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Abstract. We find all intrinsic measures of C1,1 smooth submanifolds in the Engel
group, showing that they are equivalent to the corresponding d-dimensional spherical
Hausdorff measure restricted to the submanifold. The integer d is the degree of the
submanifold. These results follow from a different approach to negligibility, based on a
blow-up technique.

1. Introduction

Computing the Hausdorff measure of submanifolds in stratified groups with respect to
the Carnot-Carathéodory distance is a rather natural question. This may be considered
as a first step to study several problems of Geometric Measure Theory in stratified groups.

Nevertheless, this question has not yet an answer. In 0.6 B of [3], Gromov has given
a general formula for the Hausdorff dimension of smooth submanifolds in equiregular
Carnot-Carathéodory spaces and in [7] it is shown that this formula coincides with the
degree of the submanifold, recently introduced in [5]. In the latter work, the authors
find an integral formula for the spherical Hausdorff measure of submanifolds in stratified
groups under a suitable “negligibility condition”. If d is the degree of a submanifold, and
Sd is the spherical Hausdorff measure constructed with the Carnot-Carathéodory distance,
this condition requires that all points of the submanifold having pointwise degree less than
d must be Sd-negligible. This negligibility condition has been recently obtained in all two
step groups, [7], but it is still open in higher step groups. We address the reader to [5],
[6] and [7] for more information on this problem and its connections with the present
literature.

In this work, we prove the negligibility condition in the Engel group, adopting a different
approach with respect to the standard covering arguments. Broadly speaking, we simply
“blow-up” the points of the submanifold using the intrinsic dilations of the group and
then apply a simple fact of Geometric Measure Theory, see Lemma 4. Essentially, we
prove that the assumptions of this lemma hold in all the single cases that can occur. In
fact, joining all propositions of Section 4 and 5, we have our main result.

Theorem 1. Let Σ be a p-dimensional C1,1 submanifold of degree d in the Engel group,
where p = 1, 2. Then for every x ∈ Σ with dΣ(x) < d, there holds

(1) lim
r→0

µp(Σ ∩Dx,r)

rd
= +∞.
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We have denoted by µp the p-dimensional Riemannian surface measure induced on Σ by
a fixed left invariant Riemannian metric on the group. The main feature of the previous
theorem is that (1) not only depends on the degree at x, but also on the “behaviour” of
Σ around x, that is expressed by the degree of Σ. It is rather interesting to observe how
the limit (1) in some cases requires the use of this “global” information. This is the case
of Proposition 9, where the fact that Σ has degree three implies a differential constraint,
given by the system of PDEs (18), that play a crucial role in the proof of (1).

Theorem 1 joined with Lemma 4 yields Theorems 5 and 10, that correspond to the
negligibility condition stated in (1.5) of [5]. This condition gives (1.4) of [5], namely, we
have the following

Corollary 2. Let Σ be a p-dimensional C1,1 submanifold of degree d in the Engel group.
Then the following formula holds

(2)

∫
Σ

θ(τ dΣ(x)) dSd(x) =

∫
Σ

|τ dΣ(x)| dµ̃p(x).

The p-tangent vector τ dΣ(x) is the component of degree d of the p-tangent vector τΣ(x)
associated to the tangent space TxΣ. Its norm is computed with respect to the auxiliary
Riemannian metric fixed on the group. This metric also yields the surface measure µ̃p
induced on Σ, see [5] for more details. In the case p = 3, the previous integral formula fol-
lows from Theorem 2.20 of [4]. In fact, Frobenius Theorem implies that C1,1 hypersurfaces
in any stratified group must possess non-horizontal points, hence they have degree equal
to Q−1, where Q is the Hausdorff dimension of the group. Recall that non-horizontal
points have been introduced in [5] and studied in [6]. According to Proposition 3.2 of [7],
the length of the horizontal normal |nH(x)| in Theorem 2.20 of [4] is equal to the length
|τ dΣ(x)|. Of course, 4-dimensional submanifolds of the Engel group are just open subsets,
for which it is trivial to observe that their degree is exactly 7 and their 7-dimensional
Hausdorff measure is clearly positive and finite on the intersection with bounded sets.
Since the metric factor θ(τ dΣ(x)) is uniformly bounded from above and from below, SdxΣ
is equivalent to the intrinsic measure |τ dΣ(x)| µ̃pxΣ, introduced in [5]. In case it is possible
to find a distance that yields a constant metric factor, then up to a geometric constant,
we obtain

(3) SdG(Σ) =

∫
Σ

|τ dΣ(x)| dµ̃p(x).

