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Abstract

We prove the almost everywhere approximate di�erentiability of functions

with bounded variation in strati�ed groups and we study their approximate

discontinuity set. We introduce functions of bounded higher order variation and

obtain a weak version of Alexandro� di�erentiability theorem in this context.

We present a nontrivial class of functions with second order bounded variation,

arising from inf-convolution formula of a suitable \cost" function.
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Introduction

Geometric Measure Theory in metric spaces has become a subject of increasing in-
terest in these recent years, [4, 6, 7, 13, 32, 44, 57]. A particular attention has
been devoted to the framework of Carnot-Carath�eodory spaces and strati�ed groups,
[24, 25, 26, 27, 33, 34, 37, 38, 39, 46, 48, 50, 51, 61].

Strati�ed groups, also known as Carnot groups, [21, 49], can be regarded as \in-
trinsic" tangent spaces of Carnot-Carath�eodory manifolds, [9, 42, 45]. They naturally
have additional homogeneity properties, e.g. the existence of a one parameter group
of dilations which scale homogeneously with respect to a suitable left invariant di-
stance, namely the Carnot-Carath�eodory distance. Most of the classical analysis can
be carried out in these groups and in Carnot-Carath�eodory spaces. For instance,
important results concerning the classical theory of Sobolev spaces, such as Poincar�e
inequalities, embedding theorems, representation formulas, trace theorems, compact-
ness results and much more, have been extended to Carnot-Carath�eodory spaces and
to a general metric space setting [14, 22, 23, 29, 30, 31, 47]. In some respects, our
study goes in the same direction of the previously mentioned results, dealing with
the properties of functions whose \horizontal" distributional derivatives are mea-
sures, instead of Lp functions. Our approach takes advantage of some results about
Sobolev spaces in Carnot-Carath�eodory spaces, see Subsection 1.4, but the case of
BV functions has also some distinctive features.

The notion of function with bounded variation has been extended to the context
of Carnot-Carath�eodory spaces in [11]. Recently, relevant recti�ability results con-
cerning sets of H-�nite perimeter in Heisenberg groups and general 2-step strati�ed
groups have been achieved in [25], [27], extending the celebrated De Giorgi Recti�a-
bility Theorem, [17]. In this context, it is rather natural to investigate what can be
said about functions of horizontal bounded variation (in short, H-BV functions).

Our �rst basic result concerns weak di�erentiability of H-BV functions in strati�ed
groups. Let u : 
 �! R be an H-BV function, where 
 denotes an open set of a
strati�ed group G. Then for a.e. x 2 
 there exist a horizontal vector rHu(x) such
that

lim
r!0+

1

r

Z
Ux;r

��u(y)� ~u(x)� 
rHu(x); ln(x
�1y)

��� dy = 0 : (1)

Here rHu is the density of the absolutely continuous part of the vector Radon mea-
sure DHu associated to u, the brackets h ; i stand for the left invariant Riemannian
scalar product considered in G and the ball Ux;r of center x and radius r is built
with respect to the Carnot-Carath�eodory distance. The function ln : G �! G is the
inverse of the exponential map.

Moreover, we show that the approximate discontinuity set Su (De�nition 1.9) is
contained in a countable union of essential boundaries of sets with H-�nite perimeter.
This result, together with those in [25], [27], allows us to conclude that in 2-step
strati�ed groups the set Su is countably recti�able, in the sense of strati�ed groups.
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These results extend to a more general setting some classical facts about BV functions
on Euclidean spaces, see the historical note in [5], and [10], [20], [62].

We also introduce functions with H-�nite higher order variation and we prove
higher order di�erentiability results. In the Euclidean setting, functions of \Bounded
Hessian" were introduced in [18], as those maps whose second order distributional
derivatives are measures. Following a natural analogy, we de�ne H-BV k-functions as
those functions whose horizontal distributional derivatives up to order k are measures.

For these maps we are able to prove an Alexandrov-type di�erentiability theorem:
for a.e. x 2 
 there exists a polynomial P[x] with homogeneous degree less than or
equal to k, such that

lim
r!0+

1

rk

Z
Ux;r

ju� P[x]j = 0 : (2)

The analogous Euclidean result can be found in Proposition 2.2 of [3].
Our method is based on two crucial estimates: �rst, in a suitable point x we esti-

mate the di�erence ju(y)�u(x)j utilizing the maximal function, see (23). Second, we
use the representation formula (16) in the form (18) in order to obtain information
on the behavior of jDHvj, where v = jDHuj. Notice also that the non-commutativity
of the group is the source of additional di�culties, and our proof uses the Poincar�e-
Birkho�-Witt Theorem. We point out that convex functions in Euclidean spaces are
locally (H-)BV 2 maps, [1]. Thus, our approximate di�erentiability theorem (Theo-
rem 3.9), together with standard L1 estimates for convex functions (see Theorem 1
of Section 6.3 in [19]) yield the classical Alexandrov di�erentiability Theorem (see
Theorem 1 of Section 6.4 in [19]).

It is rather natural to look for a suitable notion of convexity for maps de�ned
on strati�ed groups, this is motivated for instance by applications to PDE problems.
This notion has been recently introduced in [15] and [36]. Notice that this intrinsic
notion of convexity must be weaker than the classical Euclidean convexity. Here a
remarkable open question that arises from the PDE context and has an interest in
its own is to inquire whether the Alexandrov di�erentiability Theorem holds in a
pointwise form for this class of convex functions. Precisely, what is still not clear
is whether these maps are H-BV 2 in the sense of De�nition 3.1. In fact, in [15]
and [36] the above mentioned L1-estimates valid for Euclidean convex functions
have been extended to the new class of maps introduced in the same papers. These
estimates together with our Theorem 3.9 would imply the pointwise second order
di�erentiability, as in the classical Alexandorv Theorem.

Acknowledgements. It is a pleasure to thank Fulvio Ricci for his precious com-
ments.
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1 Notation, de�nitions and basic tools

In this section we introduce the basic notions we are going to use throughout the
paper. We start recalling some facts on the geometry of strati�ed groups.

1.1 Strati�ed groups

We consider a simply connected strati�ed nilpotent Lie group G, whose Lie algebra
G is the direct sum of subspaces Vi and the following commutator relations hold
[Vj ; V1] = Vj+1, for any j � 1, with Vi = f0g i� i > �. These groups are also called
Carnot groups, [49]. The integer � is called step of the group and the subspace V1
is called the horizontal space. We denote left translations of the group as follows
lx : G �! G, lx(y) = xy. Via the di�erential of left translations, the horizontal space
V1 can be translated at any point x of G, thus getting a subspace Hx of TxG. These
subspaces are called horizontal �bers and the family of all Hx is called the horizontal
subbundle of G, denoted byH. We will writeH
 to indicate the horizontal subbundle
on an open subset 
 � G. The graded structure allows us to de�ne a one parameter

group of dilations �r : G �! G, r > 0, which is de�ned as �r

�P�
j=1 vj

�
=
P�

j=1 r
jvj ;

where
P�

j=1 vj = v and vj 2 Vj for each j = 1; : : : �. Since G is simply connected
and nilpotent the the exponential map exp : G �! G is a di�eomorphism, so that
dilations can be canonically transposed on G. We will use the same symbol to denote
the dilations of the group. We denote by ln the inverse function of exp and we indicate
by e the unit element of the group. The metric structure on a strati�ed group is built
using what we call graded metrics. These are left invariant Riemannian metrics such
that the spaces fVig are orthogonal. Graded metrics are the \natural" choice that
respects the algebraic structure of the group. The Riemannian scalar product induced
by a graded metric will be denoted by h ; i. The symbol j � j will be used to indicate
either the norm of a vector in the tangent bundle or the norm of a scalar number.
By virtue of the left invariance of g we can construct a left invariant distance on G in
such a way that it is 1-homogeneous with respect to dilations. To do this, we consider
the class of admissible paths, e.g. absolutely continuous curves  : [a; b] �! G, such
that for a.e. t 2 [a; b] they satisfy 0(t) =

Pm
i=1 ci(t)Xi ((t)), where

Pm
i=1 c

2
i (t) � 1

and (X1; : : : ; Xm) is an orthonormal frame of H
. The conditions on commutators
of H guarantee that any pair of points of G can be joined by an horizontal curve.
Hence we can de�ne the �nite number

d(x; y) := inf
n
b� a j  : [a; b] �! G is admissible and (a) = x, (b) = y

o
for any x; y 2 G. One can verify that d is a distance on G, namely the Carnot-

Carath�eodory distance, see for instance [31]. This distance is continuous with respect
to the topology of the group and has the following properties:

1. d(x; y) = d(ux; uy) for every u; x; y 2 G ,
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2. d(�rx; �ry) = r d(x; y) for every r > 0 :

Any continuous distance on G which has the above properties is called a homogeneous

distance. We simply write d(z) to denote the distance between z and e. All the homo-
geneous distances are bi-Lipschitz equivalent and induce the topology of the group.
Throughout the paper we will utilize the Carnot-Carath�eodory distance and we will
denote it simply by d, if not otherwise stated. We denote by Q =

Pl
j=1 j dim(Vj)

the Hausdor� dimension of G with respect to the Carnot-Carath�eodory distance and
by q the dimension of the Lie algebra. Notice that the Haar measure of G, the Rie-
mannian volume and the Q-dimensional Hausdor� measure on G coincide up to a
dimensional factor. Furthermore, for a �xed basis of G, we can read these measures
on G as the q-dimensional Lebesgue measure up to a positive factor. We will use the
symbol dx to denote the integration with respect to the Riemannian volume mea-
sure. We denote either by jAj or vol(A) the Riemannian volume of a Borel set A.
The symbol

R
A indicates the averaged integral and uA denotes the average

R
A u of the

map u : A �! R.

De�nition 1.1 We denote by Ux;r the open ball with center x 2 G and radius
r > 0 with respect to Carnot-Carath�eodoy distance d. We will omit the center x if
it coincides with the unit element of the group.

The notions of continuity and di�erentiability we will consider throughout the paper
are clearly independent of the homogeneous metric we consider. So, for the sake of
simplicity we will always consider the Carnot-Carath�eodory distance.

1.2 H-BV functions

The notion of BV function has been generalized in the general framework of Carnot-
Carath�eodory spaces in [11] and it has been further studied in [24], [29]. A general
notion of function of bounded variation has been also given in metric spaces, [44].
We particularize this notion to strati�ed groups in such a way that the variational
measure of a BV function depends only on the restriction of the graded metric to the
horizontal subbundle. Throughout the paper, 
 will denote an open subset of G.

De�nition 1.2 (Horizontal gradient) Let f : 
 �! R be a di�erentiable func-

tion. The horizontal gradient of f at x 2 
 is

rHf(x) :=
mX
i=1

Xif(x)Xi ;

where (X1; : : : ; Xm) is an orthonormal frame of H
.

Notice that this de�nition is independent of the orthonormal frame (X1; : : : ; Xm).
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De�nition 1.3 (Horizontal vector �elds) The space of smooth sections of H

is denoted by �(H
). The space �c(H
) denotes all the elements of �(H
) with
compact support contained in 
. Elements of �(H
) are called horizontal vector

�elds.

De�nition 1.4 (H-BV functions) We say that a function u 2 L1(
) is a function
of H-bounded variation (in short, an H-BV function) if

jDHuj(
) := sup

�Z


u div� dx

���� 2 �c(H
); j�j � 1

�
<1 ;

where the symbol div denotes the Riemannian divergence. We denote respectively
by BVH(
) and BVloc;H(
) the space of all functions of H-bounded variation and of
locally H-bounded variation.

Notice that our de�nition of H-BV function does not involve any frame of vector
�elds and by Proposition 1.7 below, the associated variational measure only depends
on the restriction of the graded metric to the horizontal subbundle. The same propo-
sition guarantees that our de�nition can be equivalently stated using horizontal and
orthonormal vector �elds of H
, so it is consistent with the known de�nitions given
in Carnot-Carath�eodory spaces, [11], [24], [25], [26], [29]. Indeed, the lack of a homo-
geneous structure in these spaces forces the use of a particular frame of vector �elds.
However, following [24], a �xed frame of vector �elds induces a nonnegative matrix
A(x) (which should be interpreted as a degenerate Riemannian metric) and de�nes
the space BVA(
) in a way similar to ours.

By Riesz Representation Theorem we get the existence of a nonnegative Radon
measure jDHuj and a Borel section � of H
 such that j�j = 1 and for any horizontal
vector �eld � 2 �c(H
) we haveZ



udiv� = �

Z


h�; �i djDHuj : (3)

Some remarks here are in order, since the canonical Riesz theorem deals with linear
operators on spaces of continuous functions. In this case the space is �c(H
) and
we have used the scalar product in each �ber of the tangent spaces (indeed, strictly
speaking � should be thought of as a section of the cotangent bundle). Using local
coordinates it is not hard to prove the extension of Riesz theorem we used. The
\vector" measure � jDHuj, acting on bounded Borel sections � of H
 as in (3) is
denoted by DHu. Splitting jDHuj in absolutely continuous part jDHuja and singu-
lar part jDHujs with respect to the volume measure, we have the Radon-Nikod�ym
decomposition DHu = Da

Hu + Ds
Hu, with Da

Hu = �jDHuja, Ds
Hu = �jDHujs. We

denote by rHu the density of Da
Hu with respect to the volume measure HQ. Note

that

rHu =
� jDHuja

vol
and therefore the Borel map rHu is a section of H
.
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Remark 1.5 For a.e. x 2 
 we have

lim
r!0+

jDs
Huj(Ux;r)
rQ

= 0 :

Indeed, notice that from Radon-Nikod�ym Theorem we get a Borel subset N � 

such that jN j = 0 and jDs

Huj(N c) = 0. Therefore, if we had a measurable subset
A � 
, with jAj > 0 and

lim sup
r!0+

jDs
Huj(Ux;r)
jU1j rQ > 0 ;

for any x 2 A we would get A0 � A and � > 0 such that jDs
Huj(A0) � � jA0j > 0, see

for instance Theorem 2.10.17 and Theorem 2.10.18 of [20]. Hence

jDs
Huj(A0 nN) � �jA0 nN j > 0 ;

which contradicts jDs
Huj(N c) = 0.

De�nition 1.6 We de�ne nj = dimVj for any j = 1; : : : ; �, m0 = 0 and mi =Pi
j=1 nj for any i = 1; : : : ; �. We say that (W1; : : : ;Wq) of G is an adapted basis, if

(Wmj�1+1; : : : ;Wmj
) (4)

is a basis of Vj for any j = 1; : : : ; �. It is easy to realize that any graded metric
induces an adapted and orthonormal basis of G.

The following proposition guarantees that the intrinsic notion of H-BV function �ts
the one given by vector �elds. Its proof follows computing the Riemannian divergence
div� expressed as TrD�, where D is the standard Riemannian connection, and taking
into account that the Riemannian metric is graded.

Proposition 1.7 For every orthonormal basis (X1; : : : ; Xm) of H
 we have

div� =
mX
i=1

Xi�
i ;

where � 2 �(H
) and � =
Pm

i=1 �
iXi.

Proof. We complete the horizontal orthonormal frame (X1 : : : ; Xm) to an orthonor-
mal adapted basis (X1 : : : ; Xm; Ym+1; : : : ; Yq), so we are considering a graded metric.
By de�nition of Riemannian divergence we have

div � = TrD� =
mX
i=1

g(DXi
�;Xi) +

qX
i=m+1

g(DYi�; Yi)
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where D is the Riemannian connection. We choose � 2 �(H
), with the repre-
sentation � =

Pm
i=1 �

iXi for some smooth functions �i. By the properties of the
Riemannian connection (using the summation convention) we have

g(DXi
�;Xi) = g(Xi�

lXl + �lDXi
Xl; Xi) = Xi�

i + �lg(DXi
Xl; Xi) ;

g(DXi
Xl; Xi) = g([Xi; Xl]; Xi) + g(DXl

Xi; Xi) = 0 :

The last equation holds because [Xi; Xj ] 2 V2 is orthogonal to Xi 2 V1 and
2g(DXl

Xi; Xi) = Xl (g(Xi; Xi)) = 0 :

Reasoning as above we get

g(DYi�; Yi) = g(Yi�
lXl + �lDYiXl; Yi) = �l g(DYiXl; Yi) = 0 ;

and this completes the proof. 2

De�nition 1.8 We say that a Borel set E � 
 has H-�nite perimeter in 
 if

PH(E;
) := sup

�Z
E
div� dx

���� 2 �c(H
); j�j � 1

�
<1 :

If 
 = G we simply say that E has H-�nite perimeter.

