j � C(;M) (52)

for every x 2 O"(�; �;M) and every 0 < " < 1. The monotonicity of C(�;M) implies the
existence of t0 > 0 such that

C(t;M) t2 < 1 for every 0 � t � t0: (53)

The compact set K is also a neighbourhood of 0, then we can �nd �1 > 1 such that
�1=�1K � K and =�1 � t0. De�ne the v-convex function u1(x) = u(��1x) on the open
subset �1=�1
 and the numbers �1 = �=�1, �1 = �=�1 and 1 = =�1. Fix 0 < "1 < 1 so
that O"(�1; �1;M) � K1 = �1=�1K for every 0 < " < "1. Clearly we have maxK1 u1 = M
and by (52) the inequality

jX2
1 "(x)j � C(1;M) (54)

holds for every x 2 O"(�1; �1;M) and every 0 < " < "1. Now we de�ne

'"(x) = �C(1;M)x21 +  "(x):

Our next claim is to prove that '"(x) > u1(x) for every x 2 @O"(�1; �1;M) when " > 0
is chosen suitably small. The inequality (49) implies that maxfu1(�1e1); u1(�1e1)g < �1,
therefore the upper semicontinuity of u1 yields 0 < "0 < "1 such that

max

�
u
�
�1e1 +

qX
s=2

xs es

�
; u
�
�1e1 +

qX
s=2

xs es

��
< �1 (55)
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whenever  "0

�Pq
s=2 xs es

�
< M + 1. We will utilize the following topological formula

@(A\B) � (A\ @B)[ (B \ @A) for any couple of subsets A and B of a topological space.
Now we observe that

O"0(�1; �1;M) =
n
x 2 Rq

����1 < x1 < �1

o\n
x 2 Rq

��� "0(x) < M + 1
o

Let x 2 @O"0(�1; �1;M) and consider the case x 2 f(�1; y); (�1; y)g with y =
Pq

s=2 yses.
We have

'"0(x) � �C(1;M)21 +  "0(y) � �C(1;M)21 > �1:
If  "0(y) < M + 1, then

maxfu1(�1; y); u1(�1; y)g < �1 < '"0(x): (56)

In the case  "0(y) =M + 1 and �1 � x1 � �1 we have

'"0(x) � �C(1;M)21 +M + 1 > M � u1(x): (57)

Estimates (56) and (57) prove that

'"0(x) > u1(x) for every x 2 @O"0(�1; �1;M): (58)

Due to inequality (54) we also have

X2
1'"0(x) = �2C(1;M) +X2

1 "0(x) � �C(1;M) < 0 (59)

for every x 2 O"0(�1; �1;M). Let us de�ne the number

�0 = inf
n
t 2 R

��� t+ '"0(x) � u1(x) for everyx 2 O"0(�1; �1;M)
o

Note �rst that 0 � �0 < 1 in that '"0(0) = u1(0) = 0 and u1(x) � M for ev-
ery x 2 O"0(�1; �1;M) � K1. It is easy to check that �0 + '"0(x) � u1(x) for every
x 2 O"0(�1; �1;M). By de�nition of �0 we can �nd � 2 O"0(�1; �1;M) where the equality
is attained. In view of (58) the point � belongs to the open set O"0(�1; �1;M). As a result,
the function � = �0+'"0 touches u1 from above at �, but X2

1�(�) < 0. This conicts with
v-convexity of u1 and concludes the proof. 2

Corollary 4.6 In every strati�ed group v-convex functions are locally Lipschitz continuous.

Proof. By Theorem 4.5 and Corollary 3.19 the proof immediately follows. 2
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5 Distributional characterization of H-convexity

The main result of this section is Theorem 5.7, where we prove that in 2 step strati�ed
groups every distribution represented by a Radon measure is de�ned by a locally Lipschitz
H-convex function if and only if its distributional horizontal Hessian is positive semide�nite.
Throughout the section the symbol 
 will denote an H-convex open set of G. We start
with the following simple characterization of H-convexity in the case of regular functions,
see also [9] and [23].

Proposition 5.1 Every u 2 C2(
) is H-convex if and only if r2
Hu(x) � 0 for every x 2 
.

