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Unrectifiability and rigidity in stratified groups

By

Valentino Magnani

Abstract. In the class of stratified groups endowed with a left invariant Carnot-Carathéodory
distance, we give an algebraic characterization of purely unrectifiable groups and we study rigidity
properties. The main feature of our approach is the use of a suitable area formula with respect to
the Carnot-Carathéodory distance.

1. Introduction. The geometry of stratified groups is the source of several recent
investigations connected to Geometric Control Theory, Differential Geometry, PDEs,
Sobolev spaces and Geometric Measure Theory. A detailed account of these develop-
ments goes beyond the scope of this note, then we limit ourselves to mention some relevant
monographs [3], [6], [8], [10], [16], where further references can be found.

A stratified group, commonly known as “Carnot group”, is a simply connected nilpotent
Lie group with a graded algebra, [6]. Its metric structure is characterized by the first layer of
the Lie algebra, where a left invariant scalar product is defined. This structure yields a left
invariant “Carnot-Carathéodory distance”, see Section 2. Stratified groups endowed with
a Carnot-Carathéodory distance constitute a very interesting class of metric spaces to be
investigated, due to the richness of their structure. In fact, they are connected by rectifiable
curves, satisfy the Poincaré inequality, [7], and possess a one parameter family of dilations
which properly scale with the Carnot-Carathéodory distance.

The purpose of developing a metric theory of currents has been successfully achieved in
[2], where k-rectifiable sets (see 3.2.14 of [5]) play an important role. In connection with
the study of rectifiability in metric spaces, the existence of k-rectifiable sets in stratified
groups has been first investigated in [1], where it has been proved that the three dimensional
Heisenberg group is purely k-unrectifiable for every k greater than one. In other words,
k-rectifiable sets in the Heisenberg group are all Hk

d -negligible, where Hk
d denotes the

k-dimensional Hausdorff measure with respect to the Carnot-Carathéodory distance d of
the group. The first result of this note is a simple algebraic characterization of all purely
k-unrectifiable stratified groups.
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Theorem 1.1. Let M be a stratified group with Lie algebra M = W1⊕ W2 ⊕ · · · ⊕ Wι.
Then M is purely k-unrectifiable if and only if there do not exist k-dimensional Lie
subalgebras contained in the first layer W1.

This characterization already contains the leading theme of this note, concerning the
strong connection between algebraic and metric structure of a stratified group. According
to the notion of rectifiability proposed in [12], a subset E of M is G-rectifiable if it is the
image of a Lipschitz mapping defined on a subset of G, where G is a subgroup of a possibly
different stratified group. In connection with this notion, we more generally establish a
criterion for G-unrectifiability in the case G is a stratified group, see Definition 3.1.

Theorem 1.2. Let M and G be stratified groups with Lie algebras M and G, respectively.
Then M is purely G-unrectifiable if and only if M does not contain any Lie subalgebra
which is G-isomorphic to G.

We realize that these theorems are a simple consequence of the area formula for Lipschitz
mappings between stratified groups, [9], [12], [17]. Recall that two Lie algebras of stratified
groups are G-isomorphic if there exists an algebra isomorphism that respects the grading,
see Definition 2.7. It is easy to see that Theorem 1.2 yields Theorem 1.1 in the case G = R

k ,
see Remark 3.3.

We emphasize the fact that area formula in stratified groups is a consequence of the
remarkable work by Pansu [11], where an extension of the classical Rademacher theorem
to stratified groups is obtained. This theorem is one of the key ingredients in the proof of
Theorem 3 in [11], which amounts to the following rigidity result, proved in the same paper:
two biLipschitz equivalent stratified groups are G-isomorphic. Our approach for finding
criteria of unrectifiability also yields a slightly improved version of the previous rigidity
result.

Theorem 1.3. Let G and M be stratified groups and let A ⊂ G be a subset of positive
measure. If there exists a biLipschitz mapping f : A −→ M such that f (A) ⊂ M has
positive measure, then G and M are G-isomorphic.

According to results of [13], the previous theorem in the case G is the Euclidean space
R

k and M is the Heisenberg group H
2n+1 implies that any open subset of H

2n+1 cannot
be parametrized by any biLipschitz mapping defined on an open subset of R

k for any
k � 1. Similarly, another simple application of area formula immediately shows that Nash’s
embedding theorem for Riemannian manifolds cannot be extended to any noncommutative
stratified group endowed with a Carnot-Carathéodory distance, see Remark 3.5.