As an immediate consequence, the degree of a C1,1 submanifold in the Engel group equals
its Hausdorff dimension, since points of maximum degree form an open subset of the
submanifold. In Remark 1 we point out how our results are also related to Gromov’s
dimension comparison problem recently raised in [1].
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2. Basic definitions and standard results

The Engel group E is a connected, simply connected stratified group, whose Lie algebra
satisfies the direct decomposition

E = V1 ⊕ V2 ⊕ V3

and there exists a basis (X1, X2, X3, X4) of E , such that the only nontrivial brackets are

[X1, X2] = X3 and [X1, X3] = X4,

where V1 = span{X1, X2}, V2 = span{X3} and V3 = span{X4}. We represent the Engel
group E by R4 equipped with the vector fields

X1 = ∂1, X2 = ∂2 + x1∂3 +
x2

1

2
∂4, X3 = ∂3 + x1∂4, X4 = ∂4,(4)

where the associated exponential mapping builds the group operation in R4 that makes it
isomorphic to the abstract Engel group. The intrinsic dilations δr : R4 −→ R4 are given
by δr(x) = (rx1, rx2, r

2x3, r
3x4), with r > 0. This is a one parameter family of group

automorphisms, since

(δr)∗
(
X1

)
= rX1, (δr)∗

(
X2

)
= rX2, (δr)∗

(
X3

)
= r2X3, (δr)∗

(
X4

)
= r3X4,

as one can check from direct computation. We fix a left invariant Riemannian met-
ric in R4 that makes Xj’s orthonormal. The Carnot-Carathéodory distance associated
to span{X1, X2} along with the fixed left invariant metric on R4 yields a homogeneous
distance. More generally, we will consider an arbitrary homogeneous distance ρ on R4,
namely, a continuous, left invariant distance that satisfies

ρ(δrx, δry) = r ρ(x, y) for every x, y ∈ R4, r > 0.

In the sequel, the abstract Engel group E will be identified with R4, equipped with left
invariant vector fields (4), distance ρ and dilations δr. The explicit formula for the group
operation in R4 will not be needed.

Our arguments are based on the following elementary fact of Geometric Measure The-
ory, see for instance 2.10.19 of [2].

Lemma 3. Let X be a metric space, let µ be a Borel measure on X and let {Vi}i∈N be
an open covering of X such that µ(Vi) <∞. Let Z ⊂ X be a Borel set and suppose that

lim sup
r→0+

r−aµ(Dx,r) ≥ κ > 0

whenever x ∈ Z, where a > 0. Then µ(Z) ≥ κ Sa(Z).

We have denoted by Sa the a-dimensional spherical Hausdorff measure constructed
with the size function ζa(Dx,r) = ra and Dx,r is the closed ball of center x and radius r.
From the previous lemma, we get the straightforward

Lemma 4. Let Σ be k-dimensional C1,1 submanifold of E and let µk be the left in-
variant Riemannian measure of E restricted to Σ. If Z is a Borel set of Σ such that
lim supr→0+ r−aµk(Dz,r) = +∞, whenever z ∈ Z, then Sa(Z) = 0.
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3. Degree of submanifolds in the Engel group

The degree of a 2-vector τ =
∑

1≤i<j≤4 τij Xi ∧Xj ∈ Λ2(E) is given by

deg(τ) = max{di + dj | τij 6= 0}

where di is the degree of Xi, hence d1 = d2 = 1, d3 = 2 and d4 = 3. Analogously, the
degree of a vector τ =

∑4
i=1 τi Xi ∈ E is given by deg(τ) = max{di | τi 6= 0}. Then we

define the pointwise degree at x of a 2-dimensional submanifold Σ in E as

dΣ(x) = deg
(
τΣ(x)

)
,

where τΣ(x) is the 2-tangent vector of Σ at x ∈ Σ. The degree d(Σ) of Σ is the integer
maxx∈Σ dΣ(x), see [5] for more details in the general case of stratified groups. Let U be an
open subset of R2 and let φ : U −→ R4 be a C1 immersion. According to computations
in Section 4 of [5], we have

φu1 ∧ φu2 = φ12
u X1 ∧X2 +

(
φ13
u − φ1φ12

u

)
X1 ∧X3 + φ23

u X2 ∧X3(5)

+

(
φ14
u − φ1 φ13

u +
(φ1)2

2
φ12
u

)
X1 ∧X4 +

(
φ24
u − φ1 φ23

u

)
X2 ∧X4

+

(
φ34
u +

(φ1)2

2
φ23
u − φ1φ24

u

)
X3 ∧X4 ,

where we have defined

φ = (φ1, φ2, φ3, φ4) and φiju = det

(
φiu1

φiu2

φju1
φju2

)
.