Proof. By Proposition 3.9 H-convexity is characterized by convexity of t �! u(x�th) for

every x 2 
 and every h 2 V1. De�ning h = exp
�Pm

j=1 hjXj

�
2 V1 and using formula

(23) we get

d2

dt2
u(x�th)jt=� = hr2

Hu(x��h)h; hi � 0: (60)

where h = (h1; : : : ; hm) 2 Rm. Formula (60) proves our claim. 2

De�nition 5.2 (Convolution) Let u; v 2 L1
loc(G) where v has compact support. The

convolution of u and v is de�ned by

u � v(x) =
Z
G

u(y) v(y�1x) dy (61)

Under assumptions of De�nition 5.2 the convolution u�v is a well de�ned locally summable
function. Note that this convolution does not commute, see [14] for more information.

De�nition 5.3 (Distributional horizontal Hessian) Let T 2 D(
)0 be a distribution.
The horizontal Hessian of T is the symmetric matrix of distributions de�ned as follows

hD2
HT; 'i = hT;r2

H'i (62)

for every ' 2 C1c (
). We say that the horizontal Hessian of T is nonnegative and write
D2
HT � 0 if for every ' 2 C1c (
) such that ' � 0 the matrix hT;r2

H'i is nonnegative.
As observed in [9] and [23], the distributional horizontal Hessian of a locally summable
H-convex function is a positive semide�nite matrix of Radon measures. For the reader's
convenience, in Proposition 5.5 we briey recall this fact.

Lemma 5.4 Let T 2 D(
)0 be a distribution with D2
HT � 0. Then D2

HT is a matrix of

Radon measures.
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Proof. By hypothesis, writing any X 2 V1 as
Pm

j=1 �jXj where (X1; : : : ; Xm) is a basis

of V1, we have X
2T =

Pm
i;j=1 �i�j (XiXj +XjXi)T � 0; then X2T is a Radon measure, see

Theorem 2.1.7 of [20] and Theorem 1.54 of [2], hence also

XiXjT +XjXiT = (Xi +Xj)
2T �X2

i T �X2
j T

is a measure for every i; j = 1; : : : ;m. 2

Proposition 5.5 Let u : 
 �! R be a locally summable H-convex function. Then D2
Hu is

a matrix of Radon measures and D2
Hu � 0.

Proof. Let us choose # 2 C1c (B1) such that # � 0 and
R
~B1
# = 1. For every y 2 G we

de�ne #"(y) = "�Q#(�1="y), where " > 0. Let ' 2 C1c (
) be a nonnegative function and
let 
0 b 
 be an open subset containing supp'. We can �nd � > 0 such that

max
x2
0

�(y�1x; x) < dist(
0;
c) (63)

whenever �(y) � �. Then the convolution

u"(x) = #" � u(x) =
Z


#"(y)u(y

�1x) dy

is smooth, H-convex and well de�ned in 
0 for every " � �. The function u" is convex
along horizontal lines, according to Proposition 3.9 and Remark 3.10. Thus, we can apply
Proposition 5.1, that gives r2

Hu" � 0 and integrating by parts we achieveZ

0
u"r2

H' =

Z
G

u"r2
H' =

Z
G

'r2
Hu" � 0 (64)

for every " � �. The convergence of u" to u in L1
loc(
) and Lemma 5.4 conclude the proof.

2

Theorem 5.6 Let G be a 2 step strati�ed group. Then there exists a nonnegative function

# 2 C1c (B1) such that
R
B1
# = 1 and

(r2
H#)(y) = (r2

H#)(y
�1) for every y 2 G: (65)

Proof. Recall from (18) the form of the horizontal vector �eld Xj for every j = 1; : : : ;m
with respect to a system of graded coordinates F : Rq �! G

~Xj = @xj +

qX
s=m+1

ajs @xs : (66)
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For ease of notation we will simply write Xj instead of ~Xj . The fact that G is of step 2
implies that ajs has homogeneous degree equal to one for every j = 1; : : : ;m and every
s = m+ 1; : : : ; q. Let us consider the second order operator

XiXj = @xi@xj +

qX
s=m+1

(@xiajs @xs + ajs @xi@xs) +

qX
l=m+1

ail @xl@xj

+

qX
l;s=m+1

(ail @xlajs @xs + ail ajs @xl@xs)

for every i; j = 1; : : : ;m. Now we choose two smooth even functions with compact support
�1 : R

m �! [0;+1[ and �2 : R
q�m �! [0;+1[ such that, de�ning �(�; �) = �1(�) + �2(�)

with � = (x1; : : : ; xm) and � = (xm+1; : : : ; xq), the support of � is contained in F�1(B1)
and # = � � F�1 : G �! [0;+1[ satis�es