2. Some preliminary notions. This introductory section is devoted to the essential
notions we will use throughout.

D e f i n i t i o n 2.1 (Stratified group). A stratified group G is a simply connected Lie
group, whose Lie algebra G is nilpotent and can be written as a direct sum of subspaces
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V1⊕· · ·⊕Vι with the property [V1, Vj ] = Vj+1 for every j � 1, where Vj = {0} whenever
j > ι. The integer ι is called the step of the group.

Throughout the paper we will denote by Wj the factors of the Lie algebra M of
a stratified group M, according to the previous definition, namely, M = W1 ⊕ · · · ⊕ Wυ .
More information on stratified groups can be found for instance in [6]. In view of the
next definition, we recall that the exponential map expG : G −→ G is a diffeomorphism
whenever G is simply connected and nilpotent, [4].

D e f i n i t i o n 2.2 (Dilations). Let G be a stratified group and let G be its Lie algebra.

We define dilations on G by δr : G −→ G, δr

(
ι∑

j=1
vj

)
=

ι∑
j=1

rj vj for every r > 0.

The exponential map expG : G −→ G transfers dilations from G to G, hence they are
automatically defined on G. We will often denote dilations by δG

r : G −→ G or by
δG
r : G −→ G, depending on their domain.

D e f i n i t i o n 2.3. A continuous left invariant distance d : G × G −→ [0, +∞[ such
that d(δrx, δry) = r d(x, y) for every r > 0, is called homogeneous distance.

Every stratified group possesses an important example of homogeneous distance, called
the Carnot-Carathéodory distance. To any point of p ∈ G we can associate the subspace
HpG = {X(p) ∈ TpG | X ∈ V1}, where V1 is the first layer of the Lie algebra G.
Here we have identified G with the space of all left invariant vector fields. An absolutely
continuous curve γ whose velocity vector γ ′(t) is contained in Hγ(t)G for a.e. t is called
horizontal curve. Our hypothesis on the algebra G implies that iterated commutators of
left invariant vector fields of V1 span any direction of G, hence as a consequence of the
well known Chow-Rashevsky theorem any two points of G are connected by horizontal
curves, see Theorem 2.4 at p. 15 of [3]. Taking the infimum among lengths of horizontal
curves connecting two points p, q ∈ G we obtain the Carnot-Carathéodory distance d(p, q)

between them. Note that this distance in the case of stratified groups can be chosen as left
invariant by fixing a left invariant Riemannian metric on G which measures the length of
horizontal curves. It is clear that we can choose a smooth metric only on the fibers HpG

of G. We also point out that continuity, left invariance and homogeneity of homogeneous
distances imply that they are all biLipschitz equivalent.

Recall that stratified groups of step one coincide with Euclidean spaces and dilations
become the standard multiplication by a scalar number. In this case the Carnot-Carathéodory
distance is the Euclidean one. In the sequel the homogeneous distances ρ and d will be
fixed on the stratified groups M and G, respectively.

R e m a r k 2.4. Using dilations introduced in Definition 2.2, and observing that the

Jacobian of δr : G −→ G is given by rQ, where Q =
ι∑

j=1
j dim(Vj ) and G = V1 ⊕

V2 ⊕ · · ·Vι, one can check that the Hausdorff dimension of G with respect to any homo-
geneous distance is equal to Q. This also implies that the Q-dimensional Hausdorff measure
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HQ
d is left invariant, finite and positive on bounded measurable sets, hence it is the Haar

measure of the group (up to a constant factor).

D e f i n i t i o n 2.5. A G-linear map L : G −→ M is a group homomorphism between
stratified groups G and M, having the property L(δG

r x) = δM
r L(x) for every x ∈ G and

every r > 0. An algebra homomorphism L : G −→ M will be called G-linear if it satisfies
L(δG

r v) = δM
r L(v) for every v ∈ G and every r > 0.

Note that a G-linear map is automatically continuous, see Proposition 3.11 of [9]. Thus,
we can introduce the following definition.

D e f i n i t i o n 2.6. Let d and ρ be homogeneous distances on G and M, respectively.
The homogeneous norm of a G-linear map L : G −→ M is defined as follows

‖L‖ = sup
d(x)�1

ρ(L(x), eM),

where eM denotes the unnit element of M.