It is also understood that Xi∧Xj in the previous formula are evaluated at the point φ(u).
Thus, if φ locally parametrizes a surface Σ, according to the notion of pointwise degree,
we have that

(6) dΣ(φ(u)) =


5 if c34(u) 6= 0
4 if |c14(u)|+ |c24(u)| > 0 and c34(u) = 0
3 if |c13(u)|+ |c23(u)| > 0 and c34(u) = c14(u) = c24(u) = 0
2 if c34(u) = c14(u) = c24(u) = c13(u) = c23(u) = 0

,

where we have set

φu1 ∧ φu2 =
∑

1≤i<j≤4

cij(u) Xi ∧Xj .(7)

Concerning curves, we use again computations in Section 4 of [5]. We consider a C1

immersion φ : I −→ R4, where I is an open interval of R. Thus, we get

(8) φ̇ = φ̇1X1 + φ̇2X2 +
(
φ̇3 − φ1φ̇2

)
X3 +

(
φ̇4 − φ1φ̇3 +

(φ1)2

2
φ̇2

)
X4 .
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In analogous way, defining φ̇ =
∑4

i=1 ci(t) Xi, we have

(9) dΣ(φ(t)) =

 3 if c4(u) 6= 0
2 if c3(t) 6= 0
1 if |c1(t)|+ |c2(t)| > 0

.

Remark 1. By definition of degree, in the Engel group one easily notices that the possible
degrees of C1,1 surfaces can only be 3,4 or 5. Degree two is not possible due to the
Frobenius Theorem. Of course, curves can only have degrees 1,2 or 3 and again Frobenius
Theorem implies that hypersurfaces can only have degree 6. Thus, these are all possible
Hausdorff dimensions of C1,1 smooth submanifolds in the Engel group and formula (2)
holds for them. This answers Problem 1.1 of [1] in the case where the ambient space is
the Engel group, see also Section 8.1 of the same paper.

4. Surfaces in the Engel group

In this section we wish to show the following

Theorem 5. Let Σ be a 2-dimensional C1,1 smooth submanifold of E. Let d be the degree
of Σ and let Σd be the open subset of points of degree d. Then we have

(10) Sd
(
Σ \ Σd

)
= 0 .

Recall that the degree of a point in a submanifold is invariant under left translations. In
the sequel, we will number the independent variables of parametrized surfaces taking into
account the coordinate plane they span in R4. In fact, our surfaces are locally presented
also as graphs embedded in R4. These indexes will also help us to keep in mind the degree
of the corresponding variables with respect to the Engel dilations of R4.

Lemma 6. Let Σ be a 2-dimensional C1 smooth submanifold of E and let x ∈ Σ. Then
there exist local coordinates u in a neighbourhood U of 0 in R2 such that x−1Σ around
zero is given by the local parametrization φ : U −→ x−1Σ with φ(0) = 0 and we have

(11) φ(u) =


(φ1(u), φ2(u), u3, u4) if dΣ(x) = 5
(u1, φ

2(u), φ3(u), u4) or (φ1(u), u2, φ
3(u), u4) if dΣ(x) = 4

(u1, φ
2(u), u3, φ

4(u)) or (φ1(u), u2, u3, φ
4(u)) if dΣ(x) = 3

(u1, u2, φ
3(u), φ4(u)) if dΣ(x) = 2

,

where the functions φj satisfy

(12)

 ∇φ
3(0) =

(
0, φ3

u4
(0)
)

if dΣ(x) = 4
∇φ4(0) = (0, 0) if dΣ(x) = 3
∇φ4(0) = (0, 0) and ∇φ3(0) = (0, 0) if dΣ(x) = 2

.