R
B1
# = 1. We clearly have @xl@xj� = 0 for every

l = m + 1; : : : ; q and every j = 1; : : : ;m. In addition, the polynomial ajs cannot contain
the variable xl for every l = m+ 1; : : : ; q in that it has homogeneous degree equal to one,
then @xlajs also vanishes. It follows that

XiXj� = @xi@xj� +

qX
s=m+1

@xiajs @xs� +

qX
l;s=m+1

ail ajs @xl@xs�:

The fact that � is even easily implies that (@xi@xj�)(x) = (@xi@xj�)(�x). The homogeneous
polynomial ajs has homogeneous degree equal to one, then it has the form

Pm
k=1 ckxk.

Thus, the products ailajs are even functions and we obtain

qX
l;s=m+1

ail(x) ajs(x) (@xl@xs�)(x) =

qX
l;s=m+1

ail(�x) ajs(�x) (@xl@xs�)(�x):

The factors @xjajs are constants then @xjajs @xs� is an odd function for every j = 1; : : : ;m
and every s = m+1; : : : ; q. At this point the symmetrization of XiXj will help us. Consider

XiXj� +XjXi�

2
= @xi@xj� +

qX
s=m+1

(@xiajs + @xjais)

2
@xs� +

qX
l;s=m+1

ail ajs @xl@xs�:

We aim to show that @xiajs+@xjais = 0 for every i; j = 1; : : : ;m and every s = m+1; : : : ; q.
Once this is obtained we immediately achieve

(r2
H�)(x) = (r2

H�)(�x) (67)

for every x 2 Rq. In the case of 2 step groups the Baker-Campbell-Hausdor� formula (15)
gives a rather manageable expression of the group operation. We have

exp
� qX
k=1

xkXk

�
exp

� qX
l=1

ylXl

�
= exp

� qX
k=1

(xk + yk)Xk +
1

2

X
1�k<l�m

(xkyl� ykxl) [Xk; Xl]

�
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clearly [Xk; Xl] 2 V2 then
[Xk; Xl] =

qX
s=m+1

csklXs

for some coe�cients cskl. Let fPs(x; y)gs=1;:::;q be the family of homogeneous polynomials
satisfying (16). Then the previous relations yield

Ps(x; y) = xs + ys +
X

1�k<l�m

cskl (xkyl � ykxl)

where s = m+ 1; : : : ; q. Di�erentiating with respect to xj and yj we get

@xi@yjPs =
X

1�k<l�m

cskl (�ik�jl � �jk�il) =

8<:
csij if i < j

0 if i = j
�csji if i > j

;

then we have proved that

@xiajs = @xi@yjPs = �@xj@yiPs = �@xjais
for every i; j = 1; : : : ;m and every s = m + 1; : : : ; q. As a consequence, formula (67)
holds. In order to show rigorously that (67) implies (65) we return to notation of (66).
This permits us to stress that the vector �eld ~Xj is represented with respect to graded
coordinates. Then we write Xj = F� ~Xj to indicate the corresponding vector �eld on G.
We have

Xj# = Xj(� � F�1) = F� ~Xj(� � F�1) = ~Xj�;

hence applying Xi to Xj# and using the previous relations we get

(XiXj#)(F (x)) = ~Xi
~Xj�(x) for every x 2 Rq:

Finally, in view of (67) we conclude that

r2
H#(F (x)) = er2

H�(x) = er2
H�(�x) = r2

H#(F (�x)) = r2
H#(F (x)

�1);

hence ending the proof. 2

Theorem 5.7 (Dudley-Reshetnyak) Let G be a strati�ed group of step 2 and let T 2
D(
)0 be a locally �nite measure. Then T is de�ned by a locally Lipschitz H-convex function

if and only if D2
HT � 0.

