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Abstract Horizontal points of smooth submanifolds in stratified groups play the role
of singular points with respect to the Carnot-Carathéodory distance. When we con-
sider hypersurfaces, they coincide with the well known characteristic points. In two
step groups, we obtain pointwise estimates for the Riemannian surface measure at
all horizontal points of C1,1 smooth submanifolds. As an application, we establish
an integral formula to compute the spherical Hausdorff measure of any C1,1 sub-
manifold. Our technique also shows that C2 smooth submanifolds everywhere admit
an intrinsic blow-up and that the limit set is an intrinsically homogeneous algebraic
variety.
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1 Introduction

The geometric properties of one-codimensional sets in stratified groups have been
investigated under different perspectives, [3, 6, 7, 9–11, 13–16, 19, 31, 32]. This is
an attractive area of research, where several important issues still deserve further in-
vestigations. Along with this research stream, some works on the geometry of higher
codimensional sets also have started to appear, [4, 5, 20, 25, 27–29].

This paper can be thought of as a continuation of the project started in [27–29],
related to the intrinsic measure of arbitrary submanifolds in stratified groups. Higher
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codimensional submanifolds somehow possess an elusive nature, due to the higher
degree of freedom of their tangent spaces. The classical Frobenius theorem implies
that a smooth hypersurface must have points that are transversal to the horizontal
subbundle of the group and this implies in turn a precise Hausdorff dimension of the
submanifold, along with an area type formula, [27]. However, this theorem does not
suffice to tackle higher codimensional surfaces, whose Hausdorff dimension depends
on an interesting interaction between their tangent bundle and the grading of the
group, according to Gromov’s formula in 0.6 B of [22].

Using the notion of “degree”, this interaction has been made more suitable for
computations in [29], where the density of their spherical Hausdorff measure has been
computed under a “negligibility condition”. In broad terms, the degree of a submani-
fold � at a fixed point x is a certain weight d�(x) assigned to the tangent space Tx�,
which depends on its intersections with the flag generated by the grading; see Sect. 2
and Remark 4.2. The maximum over all pointwise degrees is the degree d(�) of
the submanifold. If d is the degree of a submanifold, then the negligibility condition
amounts to the S d -negligibility of points of degree lower than d . Here S d is the spher-
ical Hausdorff measure constructed with respect to a fixed homogeneous distance of
the group, which is equivalent to and generalizes the so-called Carnot-Carathéodory
distance. This negligibility condition holds for C1 non-horizontal k-codimensional
submanifolds, along with an area-type formula for their S Q−k-measure, where Q is
the group’s Hausdorff dimension; see [27, 28]. One of the main results of this pa-
per is the negligibility condition for all submanifolds in two step groups. This is a
consequence of a more general result, namely, the following blow-up estimates.

Theorem 1.1 Let G be a two step stratified group and let � ⊂ G be a p-dimensional
C1,1 smooth submanifold. Then for every x ∈ � there exist a neighborhood U of x

and positive constants c1, c2 and r0 depending on U ∩ � such that

c1r
d�(x) ≤ μ̃p(� ∩ Bz,r ) ≤ c2r

d�(x) (1)

for every z ∈ � ∩ U with d�(z) = d�(x) and every 0 < r < r0.

We have denoted by μ̃p the Riemannian surface measure induced on the
p-dimensional submanifold � by a fixed Riemannian metric g̃ on the group. No-
tice that g̃ here has an auxiliary role and need not be left invariant. Before presenting
some applications of (1), we wish to discuss these estimates in more detail.

First of all, the degree of x in Theorem 1.1 plays an important role. In fact, in
the special case x is non-horizontal, namely, it has degree equal to Q−k, where k

is the codimension of �, then from results of [28], adopting the same approach of
this paper, one achieves (1) with C1 smoothness of �. Similarly, if x has maximum
degree, then results of [29] apply and lead to (1). The point of Theorem 1.1 is that
we do not assume any restriction on x. Thus, our estimates also hold at horizontal
points, which play the role of characteristic points in higher codimension and actually
coincide with them in codimension one, as discussed in [28].