By the previous discussion, PH(E;A) = jDH1E j(A) is the restriction to open sets
A of a �nite Borel measure in 
. It is clear that if E has H-�nite perimeter in 

and 1E 2 L1(
), then 1E 2 BVH(
) and jDH1E j(F ) = PH(E;F ), for any Borel set
F � 
.

1.3 Approximately regular functions

Here we introduce some weak notions of limit and di�erential for Borel functions on
strati�ed groups.

De�nition 1.9 (Approximate limit) We say that a function u 2 L1
loc(
;R

m) has
an approximate limit � 2 Rm at x 2 
 if

lim
r!0+

Z
Ux;r

ju(y)� �j dy = 0 :

If u does not have an approximate limit at x we say that x is an approximate dis-

continuity point and we denote by Su the Borel set of all these points, namely the
approximate discontinuity set.

It is clear that the approximate limit is uniquely de�ned and that it does not depend
on the representative element of u; it will be denoted by ~u(x). We call the points
in 
 n Su approximate continuity points of u. Since strati�ed groups are doubling
spaces we have that Su is negligible and u(x) = ~u(x) for a.e. x 2 
, see for instance
Theorem 2.9.8 in [20] or Theorem 14.15 in [30].
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De�nition 1.10 We say that x 2 
 is a density point of a Borel set E if

lim
r!0+

jUx;r n Ej
jUx;rj = 0 :

We denote by I(E) the set of all density points of A. The essential boundary of E is

de�ned as @�E = 
 n
�
I(E) [ I(
 n E)

�
.

Note that density points of A are approximate continuity points of the locally sum-
mable map 1A, therefore the set A n I(A) is negligible with respect to the volume
measure. There is a weaker, and more canonical, de�nition of approximate limit
(see for instance [20]). Let us consider a Borel function u : 
 �! R, x 2 
 and
� 2 R. We say that � is the approximate limit of u at x if for any " > 0 we have
x 2 I(fz 2 
 j ju(z)��j < "g). The approximate limit � is uniquely de�ned and it is
denoted by ap limz!x u(z). Note that x 2 
 n Su implies ap limz!x u(z) = ~u(x), but
the converse is not true in general, therefore we use the same word (but a di�erent
notation) for the two concepts. Moreover, for locally bounded functions u there is a
complete equivalence: ap limz!x u(z) = � implies x 2 
 n Su and � = ~u(x).

De�nition 1.11 (G-Linear maps) We say that L : G �! R is a G-linear map if
it is a group homomorphism such that

L(�rz) = r L(z)

for every r > 0 and z 2 G.

Remark 1.12 It is not di�cult to see that G-linear maps are indeed linear on the
space G, see [37], so via the Riemannian metric we can represent any G-linear map L :
G �! R with a unique vector of v 2 G as L(x) = hv; lnxi for any x 2 G. Furthermore,
by the homogeneity property of L, the vector v is horizontal. Conversely, for any
v 2 H the map x �! hv; lnxi is G-linear.

Throughout the paper we will use the notation v� to indicate the map x �! hv; lnxi
for any x 2 G. Then, all G-linear maps are representable as v�, for some v 2 H.

De�nition 1.13 We de�ne the homogeneous norm of a G-linear map L : G �! R

kLk = sup
d(z)=1

jL(z)j :

This implies that for any G-linear map L : G �! R we have

jL(z)j � kLk d(z) ; (5)

for any z 2 G.
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De�nition 1.14 (Di�erential) Consider a Borel set A � 
, x 2 A \ I(A) and
u : A �! R. We say that u is di�erentiable at x if there exists a G-linear map
L : G �! R such that

lim
A3z!x

ju(z)� u(x)� L(x�1z)j
d(z; x)

= 0 : (6)

We denote the di�erential of u at x by dHu(x).

The uniqueness of L easily follows by the fact that x is a density point of A.

De�nition 1.15 (Approximate di�erential) Consider u 2 L1
loc(
) and a point

x 2 
 n Su. We say that u is approximately di�erentiable at x if there exists a
G-linear map L : G �! R such that

lim
r!0+

Z
Ux;r

ju(z)� ~u(x)� L(x�1z)j
r

dz = 0 : (7)

The map L is uniquely de�ned, it is denoted by dHu(x) and it is called the approxi-
mate di�erential of u at x.

Remark 1.16 We have used the same symbol to denote both di�erentials in De�ni-
tions 1.14 and 1.15. This slight abuse of notation is justi�ed by the fact that di�eren-
tiability implies approximate di�erentiability. An even weaker notion of approximate
di�erentiability can be given in the spirit of [20], saying that the approximate di�er-
ential of a map u : A � G �! R at x 2 I(A) is the unique G-linear map L : G �! R

such that

ap lim
y!x

u(y)� u(x)� L(x�1y)

d(x; y)
= 0 : (8)

We point out that the approximate di�erentiability implies the existence of the ap-
proximate limit (8), as it will be proved in Proposition 2.1, but already in the Eu-
clidean case the converse is not true, see for instance Remark 3.66 of [5].

An extension of the classical Rademacher's Theorem holds, see [37], [49], [61].

Theorem 1.17 If A is a Borel subset of G and u : A �! R is a Lipschitz map, then

u is di�erentiable at a.e. point of A.

1.4 Some general facts

In this subsection we recall some important general theorems we will use throughout
the paper. We start introducing the coarea formula for H-BV functions, see for
instance [24], [29].
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Theorem 1.18 (Coarea formula) For any u 2 BVH(
), the following formula

holds

jDHuj(
) =
Z
R

PH (fx 2 
 j u(x) > tg;
) dt : (9)

A crucial tool in the analysis on sub-Riemannain groups is the Poincar�e inequality.
This theorem holds for general vector �elds that satisfy the so-called H�ormander

condition, see [31].

Theorem 1.19 (Poincar�e inequality) There exists a constant C > 0 such that

for any C1 smooth map w : 
 �! R and any ball Ux;r b 
, we haveZ
Ux;r

jw(z)� wUx;r j dz � C r jDHwj(Ux;r) : (10)

Now, we state an important theorem about the smooth approximation of H-BV
functions, see either Theorem 2.2.2 of [24] or Theorem 1.14 of [29].

Theorem 1.20 (Smooth approximation) Let u : 
 �! R an H-BV function.

Then there exists a sequence (uk) of C
1-smooth functions such that

1. uk �! u in L1(
);

2. jDHukj(
) �! jDHuj(
).
In view of (10) and Theorem 1.20 we obtain the following theorem.

Theorem 1.21 Let w : 
 �! R be a locally H-BV function. Then for any ball

Ux;r b 
 we have Z
Ux;r

jw(z)� wUx;r j dz � C r jDHwj(Ux;r) : (11)

An important consequence of (11) is the local isoperimetric inequality for sets of
H-�nite perimeter.

Theorem 1.22 (Isoperimetric estimate) Let E be a set of H-�nite perimeter.

Then for any Ux;r � G we have

minfjUx;r \ Ej; jUx;r n Ejg � C r PH(E;Ux;r) : (12)

It is a general fact that the Poincar�e inequality (10) implies a Sobolev-Poincar�e
inequality, see for instance Theorem 2 of [22] or Theorem 1.15 (II) of [29]. This
inequality can be extended to H-BV functions via Theorem 1.20.

Theorem 1.23 Let w : 
 �! R be a locally H-BV function. Then Z
Ux;r

jw(z)� wUx;r j1
�

!1=1�

� C r
jDHwj(Ux;r)

jUx;rj ; (13)

for any Ux;r b 
, where 1� = Q=(Q� 1).
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The following theorem is a consequence of Theorem 1.28 and Theorem 1.15 of [29].

Theorem 1.24 (Compact embedding) Let U denote a Carnot-Caratheodory ball

of G. Then for any q 2 [1; 1�[ the inclusion BVH(U) ,! Lq(U) is compact.

Proposition 1.25 Let f : Rn �! R be a Lipschitz map which vanishes at the origin

and let u 2 [BVH(
)]
n. Then f�u : 
 �! R is a H-BV function and

jDH(f�u)j � L
nX
l=1

jDHu
lj ; (14)

where L is the Lipschitz constant of f .

De�nition 1.26 (Maximal operator) We consider a nonnegative Radon measure
� in 
. For each r > 0 the restricted maximal function of � is de�ned as follows

Mr�(x) := sup

�
�(Ux;t)

jUx;tj : 0 < t < r; Ux;t � 


�
x 2 
 :

The maximal function of � is de�ned as M�(x) = supr>0Mr�(x). If the measure �
is induced by a locally integrable function f : 
 �! R, we de�ne analogously

Mrf(x) := sup

(Z
Ux;t

jf(y)j dy : 0 < t < r; Ux;t � 


)

and Mf(x) = supr>0Mrf(x).