The homogeneity of homogeneous distances implies that for every x ∈ G we have

ρ(L(x), eM) � ‖L‖ d(x, eG),(1)

where eG denotes the unit element of G. Inequality (1) will be used in the proof of
Proposition 2.11.

D e f i n i t i o n 2.7. Two stratified groups G and M are said to be G-isomorphic if there
exists an invertible G-linear map L : G −→ M. Equivalently, the corresponding Lie
algebras G and M are called G-isomorphic if there exists an invertible G-linear map L :
G −→ M.

R e m a r k 2.8. Let expG : G −→ G and expM : M −→ M denote the exponential
mappings of G and M, respectively. For each G-linear map L : G −→ M the composition
L = exp−1

M ◦L ◦ expG : G −→ M is a G-linear map of Lie algebras and vice versa. Thus,
G and M are G-isomorphic if and only if so are their corresponding Lie algebras.

Let A be a measurable subset of G. We denote by I(A) the subset of all density points
of A, namely, the set of points x ∈ A such that

lim
r→0+ HQ

d (A ∩ Bx,r )/HQ
d (Bx,r ) = 1.

It is a general fact that HQ
d (A\I(A)) = 0, see for instance [5]. The following important

notion of differentiability is due to Pansu, see Section 1.3 of [11].

D e f i n i t i o n 2.9 (P-differentiability). Let G and M be stratified groups endowed with
homogeneous distances d and ρ, respectively. We say that a map f : A −→ M is
P-differentiable at x ∈ I(A) if there exists a G-linear map L : G −→ M such that

lim
y∈A, y→x

ρ
(
f (x)−1f (y), L(x−1y)

)
d(x, y)

= 0 .(2)
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Note that when f is Lipschitz, the G-linear map L in (2) is uniquely defined, see
Proposition 2.2 of [9]. The G-linear map of (2) is the P-differential of f at x. We will utilize
the usual notation df (x) to denote the P -differential, according to the fact that when G and
M are Euclidean spaces, P -differentiability becomes the classical notion of differentiability.

Theorem 2.10 (Pansu). Let G and M be stratified groups and let f : A −→ M be
a Lipschitz mapping, where A ⊂ G. Then f is HQ

d -a.e. P -differentiable.

The proof of this theorem is due to Pansu, see Théorème 2 of [11]. Its extension to the
case of measurable domains is contained in [14], see also [9].

Proposition 2.11 (Chain rule). Let G, P and M be stratified groups and consider
f : A −→ P, assuming that it is P -differentiable at x ∈ I(A). Let g : f (A) −→ M

be P -differentiable at f (x) ∈ I(f (A)), where A ⊂ G. Then g ◦ f : A −→ M is
P -differentiable at x, with P -differential d(g ◦ f )(x) = dg(f (x)) ◦ df (x).

P r o o f. Let d , ν and ρ be homogeneous distances on G, P and M, respectively. We
define h = g ◦ f , L = dg(y) ◦ df (x), y = f (x) and fix ε > 0. By hypothesis there exists
δ > 0 such that

ρ(h(x)−1h(u), L(x−1u)) � ρ(h(x)−1h(u), dg(y)(y−1f (u)))

+ ‖dg(y)‖ ν(df (x)(x−1u), y−1f (u))

� ε ν(y, f (u)) + ‖dg(y)‖ ε d(x, u),(3)

whenever d(x, u), ν(y, f (u)) � δ. The P -differentiability of f at x implies that

ν(y, f (u)) � (‖df (x)‖ + 1) d(x, u) � δ

whenever d(u, x) � δ′, for some δ′ ∈]0, δ[. Replacing the latter inequality in (3) our claim
follows. �

D e f i n i t i o n 2.12 (Jacobian). Let L : G −→ M be a G-linear map. The Jacobian of
L is defined by

JQ(L) = HQ
ρ (L(B1))/HQ

d (B1).

The next theorem states the area formula for Lipschitz mappings between stratified
groups, [9], [12], [17].