Furthermore, for small r > 0, we have

(13) µ2(Dx,r ∩ Σ) = rdΣ(x)

∫
δ̃1/r

(
φ−1(Dr)

) Jφ(δ̃ru) du ,
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where Jφ(x) =
√

det
(
〈φui

, φuj
〉
)
i,j=1,...,4

is the Riemannian Jacobian of φ with respect to

the fixed left invariant Riemannian metric on E. The induced dilations on coordinates u
are defined as δ̃r(u) = (rdiui, r

djuj), where d1 = d2 = 1, d3 = 2 and d4 = 3.

Proof. The proof of (11) simply follows from the implicit function theorem and (5).
For example, let us consider the case dΣ(x) = 5 and let ψ any local parametrization of
x−1Σ around the origin. Then applying (5) to ψ at the origin, we must have ψ34

v (0) 6= 0,
since ψ(0) = 0. Then the mapping

(v1, v2) −→
(
ψ3(v), ψ4(v)

)
is invertible around the origin and one can take the new coordinates

(u3, u4) = (ψ3(v), ψ4(v)
)
.

The remainig cases proceed in similar way. Now, if we apply (5) to the parametrization φ
at the origin, having one of the forms given by (11), then a simple computation leads us
to (12). As an example, let us consider the case dΣ(x) = 4 and assume for instance that
φ(u) =

(
u1, φ

2(u), φ3(u), u4

)
, according to the second formula of (11). Then we have

deg
(
(φu1 ∧ φu4)(0)

)
= deg

((
X1 + φ2

u1
(0)X2 + φ3

u1
(0)X3

)
∧
(
φ2
u4

(0)X2 + φ3
u4

(0)X3 +X4

))
= deg

(
X1 ∧X4 + φ2

u1
(0)X2 ∧X4 + φ3

u1
(0)X3 ∧X4

)
.

Taking into account the definition of degree, in the latter equalities we have omitted
the linear combinations of X1 ∧ X2, X2 ∧ X3 and X1 ∧ X3, since they have degree less
than four and there is a nonvanishing addend X1 ∧ X4 of degree four. Observing that
deg(X3 ∧X4) = 5, hence we must have φ3

u1
(0) = 0 and the first formula of (12) follows.

The other cases are achieved in the same way. The left invariance of the Riemannian
surface measure gives

µ2

(
Σ ∩Dx,r

)
= µ2

(
x−1Σ ∩Dr

)
=

∫
φ−1(Dr)

Jφ(u) du.

The change of variable u = δ̃r(v) = (rdivi, r
djvj) and the fact that dΣ(x) = di + dj lead us

to formula (13). �

In the sequel, we will use the following box

Boxr = [−r, r]2 × [−r2, r2]× [−r3, r3]

In fact, setting Dr = D0,r and using homogeneity, there exists λ > 0 such that

(14) Boxλr ⊂ Dr ⊂ Boxr/λ for every r > 0.

Proposition 7. Let Σ be a 2-dimensional C1,1 smooth submanifold of E and assume that
d(Σ) ≥ 4 and dΣ(x) = 2. Then we have

lim
r→0

µ2(Σ ∩Dx,r)

rd(Σ)
= +∞.
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Proof. We use the coordinates given by Lemma 6 and apply formulae (11) and (12).
Then we have a constant c > 0 such that |φ3(u)| ≤ c|u|2 and |φ4(u)| ≤ c|u|2 for u small.
We have

δ̃ 1
r
(φ−1(Boxλr)) = δ̃1/r

{
(u1, u2) : |u1| ≤ λr, |u2| ≤ λr, |φ3(u)| ≤ (λr)2, |φ4(u)| ≤ (λr)3

}
,

that can be written as follows

δ̃ 1
r
(φ−1(Boxλr)) =

{
(x1, x2) :

|x1|
λ
≤ 1,

|x2|
λ
≤ 1,

|φ3(rx1, rx2)|
(λr)2

≤ 1,
|φ4(rx1, rx2)|

(λr)3
≤ 1

}
⊃

{
(x1, x2) : |x1| ≤ λ, |x2| ≤ λ, |x| ≤ λ√

c
, |x| ≤ λ3/2

√
c

√
r

}
.

Taking into account (13) and (14), it follows that

µ2(Σ ∩Dx,r)

rd(Σ)
≥ π λ3

c

Jφ(0)

2
r1−d(Σ)+dΣ(x) =

π λ3

c

Jφ(0)

2
r3−d(Σ) −→ +∞ as r → 0.