It is well known that the maximal operator is (1,1)-weakly continuous, i.e. there
exists a constant C > 0 such that

jfx 2 E jM�(x) > tgj � C

t
�(E) ; (15)

for any Borel set E � 
 and any t > 0, see for instance [8]. Inequality (15) implies
that if � is a �nite measure, then M� is �nite a.e. in 
. Following the terminology
of authors in [23], a general \representation formula" holds in metric spaces of ho-
mogeneous type which satisfy the Poincar�e inequality, [23]. In strati�ed groups the
same formula was �rst proved in [35]. We state this result in the following theorem.

Theorem 1.27 (Representation formula) There exists a dimensional constant

C > 0 such that

j ~w(x)� wUx;r j � C

Z
Ux;r

1

d(z; y)Q�1
djDHwj(z): (16)

for any w 2 BVH(Ux;r) and x =2 Sw.

12



Remark 1.28 By virtue of Fubini's Theorem we haveZ
Ux;r

1

d(z; y)Q�1
djDHwj(z) = (Q� 1)

Z +1

0

jDHwj(Ux;r \ Ux;t)
tQ

dt ;

so that (16) becomes

j ~w(x)� wUx;r j � C

�
(Q� 1)

Z r

0

jDHwj(Ux;t)
tQ

dt+
jDHwj(Ux;r)

r(Q�1)

�
: (17)

Furthermore, in the case ~w(x) = 0 the monotonicity of the right hand side of (16)
(and of (17) as well) with respect to r implies

jMrw(x)j � C

�
(Q� 1)

Z r

0

jDHwj(Ux;t)
tQ

dt+
jDHwj(Ux;r)

r(Q�1)

�
: (18)

2 First order di�erentiability

In this section we prove the approximate di�erentiability of H-BV functions and we
give an estimate on the size of the approximate discontinuity set Su. Our strategy
will be to prove �rst that BV functions are a.e. di�erentiable in a weaker sense;
then, a bootstrap argument based on Poincar�e inequality leads us to the approximate
di�erentiability. We mention that the validity of the following inequalityZ

Ux;r

ju(x)� u(z)j
d(x; z)

dz � C

Z 1

0

jDHuj(Ux;�rt)
tQ

dt

with �;C > 0 absolute constants, implies a slightly stronger approximate di�eren-
tiability via classical methods described in [5]. In the case of the Heisenberg group
this approach is followed in [56]. However, on arbitrary strati�ed groups the above
inequality seems to be an open question.

In the following propositions we consider weaker di�erentiability properties.

Proposition 2.1 Let u : 
 �! R be a Borel map. Then the following statements

are equivalent:

1. for a.e. x 2 
 there exists a G-linear map Lx : G �! R such that

ap lim
y!x

u(y)� u(x)� Lx(x
�1y)

d(x; y)
= 0 ; (19)

2. u is countably Lipschitz up to a negligible set, i.e. there exists a countable family

of Borel subsets fAi j Ai � 
; i 2 Ng such that for each i 2 N the restriction

ujAi
is a Lipschitz map and we have���
 n[

i2N

Ai

��� = 0 :

13



Furthermore 1. and 2. hold if u is approximately di�erentiable a.e. in 
.

Proof. We start proving that property 1 is implied by the approximate di�eren-
tiability. Assume that u is approximately di�erentiable at x 2 
 with approximate
di�erential dHu(x). Let us �x " > 0 and consider the set

Ex;� =
n
z 2 Ux;�

���ju(z)� u(x)� dHu(x)(x
�1z)j > "d(x; z)

o
:

In order to get (19) we have to prove that

lim
�!0+

jEx;�j ��Q = 0 : (20)

Let us de�ne the maps Tx;�(z) = �1=�(x
�1z) and

Rx;�(z) =
ju(x��z)� u(x)� dHu(x)(��z)j

�
;

observing that

Tx;�(Ex;�) =
n
y 2 U1

��� Rx;�(y) > "d(y)
o
:= A� :

Hence we have jEx;�j��Q = jA�j and (20) follows if we prove that

lim
�!0+

jA�j = 0 : (21)

By hypothesis, making a change of variable we get

lim
�!0+

Z
Ux;�

ju(z)� u(x)� dHu(x)(x
�1z)j

�
dz = lim

�!0+

Z
U1

Rx;�(z) dz = 0 : (22)

For each t 2]0; 1[ we have Z
A�nUt

Rx;� � jA� n Utj " t ;

so in view of (22) we obtain jA� n Utj �! 0 as �! 0+. It follows that

lim sup
�!0+

jA�j � lim sup
�!0

jA� n Utj+ jUtj = jUtj :

Finally, letting t ! 0 equation (21) follows, so statement 1 is proved. The fact
that statement 1 implies statement 2 can be proved arguing as in Theorem 3.1.8 of
[20], see also Theorem 6 in [60]. Now, let us prove that statement 2 implies 1. By
Theorem 1.17 we know that ujAi

is a.e. differentiable. Let us indicate by Du(Ai) the
subset of I(Ai) where ujAi

is di�erentiable in Ai. Clearly, we have���
 n[
i2N

Du(Ai)
��� = 0 :

14



Consider x 2 Du(Ai) and choose " > 0. Then there exists � > 0 such that for any
z 2 Ai \ Ux;� we get

R(z) =
ju(z)� u(x)� L(x�1z)j

d(z; x)
< " ;

with L = dujAi
(x). From the last inequality it follows that

Ux;r \ fz 2 
 j R(z) � "g � Ux;r nAi

for any r � �. Hence we get

lim sup
r!0+

jUx;r \ fz 2 
 j R(z) � "gj
jUx;rj � lim sup

r!0+

jUx;r nAij
jUx;rj = 0 ;

in view of the fact that x is a density point of Ai. 2

Theorem 2.2 Let u : 
 �! R be a locally H-BV function. Then, u is approximately

di�erentiable a.e. in 
 and the di�erential corresponds to the density of the absolutely

continuous part of DHu, i.e. dHu(x) = rHu(x)
� for a.e. x 2 
.

Proof. We �rst prove that u is countably Lipschitz up to a negligible set. Let us
�x t > 0 and de�ne the open subset


t = fz 2 
 j dist(z;
c) > tg :

We want to prove that u is countably Lipschitz on 
t. We cover 
t with a countable
union of open balls fPj j j 2 Ng with center in 
t and radius t=4. Let us consider
j 2 N and two approximate continuity points x; y 2 Pj . By the well known technique
of the \telescopic estimate" (see for instance Theorem 3.2 of [30]) we obtain

j~u(x)� ~u(y)j � c d(x; y)
�
M2d(x;y)jDHuj(x) +M2d(x;y)jDHuj(y)

�
(23)

with c = (2Q+2 + 2)C. Now, let us consider the decomposition

Pj = Nj [
 [
l2N

Ejl

!

where Ejl is the Borel set of all approximate continuity points z 2 Pj such that
M jDHuj(z) � l and Nj = Su[fz 2 Pj jM jDHuj(z) = +1g : Then Nj is a negligible
set and by (23) it follows that

j~u(x)� ~u(y)j � 2 c l d(x; y) 8x; y 2 Ejl

and any j; l 2 N. This gives the countably Lipschitz property of u in 
t. Observing
that 
 is a countable union of 
1=k, with k 2 Nnf0g we obtain the countably Lipschitz
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property of u in 
. In view of Proposition 2.1 the countably Lipschitz property yields
the existence of a G-linear map Lx : G �! R such that for a.e. x 2 
 we have

ap lim
y!x

u(y)� ~u(x)� Lx(x
�1y)

d(x; y)
= 0 : (24)

In order to prove the a.e. approximate di�erentiability, we select a point x 2 
 n
(Su [ SrHu) such that (24) holds and

lim
r!0+

jDs
Huj(Ux;r)
rQ

= 0 : (25)

In view of Remark 1.5 the set of points which do not satisfy (25) is negligible, so
the set of selected points with all the above properties has full measure in 
. We �x
" > 0 and consider the set

Fx;r =
�
y 2 Ux;r j ju(y)� ~u(x)� Lx(x

�1y)j > "d(x; y)
	
;

observing that

Zx;r := �1=r(x
�1Fx;r) =

�
z 2 U1 j ju(x�rz)� ~u(x)� Lx(�rz)j

r
> "