To compare these estimates with the existing literature in codimension one, we
first notice that the degree of characteristic points in two step groups is exactly Q−2;
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see Remark 2.9. Then our blow-up estimates include (20) of [26] and extend it to ar-
bitrary submanifolds. Other interesting estimates have been recently obtained in [9],
especially for the perimeter measure, in connection with boundary regularity of do-
mains for the Dirichlet problem in CC-spaces. Next, we discuss a series of applica-
tions of (1).

Corollary 1.2 Let � be a p-dimensional C1,1 smooth submanifold of degree d in a
two step stratified group. Then we have

S d
({

x ∈ � | d�(x) < d
}) = 0 (2)

and the following formula holds
∫

�

θ(τd
�(x))dS d(x) =

∫

�

|τd
�(x)|dμ̃p(x). (3)

The area-type formula (3) is an immediate consequence of (2), after the blow-up at
points of maximum degree. For a proof and a discussion of this formula, we address
the reader to [29], where the negligibility condition (2) was announced. Furthermore,
Theorem 1.1 allows us to distinguish different types of horizontal points, to get esti-
mates on their Hausdorff dimension depending on their degree.

Corollary 1.3 Let � be a C1,1 submanifold of degree d in a two step stratified group
and let δ be a positive integer. Then the subset Zδ = {x ∈ � | d�(x) ≤ δ} is countably
Hδ-finite. In particular, its Hausdorff dimension is less than or equal to δ.

Remark 4.1 shows how Corollary 1.2 easily implies that the degree of a C1,1

submanifold coincides with its Hausdorff dimension. Then Corollary 1.3 gives new
information if δ < d(�). Again, taking into account Remark 2.9, this extends (26) of
[26] to arbitrary submanifolds. Our observation on the Hausdorff dimension of sub-
manifolds in two step groups fits into Gromov’s formula pertaining to the Hausdorff
dimension of a smooth submanifold in equiregular Carnot-Carathéodory spaces, pro-
vided that the functions D′(x) and DH (�) introduced in 0.6 B of [22] coincide with
the pointwise degree d�(x) and the degree d(�), respectively. Although this is not
difficult to check, in Remark 4.2 we show this fact.

It is then natural to search all possible Hausdorff dimensions of submanifolds
whose topological dimension is fixed. This is the so-called “Gromov’s dimension
comparison problem”, recently raised in [5], where the authors solve an interesting
variant of this problem, replacing the topological dimension of a submanifold with
the Euclidean Hausdorff dimension of a set. Finding the Hausdorff dimension of a
submanifold can be turned to the problem of finding its degree. On the other hand,
this is not necessarily a simpler problem. Since finding a submanifold of given de-
gree corresponds to solving a system of partial differential equations, and could be
tackled with Partial Differential Relations techniques, as it is mentioned in 0.5 C and
0.6 B of [22]. Some computations in this vein can be found in Sect. 4 of [29], to
find submanifolds of given degree in the Engel group. The extension of (2) to higher
step groups is an intriguing open question, where also regularity of the submanifold
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is expected to play a role. In the Engel group, using some ad hoc arguments, this
negligibility condition has been recently achieved for arbitrary submanifolds, solving
Gromov’s dimension comparison problem in this group, [25]. It is worth stressing
that also in this case C1,1 regularity of submanifolds suffices, hence it would be in-
teresting to understand whether this regularity suffices for all higher step groups. If
we strengthen our regularity assumptions to C2 smoothness, then we also get the
existence of the blow-up set, which corresponds to the limit of the rescaled manifold.

Theorem 1.4 Let G be a two step stratified group and let � ⊂ G be a C2 smooth
submanifold. Then for every x ∈ � the rescaled set δ1/r lx−1� locally converges with
respect to the Hausdorff distance of sets to an algebraic variety, which is the graph
of a homogeneous polynomial function.

Notice that at points of maximum degree the intrinsic blow-up set is precisely a
subgroup and C1,1 regularity suffices, [29]. On the other hand, it is easy to find simple
cases where this limit set is not a linear subspace; see for instance Example 4.3. It is
rather surprising that Theorem 1.4 holds only in two step groups. In fact, in the Engel
group it is already possible to find a point of low degree in a 2-dimensional submani-
fold whose blow-up is a half plane with boundary; see Remark 4.5 of [29]. This case
marks how even smooth submanifolds, when embedded in higher step groups, allow
for points with more intricate intrinsic singularities.