�

Proposition 8. Let Σ be a 2-dimensional C1,1 smooth submanifold of E and assume that
d(Σ) ≥ 4 and dΣ(x) = 3. Then we have

lim
r→0

µ2(Σ ∩Dx,r)

rd(Σ)
= +∞.

Proof. Applying (11) and (12) from Lemma 6 yields a parametrization φ(u) of a
neighbourhood of 0 in x−1Σ having one of the following two forms

(15) φ(u) = (u1, φ
2(u), u3, φ

4(u)) or φ(u) = (φ1(u), u2, u3, φ
4(u))

together with a constant c > 0 such that either |φ2(u)| ≤ c|u| or |φ1(u)| ≤ c|u| and
also |φ4(u)| ≤ c|u|2 for u small. Assume for instance that φ(u) = (u1, φ

2(u), u3, φ
4(u)).

Of course, the proof is the same in the case φ assumes the other form in (15). The set

δ̃ 1
r
(φ−1(Boxλr)) coincides with{

(x1, x3) :
|x1|
λ
≤ 1,

|x3|
λ2
≤ 1,

|φ2(rx1, r
2x3)|

λr
≤ 1,

|φ4(rx1, r
2x3)|

(λr)3
≤ 1

}
that contains the subset

Sr =

{
(x1, x3) : |x1| ≤ λ, |x3| ≤ λ2, |(x1, rx3)| ≤ λ

c
, |(x1, rx3)| ≤

√
λ3r

c

}
By the change of variable x′3 = rx3 we get

L2(Sr) =
1

r
L2

({
(x1, x

′
3) : |x1| ≤ λ, |x′3| ≤ rλ2, |(x1, x

′
3)| ≤ λ

c
, |(x1, x

′
3)| ≤

√
λ3r

c

})
.
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For r > 0 small, it follows that

L2(Sr) ≥
1

r
L2

({
(x1, x3) : |x3| ≤ rλ2,max{|x1|, |x3|} ≤

√
λ3r

2c

})
(16)

=
1

r
L2

({
(x1, x3) : |x3| ≤ rλ2, |x1| ≤

√
λ3r

2c

})

=
23/2 λ7/2

√
c

√
r .

Finally, taking into account (16), (13) and (14), it follows that

µ2(Σ ∩Dx,r)

rd(Σ)
≥ L

2(Sr)

rd(Σ)−3

Jφ(0)

2
−→ +∞ as r → 0.

�

Proposition 9. Let Σ be a 2-dimensional C1,1 smooth submanifold of E and assume that
d(Σ) = 3 and dΣ(x) = 2. Then we have

lim
r→0

µ2(Σ ∩Dx,r)

r3
= +∞.

Proof. From Lemma 6, applying (11) and (12), we get

(17) φ(u) =
(
u1, u2, φ

3(u), φ4(u)
)

that parametrizes a neighbourhood of 0 in x−1Σ and there exists a constant c > 0 such
that |φ3(u)| ≤ c|u|2 and |φ4(u)| ≤ c|u|2 for u small. Notice that these estimates do not
suffice to obtain our claim. We have to exploit the assumption that Σ has degree three.
In fact, from (5) it follows that φ14

u − φ1 φ13
u + (φ1)2

2
φ12
u = 0

φ24
u − φ1 φ23

u = 0

φ34
u + (φ1)2

2
φ23
u − φ1φ24

u = 0

.(18)

Thus, these equations hold for (17) and in particular the first two ones yield{
φ4
u2
− u1 φ

3
u2

+ (u1)2

2
= 0

−φ4
u1

+ u1φ
3
u1

= 0
.

We have proved that

∇φ4 =

(
u1 φ

3
u1
, u1 φ

3
u2
− (u1)2

2

)
,

hence the C1,1 regularity of ϕ yields a constant c1 > 0 such that |φ4(u)| ≤ c1|u|3 for u
small. Now, we argue as in Proposition 7, taking into account this better estimate on the
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order of vanishing of φ4. In this case, we have

δ̃ 1
r
(φ−1(Boxλr)) =

{
(x1, x2) :

|x1|
λ
≤ 1,

|x2|
λ
≤ 1,

|φ3(rx1, rx2)|
(λr)2

≤ 1,
|φ4(rx1, rx2)|

(λr)3
≤ 1

}
⊃

{
(x1, x2) : |x1| ≤ λ, |x2| ≤ λ, |x| ≤ λ√

c
, |x| ≤ λ

3
√
c1

}
= S,

Then taking into account (13) and (14), it follows that

µ2(Σ ∩Dx,r)

r3
≥ L

2(S)

r

Jφ(0)

2
−→ +∞ as r → 0.