�
: (26)

In view of (25) we have that jFx;rj r�Q �! 0 as r ! 0+, therefore

jZx;rj = j�1=r(x�1Fx;r)j = r�Qjx�1Fx;rj = r�QjFx;rj �! 0 as r ! 0+ : (27)

Now, we consider the di�erence Sx = rHu(x)
� � Lx and de�ne the maps

v(y) = u(y)� ~u(x)�rHu(x)
�(x�1y) ;

wx;r(z) =
v(x�rz) + Sx(�rz)

r
= vx;r(z) + Sx(z) ;

observing that ~v(x) = 0, jDHvx;rj(U1) �! 0 as r ! 0+ and

Zx;r = fz 2 U1 j jwx;r(z)j > "g :
Thus, by (27) it follows that wx;r ! 0 in measure as r ! 0+. Since vx;r is an H-BV
function, we can apply Poincar�e inequality (11), gettingZ

U1

jvx;r(z)�mx;rj dz � C jDHvx;rj(U1) �! 0 as r ! 0+ ; (28)

where mx;r =
R
U1
vx;r . Then, we obtainZ
U1

jwx;r(z)�mx;r � Sx(z)j dz �! 0 as r ! 0+ :

It follows that mx;r + Sx converges to zero in measure on U1 as r ! 0+. This easily
implies that mx;r ! 0 and Sx = 0. So, rHu(x)

� = Lx and in view of (28) we get

1

r

Z
Ux;r

jv(z)j dz =
Z
U1

jvx;r(z)j dz �! 0 as r ! 0+ ;

which proves the approximate di�erentiability of u at x with dHu(x) = rHu(x)
�. 2
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2.1 Size of Su

In this subsection we prove that the approximate discontinuity set of an H-BV func-
tion is contained in a countable union of essential boundaries of sets with H-�nite
perimeter, up to a HQ�1-negligible set, see inequality (31). Thus, whenever a recti�a-
bility theorem for sets of H-�nite perimeter in strati�ed groups holds, we immediately
get the countably recti�ability of Su for any H-BV function u (here the notion of rec-
ti�ability must be properly understood in intrinsic terms, see [25]). For instance, in
the Heisenberg group a recti�ability theorem holds, i.e. the reduced boundary of any
set of H-�nite perimeter is contained in a countable union of H-regular surfaces up
to HQ�1-negligible sets, [25]. Recently this result has been extended to any 2-step
strati�ed group, [27].

The following two lemmas are crucial to prove that the approximate singular set
of an H-BV function is countably HQ�1-�nite. They are a version of Lemma 3.74 and
Lemma 3.75 of [5] adapted for strati�ed groups. We give the proof of them in order to
emphasize the main steps, where relevant theorems of Analysis for strati�ed groups
are needed. Furthermore, Lemma 3.74 in [5] is proved using the Besicovitch Covering
Theorem. Due to the fact that this theorem may fail in a general strati�ed group,
we show another simpler way to prove it, adopting the Vitali Covering Theorem for
doubling spaces.

Lemma 2.3 Let (Eh) be a sequence of measurable subsets of 
, such that jEhj �! 0
and PH(Eh;
) �! 0 as h!1. Then, for any � > 0 we have

HQ�1

 
1\
h=1

fx 2 
 j ��Q(Eh; x) � �g
!
= 0 :

Proof. Let us �x � > 0 and � 2]0; 1[. We consider a Borel set E � 
 such that
jEj < jU1j� �Q=2 and de�ne

E� = fx 2 
 j ��Q(E; x) � �g :
For any x 2 E� the estimate

jUx;� \ Ej
jUx;�j � jEj

jU1j �Q <
�

2

implies the existence of a radius rx 2]0; �[ such that jUx;rx \ Ej = �jUx;rx j=2. Thus,
in view of (12) we get

�

2
jU1j rQx = jUx;rx \ Ej � C rx PH(E;Ux;rx): (29)

Now, let us consider an open subset 
0 b 
, with 0 < � < dist(
0; @
) and jEj �
jU1j� �Q=2. Using a well known covering theorem for the family fUx;rx j x 2 
0\E�g
(Corollary 2.8.5 in [20]), we get a countable disjoint subfamily

fBj j Bj = Uxj ;rxj ; j 2 Ng
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such that 
0 \ E� � S1
h=1 5Bj , where 5Bj is the ball of center xj and radius 5rxj .

Therefore, the estimate (29) implies

HQ�1
10� (
0 \ E�) � 5Q�1

1X
i=1

rQ�1xi � 2C5Q�1

� jU1j
1X
i=1

PH(E;Bi) � C 0

�
PH(E;
) :

We �x the sequence �i = (2jEij=jU1j�)1=Q, observing that �i � � for i large, hence

HQ�1
10�i

 

0 \

1\
h=1

E�
h

!
� C 0

�
PH(Ei;
) :

Thus, letting �rst �i ! 0+ and then 
0 " 
 the conclusion follows. 2

Lemma 2.4 Let u : 
 �! R be an H-BV function. Then, the set

L =

(
x 2 
 j lim sup

r!0+

Z
Ux;r

ju(y)j1� dy =1
)

is HQ�1-negligible, where 1� = Q=(Q� 1).

Proof. In view of Proposition 1.25 we can assume that u � 0 (replacing u by juj).
We de�ne the set

D =

�
y 2 
 j lim sup

r!0+

jDHuj(Ux;r)
rQ�1

=1
�
;

observing that by Theorem 2.10.17 and Theorem 2.10.18 of [20] and the fact that
jDHuj(
) < 1, we have HQ�1(D) = 0. For any integer h 2 N we can choose
th 2]h; h+ 1[ such that

PH(Eth ;
) �
Z h+1

h
PH(Et;
) dt ;

where Et = fx 2 
 j u(x) > tg, for each t � 0. By (9) we have

1X
h=0

PH(Eth ;
) �
Z 1

0
PH(Et;
)dt = jDHuj(
) <1 :

Then, we apply Lemma 2.3 to the sequence (Eth) with � = 1, getting

HQ�1
� 1\
h=0

Fh

�
= 0 ;

where we have de�ned Fh = fx 2 
 j ��Q(Eth ; x) = 1g. We want to prove that
L � D [T1

h=0 Fh. In order to do that, we consider x =2 D [T1
h=0 Fh and we prove
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that x =2 L. We de�ne the constants cx;r to be the mean value of u on Ux;r and apply
the Sobolev-Poincar�e inequality (13) obtainingZ

Ux;r

ju(z)� cx;rj1� dz � C

� jDHuj(Ux;r)
rQ�1

�1�

: (30)

Notice that if lim supr!0+ cx;r < 1 then (30) implies x =2 L. Then, reasoning by
contradiction, suppose that there exists a sequence cx;rj such that rj ! 0+ and
cx;rj !1 as j !1. We de�ne the function vj(y) = u(x�rjy)� cx;rj , observing that
jDHvj j(U1) = jDHuj(Ux;rj ) r1�Qj . Since the sequence jDHvj j(U1), j 2 N, is bounded,
Theorem 1.24 implies the convergence a.e. of (vj) to a function w 2 L1(U1), possibly
extracting a subsequence. As a consequence, u(x�rjy) ! +1 as j ! 1 for a.e.
y 2 U1, and therefore

jU1j = lim
j!1

jfz 2 U1 j u(x�rjz) > thgj = lim
j!1

jfy 2 Ux;rj j u(y) > thgj
rQj

:

This implies x 2 T1
h=1 Fh, contradicting the initial assumption. 2

Theorem 2.5 Let u : 
 �! R be an H-BV function. Then the approximate discon-

tinuity set Su is a countable union of sets with �nite HQ�1 measure.