Proof. In view of Proposition 5.5 we have to prove that the condition D2
HT � 0 implies

the existence of a locally Lipschitz H-convex function u : 
 �! R such that hT; 'i = R
 u'
for every ' 2 C1c (
). The crucial part of the proof is to �nd a suitable # 2 C1c (B1) with
# � 0 and

R
B1
# = 1 such that

(r2
H#)(y) = (r2

H#)(y
�1) for every y 2 G: (68)
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Theorem 5.6 shows that a function # satisfying (68) is available in 2 step groups. Then we
de�ne #"(y) = "�Q#(�1="y) and consider the convolution

u"(x) = T � #" =
Z


#"(y

�1x) d�(y);

where � is a signed and locally �nite Radon measure in 
 and dist(x;
c) > ". The left
invariance of the second order operator r2

H gives r2
xH

�
#"(y

�1x)
�
=
�r2

H#"
�
(y�1x), where

the symbol r2
xH speci�es that r2

H di�erentiates with respect to the variable x. As a
consequence, we have

r2
Hu"(x) =

Z



�r2
H#"

�
(y�1x) d�(y);

in view of the key property (68) we obtain

r2
Hu"(x) =

Z



�r2
H#"

�
(x�1y) d�(y) =

Z


r2
yH

�
#"(x

�1y)
�
d�(y) � 0

where the last inequality follows by hypothesis. By Proposition 5.1, the smooth function
u" is H-convex. Consider an arbitrary compact set K � 
 and choose �0 > 0 such that
K�0 = fy 2 G j dist(y;K) � �0g � 
. For every 0 < " < �0 we haveZ

K
ju"(x)j dx �

Z



�Z
K
j#"(y�1x)j dx

�
dj�j(y) � j�j(K�0) <1 ; (69)

where j�j is the total variation of �, see [2]. Let us �x an in�nitesimal sequence ("j) 2]0; �0[.
The H-convexity of u"j for every j 2 N allows us to apply estimates (71) to u"j restricted
to any compact ball of 
 with suitably small radius. The inequality (69), with K replaced
by a compact ball, along with (71) and (72), yields a uniform bound on the L1 norm
and on the Lipschitz constant of u"j restricted to the �xed compact ball. By a standard
argument, using Ascoli-Arzel�a theorem we get a subsequence uj = u"kj which uniformly

converges to a continuous function u : 
 �! R on compact sets of 
. The condition (24)
is preserved in the limit and implies the H-convexity of u, hence u is a locally Lipschitz
H-convex function. In view of the L1

loc convergence of uj to u and of the convergence of
y �! R


 '(x)#"kj (y
�1x) dx to ' uniformly on compact sets of 
, we achieveZ


uj(x)'(x) dx =

Z



�Z


#"kj (y

�1x)d�(y)

�
'(x) dx

=

Z



�Z


'(x)#"kj (y

�1x) dx

�
d�(y) �! hT; 'i as j !1;

hence we have shown that

hT; 'i =
Z


'(y) d�(y) =

Z


u(y)'(y) dy

for every ' 2 C1c (
). This ends the proof. 2
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6 Aleksandrov-Busemann-Feller theorem

In this section we deal with the existence of pointwise second derivatives of H-convex
functions. In the rest of the section, 
 will be assumed to be open and H-convex.

De�nition 6.1 (H-BV 2 function) Let u 2 L1(
) and let (X1; : : : ;m) be a basis of V1.
We say that u has H-bounded second variation (in symbols H-BV 2) and write u 2 BV 2

H(
)
if the distributional derivatives Xiu, XiXju are �nite Radon measures for every i; j =
1; : : : ;m. If u 2 L1

loc(
) and Xiu, XiXju are Radon measures we say that u has locally
H-bounded second variation (in symbols locally H-BV 2) and write u 2 BV 2

H;loc(
).

The following result corresponds to Theorem 3.9 of [1].

Theorem 6.2 (L1-di�erentiability) Let u 2 BV 2
H;loc(
). Then for a.e. x 2 
 there

exists a polynomial P[x] 2 PH;2(G) such that

lim
r!0+

1

r2

Z
Bx;r

ju(y)� P[x](y)j dy = 0 (70)

The next result has been proved in [9], [23] and [21].

Theorem 6.3 (L1-estimates) Let u : 
 �! R be a continuous H-convex function. Then

for every � 2 
 there exists a radius R > 0 with D�;R � 
 and a constant C > 0 depending

on � such that for every r < R=15 the following estimates hold

sup
y2B�;r

ju(y)j � C

Z
B�;5r

ju(y)j dy and krHukL1(B�;r) �
C

r

Z
B�;15r

ju(y)j dy: (71)

Lemma 6.4 Let v : 
 �! R be a locally Lipschitz function. Then rHu 2 L1loc(
)
m and

for every closed ball Dx;3s � 
 and every z; y 2 Dx;s we have

jv(z)� v(y)j � krHvkL1(Dx;3s) �(z; y): (72)