�

Proof of Theorem 5. Notice that 2-dimensional C1,1 submanifolds of degree 2 would
be tangent everywhere to the horizontal subbundle, hence they cannot exist. Thus, the
possible degrees of Σ are 5,4 and 3. If d(Σ) = 5, then Theorem 2.16 of [4] applies, since
the Hausdorff dimension Q of E is 7, the codimension of Σ is 2 and the set C(Σ) in [4]
coincides with Σ \ Σ5. Then we have S5(Σ \ Σ5) = 0. If d(Σ) = 4, then Propositions 7
and 8 imply that

(19) lim
r→0

µ2(Σ ∩Dx,r)

r4
= +∞,

whenever x ∈ {z ∈ Σ | dΣ(z) < 4} = Σ \ Σ4. Applying Lemma 4, we get S4
(
Σ \ Σ4

)
= 0.

If d(Σ) = 3, then Propositions 9 implies that

(20) lim
r→0

µ2(Σ ∩Dx,r)

r3
= +∞,

whenever x ∈ {z ∈ Σ | dΣ(z) < 3} = Σ \Σ3. Then Lemma 4 yields S3
(
Σ \Σ3

)
= 0. This

ends the proof. �

Remark 2. Our techniques more precisely allow for extending both Proposition 7 and
Proposition 8 to the case when Σ is of class C1,α and α >

(
6 − d(Σ)

)
/d(Σ). In the

same way, Proposition 9 still holds for C1,α surfaces with α > 1/3. We limit ourselves to
surfaces of class C1,1, since this regularity is needed to apply results of [5] and therefore
to obtain formula (2) of Corollary 2.

5. Curves in the Engel group

In this section we wish to show the following

Theorem 10. Let Σ be a 1-dimensional C1,1 smooth submanifold of E. Let d be the degree
of Σ and let Σd be the open subset of points of degree d. Then we have

(21) Sd
(
Σ \ Σd

)
= 0 .
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In analogy with comments of Section 4, we will number the independent variable of
curves taking into account the coordinate line it spans in R4. In fact, we consider curves
locally presented as graphs embedded in R4. The indexes will also indicate the degree of
that direction with respect to the Engel dilations of R4.

Lemma 11. Let Σ be a 1-dimensional C1 smooth submanifold of E and let x ∈ Σ. Then
there exists a neighbourhood I of 0 in R such that x−1Σ around zero is given by the local
parametrization φ : I −→ x−1Σ with φ(0) = 0 and we have

(22) φ =

 (φ1(t4), φ2(t4), φ3(t4), t4) if dΣ(x) = 3
(φ1(t3), φ2(t3), t3, φ

4(t3)) if dΣ(x) = 2
(t1, φ

2(t1), φ3(t1), φ4(t1)) or (φ1(t2), t2, φ
3(t2), φ4(t2)) if dΣ(x) = 1

,

where the functions φj satisfy

(23)

{
φ̇4(0) = 0 if dΣ(x) = 2

φ̇4(0) = φ̇3(0) = 0 if dΣ(x) = 1
.

Furthermore, for small r > 0, we have

(24) µ1(Dx,r ∩ Σ) = rdΣ(x)

∫
δ̃1/r

(
φ−1(Dr)

) Jφ(δ̃rt) dt ,

where Jφ(t) =
√
〈φ̇(t), φ̇(t)〉 and 〈, 〉 denotes the fixed left invariant Riemannian metric.

The induced dilation is δ̃r(tj) = rdj tj, where d1 = d2 = 1, d3 = 2 and d4 = 3.

Proof. Taking into account the notion of pointwise degree, the proof of (22) simply
follows from the implicit function theorem and formula (8). As in the proof of Lemma 6,
we consider just one case as an example. The other ones can be simply obtained by
repeating this argument. For instance, if dΣ(x) = 3, then ψ̇4(0) 6= 0, where ψ is a
parametrization of x−1Σ around the origin. Setting t4 = ψ(s), we have proved (22) in the
case dΣ(x) = 3. Now, if we apply (8) to the parametrization φ at the origin, then a simple
computation gives (23). In fact, one has applied (8) to all forms of φ listed in (22). The
left invariance of the Riemannian surface measure gives

µ1

(
Σ ∩Dx,r

)
= µ1

(
x−1Σ ∩Dr

)
=

∫
φ−1(Dr)

Jφ(t) dt.