Proof. We de�ne Et = fx 2 
 j u(x) > tg for t 2 R. By coarea formula (9) the
set of numbers t 2 R such that PH(Et;
) < 1 has full measure in R, then it is
possible to consider a countable dense subset D � R such that PH(Et;
) < 1 for
any t 2 D. Notice that from general results about sets of �nite perimeter in Ahlfors
metric spaces, see Theorem 4.2 in [4], we have that HQ�1(Et) < 1 for any t 2 D.
So, in view of Lemma 2.4 it su�ces to prove the following inclusion

Su n L �
[
t2D

@�Et ; (31)

where L = fx 2 
 j lim supr!0+
R
Ux;r

ju(y)j1� dy = 1g. Let us consider a point

x =2 St2D @
�Et [ L. Then, for any positive t we have

lim sup
r!0+

jEtj
jUx;rj �

1

t
lim sup
r!0+

Z
Ux;r

juj ; (32)

hence, for any t 2 D su�ciently large such that the right hand side of (32) is less
than one, it must be ��Q(Et; x) = 0. Analogously, for t 2 D \ (�1; 0) with jtj large
enough we have ��Q(E

c
t ; x) = 0, so ��Q(Et; x) = 1. This means that

� = supft 2 D j ��Q(Et; x) = 1g
is a real number. Since D is dense in R and t �! jEtj is a decreasing map it
follows that ��Q(Et; x) = 0 for any t > � and ��Q(E

c
t ; x) = 0 for any t < � . By
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virtue of this fact it follows that for any " > 0 we have jF" \ Ux;rj = o(rQ), where
F" = fy 2 
 j ju(y)� � j > "g. Finally

lim sup
r!0+

Z
Ux;r

ju(y)� � j dy � "+ lim sup
r!0+

1

jUx;rj
Z
F"

ju(y)� � j dy

� "+ lim sup
r!0+

� jF"j
jUx;rj

�1=Q
 Z

Ux;r

ju(y)� � j1� dy
!1=1�

= " :

Letting "! 0+, we obtain that x =2 Su, so the inclusion (31) is proved. 2

3 Higher order di�erentiability of H-BV k functions

In this section we study the di�erentiability properties of maps with higher order
H-bounded variation. The method to accomplish this study is substantially di�erent
from that one employed for H-BV functions. Particularly interesting is the case of
maps with second H-bounded variation, in view of potential applications to the theory
of convex functions on strati�ed groups (see [36]).

We begin with the de�nition of high order H-BV function.

De�nition 3.1 Let us �x an orthonormal frame (X1; : : : ; Xm) of H
. By induction
on k � 2 and taking into account the de�nition of H-BV with k = 1, we say that
a Borel map u : 
 �! R has H-bounded k-variation (in short, H-BV k) if for any
i = 1; : : : ;m the distributional derivatives Xiu are representable by functions with
H-bounded (k�1)-variation. We denote by BV k

H(
) the space of all H-BV
k functions.

Remark 3.2 The notion of H-BV k function does not depend on the choice of the
orthonormal frame (X1; : : : ; Xm).

Now, we review some basics about polynomials on strati�ed groups. We will refer to
Chapter 1.C of [21].

De�nition 3.3 We say that a function P : G �! R is a polynomial on G if the
composition P � exp is a polynomial on G.
In order to de�ne the homogeneous degree of a polynomial P : G �! R we need
to �x an adapted basis (W1; : : : ;Wq) and its dual (�1; : : : ; �q). Clearly the degree
di 2 N n f0g of Wi is determined by the unique relation Wi 2 Vdi . Let us consider
the coordinate system (x1; : : : ; xq) on G, where xi = �i� exp

�1, for any i = 1; : : : ; q
and observe that it generates the algebra of polynomials on G, i.e. every polynomial
P on G can be represented as P =

P
� c�x

I , where � 2 Nq, x� = xi11 � � �xiqq and only
a �nite number of coe�cients c� 2 R do not vanish.
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De�nition 3.4 In the above notation we de�ne the homogeneous degree of a poly-
nomial P : G �! R to be

h-deg(P ) = maxfd(�) j c� 6= 0g ;

where d(�) =
Pq

k=1 dkik. We denote by PH;k(G) the space of polynomials of homo-
geneous degree less than or equal to k.

For instance, in the Heisenberg group H1 with standard coordinates (x; y; t), the
polynomial P (x; y; t) = t2 � x3 has homogeneous degree equal to 4.

Remark 3.5 The de�nition of homogeneous degree is independent of the adapted
basis (Wj). In fact, the a�ne transformation between two adapted bases A : G �! G
has the property A(Vi) = Vi for any i = 1; : : : ; �, so the homogeneous degree of a
polynomial is preserved under the transformation A.

The Poincar�e-Birkho�-Witt Theorem (shortly PBW Theorem) states that for any
basis (W1;W2; : : :Wq) of G regarded as frame of �rst order di�erential operators, the
algebra of left invariant di�erential operators on G has a basis formed by the following
ordered terms

W� =W i1
1 � � � � � �W iq

q ;

where � = (i1; : : : ; iq) varies in N
q, see p.21 of [21]. Analogously as for polynomials

we de�ne the degree of a left invariant di�erential operator Z =
P

� c�W
� as

h-deg(Z) = maxfd(�) j c� 6= 0g ;

where d(�) =
Pq

k=1 dkik: The space Ak(G) represents the space of left invariant
di�erential operators of homogeneous degree less than or equal to k. This analogy
between polynomials and di�erential operators is not only formal, as the following
proposition shows.

Proposition 3.6 There exists an isomorphism L : PH;k(G) �! Ak(G), given by

L(P ) =
X

d(�)�k

W�P (0)W�:

For the proof of this fact we refer the reader to Proposition 1.30 of [21].
In order to deal with higher order di�erentiability theorems we make some pre-

liminary considerations. Let us consider a basis fW� j d(�) � kg of Ak(G) and
u 2 BV k

H(
), where (W1; : : : ;Wq) is an adapted basis of G. We denote Wi = Xi,
with i = 1; : : : ;m, where (X1; : : : ; Xm) is a �xed horizontal orthonormal frame. Our
aim is to �nd out a polynomial P : G �! R which approximates u at a �xed point
x 2 
 with order k. In view of the last proposition it is natural to look for a substitute
of homogeneous derivativesW� of u at x, with d(�) � k. Our �rst observation is that
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due to the strati�cation of G the operators W� with d(�) � l are linear combinations
of operators X1 � � �Xl with 1 � i � m and l � k. Therefore the distributional
derivatives D�

Wu are measures whenever d(�) � k. So, taking into account the pre-
ceeding observation and the fact that vector �elds Wi have vanishing divergence, we
state the following de�nition.

De�nition 3.7 Let u 2 BV k
H(
). For any � 2 Nq, d(�) � k, we consider the

following multi-index Radon measures D�
Wu de�ned asZ



� dD�

Wu = (�1)j�j
Z


u W�l

l � � �W�1
1 � 8� 2 C1c (
):

By Radon-Nikod�ym Theorem we have D�
Wu = (D�

Wu)
a+(D�

Wu)
s, where the addenda

are respectively the absolutely continuous part and the singular part of the measure
D�
Wu with respect to the volume measure. We de�ne the weak mixed derivatives as

the summable maps r�
Wu such that

(D�
Wu)

a = r�
Wu vol :

Our substitute for the �-derivative of u is ~uW�(x), which is the approximate limit
of r�

Wu at points x 2 
 n Sr�
Wu. Now, let us consider the di�erential operator

X1 � � �Xlu where 1 � i � m and 1 � l � k. By virtue of PBW Theorem, there
exist coe�cients fc�g such that

X1 � � �Xlu =

NkX
j=1

c;� W
�u ; (33)

where Nk = dim (Ak(G)).

De�nition 3.8 Let u 2 BV k
H(
). Utilizing the above notation, we denote by u

the density of the absolutely continuous part of the measure X1 � � �Xlu, where
 2 f1; : : : ;mgl and l � k.

Decomposing the singular and absolutely continuous part of both the measures in
(33), we obtain the following equality of summable maps

u =

NkX
j=1

c;� r�
Wu : (34)

The next theorem is the main result of this section and can be regarded as a weak
extension of Alexandrov di�erentiability theorem to the setting of non-Riemannian
geometries.