Theorem 2.13 (Area formula). Let G and M be stratified groups and let A ⊂ G be
a measurable subset. Then for every Lipschitz mapping f : A −→ M there holds∫

A

JQ(df (x)) dHQ
d (x) =

∫
M

N(f, A, y) dHQ
ρ (y).(4)

We have denoted by N(f, A, y) the multiplicity function, being equal to +∞ if
f −1(y) ∩ A is not finite and to #(f −1(y) ∩ A) otherwise.
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R e m a r k 2.14. Note that the Jacobian of a G-linear map L vanishes whenever L is not
injective. This can be seen as follows. In view of Remark 2.4 the Hausdorff dimension

of G is Q =
ι∑

j=1
j dim(Vj ). If L : G −→ M is a G-linear map which is not injective,

neither is the G-linear map L = exp−1
M ◦L ◦ expG : G −→ M. Therefore, there exists

v =
ι∑

j=1
vj ∈ G \{0} with vj ∈ Vj for every j = 1, . . . , ι, such that

ι∑
j=1

L(vj ) = 0. The

contact property of G-linear maps proved in Corollary 3.15 of [9] shows that L(V1) ⊂ W1.
Since L is also an algebra homomorphism, then L(Vj ) ⊂ Wj for every j � 1. From
the fact that M is a direct sum of Wj and that L(vj ) ∈ Wj , we conclude that L(vj ) = 0
for every j = 1, . . . , ι. Let vj0 
= 0 for some j0 ∈ {1, . . . , ι}. It follows that
L(vj0) = 0, then dim(L(Vj0)) < dim(Vj0) and the Hausdorff dimension of the image

L(G) is
ι∑

j=1
j dim(L(Vj )) <

ι∑
j=1

j dim(Vj ) = Q. This shows that HQ(L(G)) = 0. In

view of Definition 2.12, we have proved that JQ(L) = 0.

3. Unrectifiability and rigidity. In this section we give the proofs of theorems stated
in the introduction.

D e f i n i t i o n 3.1. Let G be a stratified group with Hausdorff dimension Q. We say that
a metric space (Y, ρ) is purely G-unrectifiable if for every Lipschitz mapping f : A −→ Y ,
with A ⊂ G, we have HQ

ρ (f (A)) = 0.

R e m a r k 3.2. In the case G = R
k , a stratified group M is purely G-unrectifiable if and

only if it is purely k-unrectifiable, according to 3.2.14 of [5].

P r o o f o f T h e o r e m 1.2. Assume that M is purely G-unrectifiable. Reasoning by
contradiction, if there existed a Lie subalgebra A ⊂ M, which is G-isomorphic to G,
then we would have an injective G-linear map L : G −→ M. Thus, the G-linear map
L = expM ◦ L ◦ exp−1

G : G −→ M is also injective and from Proposition 3.18 of [9] we
conclude that JQ(L) > 0. By virtue of (1) we know that every G-linear map is Lipschitz,
hence by (4) we immediately have HQ

ρ (L(A)) > 0, whenever A ⊂ G is a measurable subset
with positive measure. Thus, M cannot be purely G-unrectifiable. Conversely, suppose
that M does not contain any Lie subalgebra G-isomorphic to G and let f : A −→ M be
a Lipschitz mapping defined on a measurable subset A ⊂ G. In view of (4), we have

HQ
ρ (f (A)) �

∫
A

JQ(df (x)) dHQ
d (x).(5)

Now we notice that the P -differential df (x) : G −→ M cannot be injective. In fact, if
this were the case, then the Lie subalgebra exp−1

M ◦ df (x) expG(G) ⊂ M would turn out
to be G-isomorphic to G. As we have noticed in Remark 2.14 the non injectivity gives
JQ(df (x)) = 0, whence inequality (5) yields HQ

ρ (f (A)) = 0. This ends the proof.
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R e m a r k 3.3. Let us point out that the statement of Theorem 1.1 is contained in that
of Theorem 1.2 as a particular case. To see this, it suffices to show that the existence of a
k-dimensional Lie subalgebra A ⊂ M, which is G-isomorphic to R

k is necessarily con-
tained in the first layer W1 of the Lie algebra M. Let L : R

k −→ A be a G-linear map.
Then by virtue of Corollary 3.15 of [9] we obtain that A = L(Rk) ⊂ W1. Conversely,
if A is a k-dimensional Lie subalgebra of M contained in W1, then it is G-isomorphic
to R

k . In fact, we have

[A, A] ⊂ W2 ∩ A ⊂ W2 ∩ W1 = {0}
hence A is abelian, namely, it is G-isomorphic to R

k .