The change of variable t̃j = rdj tj and the fact that dΣ(x) = dj lead us to formula (24). �

Proposition 12. Let Σ be a 1-dimensional C1,1 smooth submanifold of E and assume
that d(Σ) ≥ 2 and dΣ(x) = 1. Then we have

lim
r→0

µ1(Σ ∩Dx,r)

rd(Σ)
= +∞.

Proof. By Lemma 11, applying formulae (22) and (23), we get a constant c > 0
such that max{|φ3(t)|, |φ4(t)|} ≤ c|t|2 and |φ2(t)| ≤ c|t| for t small. Moreover, x−1Σ can
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be locally parametrized either by (t1, φ
2(t1), φ3(t1), φ4(t1)) or (φ1(t2), t2, φ

3(t2), φ4(t2)).
Clearly, both cases have the same proof, hence assume for instance that

φ(t1) = (t1, φ
2(t1), φ3(t1), φ4(t1))

locally parametrizes x−1Σ. Taking into account (14), we consider

δ̃ 1
r
(φ−1(Boxλr)) = δ̃1/r

{
t1 :
|t1|
λr
≤ 1,

|φ2(t1)|
λr

≤ 1,
|φ3(t1)|
(λr)2

≤ 1,
|φ4(t1)|
(λr)3

≤ 1

}
.

This set can be written as{
τ :
|τ |
λ
≤ 1,

|φ2(rτ)|
λr

≤ 1,
|φ3(rτ)|

(λr)2
≤ 1,

|φ4(rτ)|
(λr)3

≤ 1

}
.

For r > 0 small, the previous set contains

Sr =

{
τ : |τ | ≤ λ3/2

√
c

√
r

}
.

Taking into account (24) and (14), it follows that

µ1(Σ ∩Dx,r)

rd(Σ)
≥ L

1(Sr)

rd(Σ)−1

Jφ(0)

2
−→ +∞ as r → 0.

�

Proposition 13. Let Σ be a 1-dimensional C1,1 smooth submanifold of E and assume
that d(Σ) = 3 and dΣ(x) = 2. Then we have

lim
r→0

µ1(Σ ∩Dx,r)

r3
= +∞.

Proof. By Lemma 11, applying formulae (22) and (23), we get a constant c > 0 such
that |φ4(t)| ≤ c|t|2 and max{|φ1(t)|, |φ2(t)|} ≤ c|t| for t small. Moreover, x−1Σ can be
locally parametrized by

(φ1(t3), φ2(t3), t3, φ
4(t3)).

Taking into account the previous estimates on φj, for r > 0 small we have

δ̃ 1
r
(φ−1(Boxλr)) = δ̃1/r

{
t3 :
|φ1(t3)|
λr

≤ 1,
|φ2(t3)|
λr

≤ 1,
|t3|

(λr)2
≤ 1,

|φ4(t3)|
(λr)3

≤ 1

}
=

{
τ : |τ | ≤ λ2

}
= S.

Thus, from (24) and (14), it follows that

µ1(Σ ∩Dx,r)

r3
≥ L

1(S)

r

Jφ(0)

2
−→ +∞ as r → 0.

�

Proof of Theorem 10. If d(Σ) = 3, then Propositions 12 and 9 imply that

(25) lim
r→0

µ1(Σ ∩Dx,r)

r3
= +∞,
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whenever x ∈ {z ∈ Σ | dΣ(z) < 4} = Σ \ Σ4. Thus, Lemma 4 yields S3
(
Σ \ Σ3

)
= 0. If

d(Σ) = 2, then Proposition 12 implies that

(26) lim
r→0

µ2(Σ ∩Dx,r)

r2
= +∞,

whenever x ∈ {z ∈ Σ | dΣ(z) < 2} = Σ \ Σ2 and this gives S2
(
Σ \ Σ2

)
= 0. �

Remark 3. As in the previous section, we observe that our techniques more precisely
allow for extending Proposition 12 to the case when the curve Σ is of class C1,α and
α >

(
3− d(Σ)

)
/d(Σ). In the same way, Proposition 13 still holds for C1 curves. Also in

this case, we have fixed our attention on C1,1 curves to apply results of [5] that lead us
to the integral formula (2) for curves.
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