22



Theorem 3.9 (Alexandrov) Let u 2 BV 2
H(
). Then for a.e. x 2 
 there exists a

polynomial P[x] with h-deg(P[x]) � 2, such that

lim
r!0+

1

r2

Z
Ux;r

ju� P[x]j = 0 (35)

Proof. First of all, we �x a point x =2 Sd(�)�2 Sr�
Wu such that (34) and the limit

lim
r!0+

j (X1X2u)
s j(Ux;r)

rQ
= 0 (36)

hold for every � 2 Nq and  2 f1; : : : ;mgl, with d(�) � 2, l = 1; 2. By the previous
discussion and Remark 1.5, the set of points where these conditions do not occur is
negligible. Due to Proposition 3.6, there exists a unique polynomial P[x] = P which
satis�es the condition W�P (x) = ~uW�(x), whenever d(�) � 2. Now, let us de�ne
w = u � P . By relation (34) we observe that ~w(x) = 0 for any  2 f1; : : : ;mgl,
l = 0; 1; 2. This means that

~w(x) = 0 ; ~wi(x) = 0 ; ~wij(x) = 0 (37)

for any i; j = 1; : : : ;m. We consider the summable map

v = jDHwj =
� mX
i=1

w2
i

�1=2
:

By Proposition 1.25 it follows that

jDHvj �
mX
i=1

jDHwij ;

hence conditions (36) and (37) yield

jDHvj(Ux;r) = o(rQ) : (38)

We can �x r0 > 0 small enough such that Ux;4r0 � 
, so we will consider all r 2]0; r0[.
By the standard telescopic estimate (23), for a.e. y 2 Ux;r we have

j ~w(y)j � C [M2rv(x) +M2rv(y)] d(x; y) ;

therefore, taking the average over Ux;r and dividing by r2 we obtain

1

r2

Z
Ux;r

jw(y)j dy � C

 
M2rv(x)

r
+
1

r

Z
Ux;r

M2rv(y) dy

!
:

Thus, in order to prove (35) we show that the maps

a(r) = r�1M2rv(x) ; b(r) = r�1
Z
Ux;r

M2rv(y) dy
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go to zero as r ! 0+. Since also ~v(x) = 0, inequality (18) gives

jMrv(x)j � C

�
(Q� 1)

Z r

0

jDHvj(Ux;t)
tQ

dt+
jDHvj(Ux;r)
r(Q�1)

�
:

By (38) and the last estimate we get that a(r) ! 0 as r ! 0+. Let us consider the
estimate

b(r) � 1

r

Z
Ux;r

jM2rv(y)� ~v(y)j dy + 1

r

Z
Ux;r

jv(y)j dy ;

observing that

1

r

Z
Ux;r

jv(y)j dy � r�1Mrv(x) � a(r) �! 0 as r ! 0+ :

In view of inequality

jM2rv(y)� ~v(y)j �M2r[v � ~v(y)](y) ; (39)

and applying inequality (18) to the map z �! v(z)� ~v(y) we get

M2r[v � ~v(y)](y) � C

�
(Q� 1)

Z 2r

0

jDHvj(Uy;t)
tQ

dt+
jDHvj(Uy;2r)
(2r)(Q�1)

�
: (40)

Thus, estimates (39) and (40) yield

1

r

Z
Ux;r

jM2rv(y)� ~v(y)jdy � C

r

Z
Ux;r

�
(Q� 1)

Z 2r

0

jDHvj(Uy;t)
tQ

dt+
jDHvj(Uy;2r)
(2r)(Q�1)

�
dy :

Now, in order to get the thesis, we have to prove that both terms

�(r) =
1

r

Z
Ux;r

Z 2r

0

� jDHvj(Uy;t)
tQ

dt

�
dy ; �(r) =

1

r

Z
Ux;r

jDHvj(Uy;2r)
(2r)(Q�1)

dy

are in�nitesimal as r ! 0+. By Fubini's Theorem we have

�(r) =
r�1

jUx;rj
Z 2r

0

dt

tQ

Z
Ux;r

 Z
Ux;3r

1Uy;t(z) djDHvj(z)
!
dy

=
r�1

jUx;rj
Z 2r

0

dt

tQ

Z
Ux;3r

jUx;r \ Uz;tj djDHvj(z)

=
jU1jr�1
jUx;rj

Z 2r

0

Z
Ux;3r

jUx;r \ Uz;tj
jUz;tj djDHvj(z) � 3Q 2

jDHvj(Ux;3r)
(3r)Q

:

By (38) the last term goes to zero as r ! 0, so limr!0 �(r) = 0. Similarly, we have

�(r) =
1

2Q�1rQjUx;rj
Z
Ux;r

 Z
Ux;3r

1Uy;2r(z) djDHvj(z)
!
dy
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=
1

2Q�1rQ

Z
Ux;3r

jUz;2r \ Ux;rj
jUx;rj djDHvj(z) � 3Q

2Q�1
jDHvj(Ux;3r)

(3r)Q
:

Again, utilizing (38) on the last term we get limr!0+ �(r) = 0, so the thesis follows.
2

The arguments used for second order di�erentiability of H-BV 2 functions can be
extended with some additional e�orts to higher order di�erentiability.

Theorem 3.10 Let u 2 BV k
H(
) and 1 � l � k. Then for a.e. x 2 
 there exists a

polynomial P[x], with h-deg(P[x]) � l, such that

lim
r!0+

1

rl

Z
Ux;r

ju� P[x]j = 0: (41)

Proof. We prove the theorem by induction on k � 2. Theorem 2.2 and Theorem 3.9
give us the validity of induction hypothesis for k = 2. Now, let us consider u 2
BV k

H(
) with k � 3. Clearly we have XiXju 2 BV k�2
H for any i; j = 1; : : : ;m.

By induction hypothesis for a.e. x 2 
 there exist polynomials R[x;ij], with h-
deg(R[x;ij]) � k � 2, such thatZ

Ux;r

juij �R[x;ij]j = o(rk�2) (42)

and
W �R[x;ij](x) = ~uijW� (x) ; whenever d(�) � k � 2 : (43)

Moreover, for a.e. x 2 
 there exists a polynomial P[x], with h-deg(P[x]) � k, such
that

W�P[x](x) = ~uW�(x) ; whenever d(�) � k : (44)

The PBW Theorem yields the distributional relations

W �XiXj =
X

d(�)�k

c�ij;�W
� (45)

for any i; j = 1; : : : ;m and � 2 Nq with d(�) � k� 2. Thus, relations (43), (44), (45)
and the following equality

(W �XiXju)
a = (W �uij)

a = ~uijW�

imply

W �R[x;ij](x) =
X

d(�)�k

c�ij;�~uW�(x) =
X

d(�)�k

c�ij;�W
�P[x](x) =W �XiXjP (x) ;

whenever d(�) � k � 2. Thus, Proposition 3.6 yields R[x;ij] = XiXjP .
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Now, let us de�ne w = u�P and v = jDHwj, obtaining the following inequalities
of measures

jDHvj �
mX
i=1

jDHXiwj �
mX

i;j=1

jXjXiwj : (46)

By the fact that u 2 BV k
H(
), with k � 3, the distributional derivatives XjXiw

are represented by integrable functions wij . So, equality R[x;ij] = XiXjP and the
inductive formula (42) yield

jXjXiwj(Ux;r)
jUx;rj =

Z
Ux;r

jwij j =
Z
Ux;r

juij �R[x;ij]j = o(rk�2);

hence (46) implies
jDHvj(Ux;r) = o(rQ+k�2) : (47)

Now, the rest of the proof proceeds analogously to Theorem 3.9, replacing property
(38) with (47). This last observation leads us to the conclusion. 2

4 Some examples of H-BV 2 functions

In this section we present a class of H-BV 2 functions arising from the inf-convolution
of the so-called gauge distance in the Heisenberg group Hn.

We begin with some elementary remarks about distributional derivatives along
vector �elds. In the following preliminary considerations the set 
 will be an open
subset of Rq with the Euclidean metric.

Let X : 
 �! Rq be a locally Lipschitz vector �eld; then, the following chain rule

DX(h � u) = h0(u)DXu (48)

holds whenever h : R ! R is continuously di�erentiable, u : 
 �! R is continuous
and DXu is representable by a Radon measure in 
 as follows:Z



u X�' dvol =

Z


' dDXu 8' 2 C1c (
);

where X� = �X�divX is the formal adjoint of X. Analogously, the product rule

DX(uv) = vDXu+ uDXv (49)

holds whenever u : 
 �! R is locally integrable (or locally bounded) and DXu is
representable in 
 by a Radon measure, v : 
 �! R is continuous and DXv is
representable in 
 by a locally bounded (or locally summable) function. The proofs
of (48) and (49) can be achieved by approximations of the following type.
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Proposition 4.1 Let u 2 �, where � is either C(
), L1
loc(
) or L

1
loc(
), respectively.

Then there exists a sequence of smooth functions (ul) such that

jDXulj(
) � jDXuj(
) + 1

l
(50)

and either (ul) uniformly converges to u on compact sets, or it converges to u in

L1
loc(
), or it is locally uniformly locally bounded, respectively.