R e m a r k 3.4. By Theorem 1.1 it is easy to see that whenever dim(W1) < k the stratified
group M with graded algebra M = W1 ⊕· · ·⊕Wι is purely k-unrectifiable. This is the case
when we consider k > 2 and M equal to the three dimensional Heisenberg group H

3, whose
Lie algebra h3 = V1 ⊕V2 has the properties [V1, V1] = V2, dim(V1) = 2 and dim(V2) = 1.
Then we conclude that H

3 is purely k-unrectifiable for every k > 2. Furthermore, V1 is
not a subalgebra of h3, since [X, Y ] /∈ V1 whenever X, Y are linearly independent vectors
of V1, hence H

3 is also purely 2-unrectifiable, according to results in Section 7 of [1].

P r o o f o f T h e o r e m 1.3. We argue by contradiction, assuming that G and M are not
G-isomorphic and that there exists a biLipschitz mapping f : A −→ M, where A ⊂ G

and f (A) ⊂ M have positive measure. Let Q and Q′ be the Hausdorff dimensions of
G and M, respectively. Since f is biLipschitz we have HQ

ρ (f (A)) > 0, in addition for
every r > 0 we have

HQ
ρ (f (A ∩ Br)) � Lip(f )Q HQ

d (A ∩ Br) < ∞,

where Lip(f ) is the Lipschitz constant of f and Br ⊂ G is the open ball with center at
the unit element and radius r . Thus, by uniqueness of the Hausdorff dimension we have
Q = Q′. Now, we divide A into three disjoint subsets A0, A1 and A2, where A0 is the
subset of points either belonging to A\I(A) or where f is not P -differentiable, A1 is the
subset of points where the P -differential of f is surjective and A2 is the subset of points
where the P -differential of f is not surjective. As a consequence of Theorem 2.10 and the
fact that density points have full measure, we have HQ

d (A0) = 0. Let x ∈ A1 and consider
the P -differential df (x) : G −→ M. By our assumption the G-linear map df (x) cannot be
a G-isomorphism, hence it is not injective. By Remark 2.14 we have JQ(df (x)) = 0 and
the area formula (4) gives

HQ
ρ (Z1) =

∫
A1

JQ (df (x)) dHQ
d (x) = 0 ,

where Z1 = f (A1). The biLipschitz property of f gives HQ
d (A1) = 0. Now we define

g = f −1 : Z2 −→ A2, where Z2 = f (A2) and consider the subset Z′
2 ⊂ I(Z2) where

g is P -differentiable. Thus, we have both HQ
ρ (Z2\Z′

2) = 0 and HQ
d (A2\A′

2) = 0, where
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we have defined A′
2 = g(Z′

2). As a consequence of Proposition 2.11 we can P -differentiate
the composition idA′

2
= g ◦ f : A′

2 −→ A′
2, getting

idG = dg(f (x)) ◦ df (x),(6)

for any x ∈ A′
2. By virtue of (6) dg(y) is surjective for every y ∈ Z′

2 = f (A′
2), then it

cannot be injective for every y ∈ Z′
2 = f (A′

2). From the previous argument we conclude

that HQ
d (g(Z′

2)) = HQ
d (A′

2) = 0. Joining the fact that HQ
d (A1) = 0, we have obtained that

HQ(A) = 0, which conflicts with our assumption HQ
d (A) > 0.

R e m a r k 3.5. As a final application of area formula, we show that any noncommutative
stratified group cannot be embedded into R

k by a biLipschitz mapping, for every k � 1. By
contradiction, if we had an open subset � of G and a biLipschitz mapping f : � −→ R

k ,
then we would obtain

0 < HQ
d (�) � Lip

(
(f −1)|f (�)

)Q HQ
|·|(f (�)),(7)

where Q is the Hausdorff dimension of G and HQ
|·| denotes the Q-dimensional Hausdorff

measure with respect to the Euclidean distance | · |. On the other hand, any G-linear
map L : G −→ R

k cannot be injective in that G is not commutative and L is a group homo-
morphism, hence JQ(L) = 0. By area formula (4) it follows that HQ

|·|(f (�)) = 0, leading
us to a contradiction with (7).
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