The validity of this lemma follows by both Theorem 1.3 and Theorem 2.7 of [15], which
hold in the more general Carnot-Carath�eodory spaces. For the reader's convenience we
sketch its proof in the simpler case of strati�ed groups. Let us �x a basis (X1; : : : ; Xm) of
the �rst layer V1 � G. The local Lipschitz condition and the a.e. horizontal di�erentiability
of v ensure that Xjv exists in the distributional sense for every j = 1; : : : ;mZ



v(y)Xj'(y) dy = �

Z


'(y)Xjv(y) dy

where ' 2 C1c (
) and Xjv 2 L1loc(
). To see this, it su�ces to observe that

y �! v(y exphXj)� v(y)

h
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is uniformly bounded with respect to h 2] � "; "[nf0g and converges to Xjv(y) for a.e. y,
see for instance Theorem 3.2 of [26]. Then we use the weak compactness of a bounded
family of functions in Lp(Ki) for some �xed p > 1 and all compact sets Ki � 
 such thatS1
i=1Ki = 
. Let  : [0; T ] �! R be a subunit curve joining z with y, with z; y 2 Dx;s,

i.e. an absolutely continuous function  such that 0(t) =
Pm

j=1 aj(t)Xj((t)), with aj 2
L1(0; T ) and

Pm
j=1 aj(t)

2 � 1 for a.e. t 2 (0; T ). By de�nition of Carnot-Carath�eodory
distance �(z; y) we can �nd a subunit curve  with T < �(z; y)+h, then �(z; (t)) � t � T <
�(z; y) + h and ([0; T ]) � Bz;�(z;y)+h, where h > 0 is arbitrarily small. As a consequence,
by convolution with a family of smooth kernels �" we readily obtain jv"(z) � v"(y)j <
krHv"kL1(Bz;�(z;y)+h) (�(z; y)+h) where v" = v ��". Taking the limit as h! 0+ we obtain

jv"(z)� v"(y)j � krHv"kBz;�(z;y)
�(z; y) � krHvkL1(Bz;�(z;y)) �(z; y): (73)

The continuity of v ensures that v" uniformly converges to v on compact sets of 
, then
taking the limit in (73) as "! 0+ we have

jv(z)� v(y)j � krHvkL1(Bz;�(z;y)) �(z; y) � krHvkL1(Dx;3s) �(z; y):

Theorem 6.5 (Aleksandrov-Busemann-Feller) Let (X1; : : : ; Xm) be a basis of V1 and
let u : 
 �! R be a measurable H-convex continuous function such that its distributional

derivative XiXju is a Radon measure for every i; j = 1; : : : ;m. Then for a.e. x 2 
 there

exists a unique polynomial P[x] 2 PH;2(G) such that the following limit holds

lim
y!x

ju(y)� P[x](y)j
�(x; y)2

= 0: (74)

Proof. From results of [31] the function u is locally bounded above, then Theorem 3.18
implies that u is locally Lipschitz continuous. As a result, Lemma 6.4 implies that rHu 2
L1loc(
)

m. Thus, by hypothesis we have that u 2 BV 2
H;loc(
). In view of Theorem 6.2 for

a.e. x 2 
 there exists P[x] 2 PH;2(G) such that

lim
r!0+

1

r2

Z
Bx;r

ju(y)� P[x](y)j dy = 0: (75)

Let us �x x 2 
 satisfying this condition and de�ne the map v(y) = u(y) � P[x](y).
We can write the polynomial P[x] as the sum of L 2 PH;1(G) and R 2 PH;2(G) such
that R(x) = 0 and XjR(x) = 0 for every j = 1; 2; : : : ;m. Notice that L has the form
L(�) = c +

Pm
j=1 �j �j , where c; �j 2 R and �j is a coordinate of homogeneous degree

equal to one for every j = 1; 2; : : : ;m. It follows that both L and �L are H-convex and
that the sum w = u � L is H-convex. Let us write v = w � R and notice that conditions
XjR 2 PH;1(G) and XjR(x) = 0 for every j = 1; 2; : : : ;m give us a constant C1 > 0 such
that for every r > 0 we have the estimate

sup
Bx;r

jrHRj � C1 r and sup
Bx;r

jRj � C1 r
2: (76)
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In view of the gradient estimate (71) applied to the H-convex function w we obtain a
number r0 > 0 and a constant C > 0 such that the inequality

krHvkL1(Bx;r) � C r�1
Z
Bx;15r

jw(y)j dy + sup
Bx;r

jrHRj

holds for every 0 < r < r0, where Bx;15r0 � 
. From the previous inequality, we infer that

krHvkL1(Bx;r) � C r�1
Z
Bx;15r

jv(y)j dy + sup
Bx;r

jrHRj+ C r�1
Z
Bx;15r

jR(y)j dy:

Due to the estimates (76), the previous inequality yields

krHvkL1(Bx;r) � C r�1
Z
Bx;15r

jv(y)j dy + (1 + C)C1 r: (77)

Now we arbitrarily �x " 2]0; 1=2[ and � 2]0; "Q[. The limit (75) and the de�nition of v give
the estimate���ny 2 Bx;r

��� jv(y)j � " r2
o��� � (" r2)�1

Z
Bx;r

jv(y)j dy = "�1 o(rQ) as r ! 0+:

Then we can �x r1 < r0 depending on " and � such that���ny 2 Bx;r

��� jv(y)j � " r2
o��� < � jBx;rj (78)

for every 0 < r < r1. We choose y 2 Bx;r=2 and note that By;�1=Qr � Bx;r, then there exists

zr 2 By;�1=Qr such that jv(zr)j < " r2 for every r < r1. In fact, if this were not true we
would have

By;�1=Qr �
n
y 2 Bx;r

��� jv(y)j � " r2
o

that contradicts the inequality (78). We have proved that for every r < r1 the inequality

jv(y)j < "r2 + jv(zr)� v(y)j (79)

holds for every y 2 Bx;r=2 and for some zr 2 By;�1=Qr depending on r and y. In view of (75)
and (77) there exists r2 < r1=3 such that krHvkL1(Bx;3r) � Cr + 3(1 + C)C1 r = C2 r for
every r < r2. Thus, from Lemma 6.4 and inequality (79) we conclude for every y 2 Bx;r=2

the �nal estimates

jv(y)j � "r2 + C2 r �(zr; y) < "r2 + C2 �
1=Qr2 < " (1 + C2) r

2 (80)

where in the last inequality we have used our initial choice �1=Q < " and C2 is a geometrical
constant. This ends the proof. 2
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Proposition 6.6 Let u : 
 �! R be a locally summable H-convex function. Then there

exists a locally Lipschitz H-convex function v : 
 �! R such that v(x) = u(x) for a.e.

x 2 
.

Proof. We �x # 2 C1c (B1) such that # � 0 and
R
B1
# = 1 and we de�ne #"(y) =

"�Q#(�1="y) for every y 2 G. For every couple of relatively compact sets 
0 b 
00 b 
 we
can �nd � > 0 such that maxx2
0 �(y

�1x; x) < dist(
0; (
00)c) whenever �(y) � �. Then
the convolution

u"(x) = #" � u(x) =
Z


#"(y)u(y

�1x) dy

is well de�ned, smooth and H-convex on 
0 for every " � � in that y�1x 2 
00 � 
 for
every x 2 
0 and every y 2 B". For every B�;15r � 
0 we also have the uniform estimateZ

B�;15r

ju"(x)j dx �
Z

00
ju(y)j dy = C0 <1 (81)

for every " � �. The H-convexity of u" allows us to apply estimates (71), obtaining

sup
y2B�;r

ju"(y)j � C C0

jB�;5rj and krHu"kL1(B�;r) �
C C0

jB�;15rj (82)

whenever, B�;15r � 
0. Then by standard arguments, using (72) and the Ascoli-Arzel�a
compactness theorem, we can �nd a sequence u"j converging on compact subsets of 

to a locally Lipschitz continuous H-convex function v : 
 �! R. In fact, the pointwise
convergence preserves the H-convexity and the Lipschitz property on compact subsets, then
the proof is �nished. 2

Remark 6.7 Note that in Proposition 6.6 we are referring to an individual function u
and not to the equivalence class of functions which di�er from u on a set of measure zero.
Then it makes sense to assume that u satis�es the pointwise notion of De�nition 3.4 for a.e.
point. Proposition 6.6 implies the validity of Theorem 6.5 for locally summable H-convex
functions, after a suitable rede�nition on a set of measure zero.

From results of [16], [10] and [31], Theorem 6.5 holds for H-convex functions on two step
strati�ed groups, with no additional assumptions on the function.
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