The estimate (50) is proved in [24], [29]. One considers a locally �nite open cover
fAig, where Ai = 
i+1 n 
i�1 and


i =

�
x 2 


���; jxj < i; dist(x;
c) >
1

i+ 1

�

for any i 2 N, with 
�1 = ;. A smooth partition of unity f ig is de�ned with respect
to fAig, hence the candidate to be the approximating functions is as follows

ul :=
1X
i=0

(u i) � �"i

with "i = "i(l) small enough. Since supi "i(l) tends to 0 as l!1 all Lp convergence
properties of the sequence follow directly from this representation. Notice also that
when DXu << vol, we get the L1

loc(
) convergence of the densities of DXul to the
density of DXu, see either Proposition 1.2.2 of [24] or Theorem A.2 of [29].

The proof of (48) follows by approximation of u with the sequence (ul) of Propo-
sition 4.1, so that DXul weakly converges to DXu in the topology of Radon measures
and ul converges to u uniformly on compact sets of 
. The proof of (49) is similar
and requires either the L1

loc convergence of ul to u when u 2 L1
loc, or the additional

uniform local bound, when u 2 L1loc, and the L1
loc convergence of densities DXvl to

DXv, when DXv 2 L1
loc, or the additional uniform local bound, when DXv 2 L1(
),

together with the uniform convergence of vl to v on compact sets of 
.
In the sequel the \minimum function" between two real valued maps u and v

we will be denoted by (u ^ v)(x) = minfu(x); v(x)g. Radon measures will be also
interpreted as linear functional on continuous compactly supported test functions.
Hence the notation �1 � �2, where �1 and �2 are Radon measures on 
, means that
for any nonnegative continuous compactly supported test function ' on 
, we haveZ



'd�1 �

Z


'd�2 :

Lemma 4.2 Let u; v : 
 �! R be continuous functions,  2 R and let X : 
 �! Rq

be a locally Lipschitz vector �eld. Then

DXu �  vol DXv �  vol =) DX(u ^ v) �  vol: (51)

If DXu and DXv are representable by L1loc(
) functions, then

DXXu �  vol; DXXv �  vol =) DXX(u ^ v) �  vol: (52)
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Proof. In order to show (51) it su�ces to approximate u^v by u+h�(u�v), where
h� 2 C1(R), �1 � h0� � 0, h�(t)! �t+ uniformly as �! 0+. Indeed, the chain rule
(48) gives

DX(u+ h�(u� v)) =
�
1 + h0�(u� v)

�
DXu� h0�(u� v)DXv �  vol:

The implication (52) follows by the same argument, noticing that the functions h�
can be chosen to be concave. We have

DXX(u+ h�(u� v))

=
�
1 + h0�(u� v)

�
DXXu� h0�(u� v)DXXv + h00� (u� v)(DXu�DXv)

2

� �1 + h0�(u� v)
�
DXXu� h0�(u� v)DXXv �  vol:

2

Now we particularize our study to Hn (we recall that Hn is isomorphic to R2n+1).
To denote elements of Hn we consider the coordinates (�; t) = (�1; : : : ; �2n; t). The
following family of vector �elds

Xi = @�i + 2�n+i@t; Yi = @�n+i � 2�i@t; i = 1; : : : ; n (53)

can be considered as an horizontal orthonormal frame of HHn, so

rHu =
nX
i=1

XiuXi + YiuYi

whenever u is smooth. The only nontrivial bracket relations are

[Xi; Yi] = �4Z = �4 @t; i = 1; : : : ; n :

Via the Baker-Campbell-Hausdor� formula our vector �elds induce the following
group operation

xx0 =

 
� + �0; t+ t0 + 2

nX
i=1

�n+i�
0
i � �i�

0
n+i

!
:

Now for any element x = (�; t) 2 Hn we de�ne the following gauge norm

k(�; t)k = 4
p
j�j4 + t2 :

A non-trivial fact is that d(x; y) = kx�1yk yields a left invariant distance on Hn, see
[34]. In the following we de�ne c(x; y) = d(x; y)2 and we consider a function u arising
from the inf-convolution of c. Precisely, we assume that there exists a bounded family
fyigi2I � Hn and ti 2 R such that

u(x) = inf
i2I

c(x; yi) + ti 8x 2 Hn: (54)
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Inf-convolution formulas of this type appear in several �elds, for instance in the rep-
resentation theory of viscosity solutions, in the related �eld of dynamic programming
(see for instance [12], [40]) and in the theory of optimal transportation problems.
In the latter theory, functions representable as in (54) are called c-concave (see [53],
[54]). In these theories it is well known that in many situations the function u inher-
its from c a one-sided estimate on the second distributional derivative; for instance,
this is the case when c(x; y) = h(x � y) and h : Rq �! R is a C1;1

loc function (see
for instance [28]). In the following theorem we extend this result to the Heisenberg
setting, thus getting a non-trivial class of examples of H-BV 2-functions.

Theorem 4.3 Let 
 � Hn be a bounded open set. The function u de�ned in (54) is

locally Lipschitz and belongs to BV 2
H(
).

Proof. Since the family fyigi2I is bounded it is easy to check that fc(�; yi)g is
uniformly locally Lipschitz in 
, therefore u is a Lipschitz function in 
. Notice also
that, since Hn is separable, we can assume I to be �nite or countable with no loss of
generality. The essential fact leading to the H-BV 2 property consists in the estimates
on Hn n feg

max
i;j=1;:::;n

n
jXiXjc(�; e)j; jXiYjc(�; e)j; jYiYjc(�; e)j; jYjXic(�; e)j

o
� 10 (55)

These inequalities can be obtained by explicit calculation. We de�ne �(�; t) = j�j4+t2
and note that c ((�; t); e) =

p
�(�; t) = �(�; t). Now we write the second horizontal

derivatives in terms of the functions �. We obtain

XjXi� =
XjXi�

2
p
�

� Xj�Xi�

4
p
�3

; YjYi� =
YjYi�

2
p
�
� Yj� Yi�

4
p
�3

; (56)

YjXi� =
YjXi�

2
p
�

� Yj�Xi�

4
p
�3

; XjYi� =
XjYi�

2
p
�

� Xj� Yi�

4
p
�3

(57)

for any i; j = 1; : : : ; n. Expressions (53) and a direct calculation yield

max
i;j=1;:::;n

n
jXiXj�j; jYjXi�j; jYjYi�j

o
� 12

p
� (58)

max
i=1;:::;n

n
jXi�j; jYi�j

o
� 4

4
p
�3 : (59)

Applying estimates (58) and (59) to formulae (56) and (57) the estimate (55) follows.
Notice that the identity c(z; y) = c(y�1z; e) yields

T [c(�; y)](z) = T [c(y�1�; e)](z) = Tc(�; e)(y�1z)

for any left invariant vector �eld T . It follows that (55) holds replacing the unit
element e with any element y 2 Hn. Furthermore, horizontal vector �elds P of the
�rst layer V1 have the representation P =

Pn
i=1 aiXi+ biYi. We also require that the
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Riemannian norm of P is less than or equal to one, hence we have
Pn

i=1 a
2
i + b2i � 1.

Then, another direct calculation using the expression of P and the estimate (55) yield

jPPc(�; y)j �  on Hn n fyg ;

for any y 2 Hn, where  = 20n2. By Lemma 4.2 we obtain that

DPPu �  vol

�rst for �nite families and then, by a limiting argument, for countable families. In
particular DPPu is representable in 
 by a Radon measure for any P of the above
form. By polarization identity, taking P = (Xi � Xj)=

p
2, P = (Xi � Yj)=

p
2 and

P = (Yi � Yj)=
p
2, respectively, we obtain that DXiXj

u, DYiYju DXiYj+YjXi
u are

Radon measures for any i; j = 1; : : : ; n. In particular DXiYju is a measure whenever
i 6= j. With the previous notation, we also see that whenever (�; t) 6= 0 we have

jZc((�; t); e)j = j@t�(�; t)j =
���� tpj�j4 + t2

���� � 1

Again, Lemma 4.2 implies that DZu is representable in 
 by a Radon measure
(actually absolutely continuous with respect to the volume measure vol). Finally,
from the relation DXiYi+YiXi

+ DZ = 2DXiYi we conclude that DXiYiu is a Radon
measure. 2

Remark 4.4 In the case when c(x; y) = d(x; y)2 is the square of the Carnot-Cara-
th�eodory distance in H1, one can proceed in the same way using the explicit formula
for d computed in [46]. By a direct long calculation it is still possible to prove the
existence of upper bounds on DPP c(�; y) and DZc(�; y), when P =

Pn
i=1 aX + bY ,

[41], [52]. This su�ces to obtain Theorem 4.3 with this cost function.
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