This naturally leads us to discuss our assumptions on the step of the ambient space.
In fact, the previous example is not the only case that shows the significant dichotomy
between the geometry in step less than or equal to two and that in higher step. For
instance, in two step groups, C1,1 domains satisfy the Sobolev-Poincaré inequality
and are furthermore NTA domains with respect to the Carnot-Carathéodory distance,
but this does not hold in higher step groups; see [8, 9, 13, 21, 23, 24, 30] and the
references therein. In two step stratified groups the classical De Giorgi rectifiability
theorem holds, [1, 19], but the fine technology of its proof does not apply in higher
step, [19]. Substantial progress has been recently obtained in [3], where the difficulty
arising in higher step is also emphasized.

Finally, we point out that Theorem 1.1 precisely holds in the larger class of two
step graded groups. In fact, our proofs do not use the Lie bracket generating condition
of the first layer. Then one can extend our results to all nilpotent groups of step two,
since they admit infinitely many gradings that make them graded groups, according
to Remark 2.1.

2 Basic Notions

We begin this section by defining the class of groups with which we shall be dealing
in this paper. These are connected, simply connected, real Lie groups of finite dimen-
sion. If one of these groups G has a graded Lie algebra G , then we will say that G is
a graded group. The algebra G is said to be graded if it can be written as direct sum
of subspaces G = V1 ⊕ · · · ⊕ Vι, with the property [Vi,Vj ] ⊂ Vi+j , for any i, j ≥ 1
and Vi = {0} iff i > ι.
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Remark 2.1 Let g be a two step nilpotent algebra and let g2 = [g,g], which is a non-
null subspace. Let h be a subspace of g such that h⊕g2 = g. Then setting V1 = h and
V2 = g2 makes g a graded group. There are infinitely many h’s that are complemen-
tary to g2.

The stronger assumption on the subspaces [V1,Vj ] = Vj+1 implies that the
group G is stratified, see [18] for more information. The subspace V1 of G defines at
any point x ∈ G the horizontal subspace

HxG = {X(x) | X ∈ V1}.
Left translations of the group are denoted by lx : G → G, lx(y) = xy. The graded
structure defines a one-parameter group of dilations δr : G → G , where r > 0. Pre-
cisely, we have

δr

( ι∑

j=1

vj

)

=
ι∑

j=1

rj vj ,

where
∑ι

j=1 vj = v and vj ∈ Vj for each j = 1, . . . , ι. To any element of Vj we as-
sociate the integer j , which is called the degree of the vector. Under our assumptions
we have that exp : G → G is an analytic diffeomorphism, hence there is a canoni-
cal way to transpose dilations from G to G. We will use the same symbol to denote
dilations of the group. We have the standard properties

(1) δr (x · y) = δrx · δry for any x, y ∈ G and r > 0,
(2) δr (δsx) = δrsx for any r, s > 0 and x ∈ G.

To provide a metric structure on the group, we will fix a graded metric on G, namely
a left invariant metric such that all the subspaces Vj of the Lie algebra G are orthog-
onal to each other. The sub-Riemannian structure of graded groups is given by any
homogeneous distance, which is a continuous distance ρ : G × G → R that satisfies
the properties

(1) ρ(x, y) = ρ(ux,uy) for every u,x, y ∈ G,
(2) ρ(δrx, δry) = rρ(x, y) for every r > 0.

In fact, if the group is stratified, then the well known Carnot-Carathéodory distance
provides the foremost example of homogeneous distance. When the group is graded
it is still possible to introduce a homogeneous distance; see the appendix of [19].
However, the group equipped with this distance might not be connected by rectifiable
curves.

Example 2.2 We consider the Heisenberg group H
1 expressed in coordinates

(x, y, t), satisfying the group law (x, y, t)(x′, y′, t ′) = (x + x′, y + y′, t + t ′ + xy′ −
yx′) and having dilations acting as δr (x, y, t) = (rx, ry, r2t). Then we define the
vertical subgroup � of H

1 corresponding to the subspace {(0, y, t) | y, t ∈ R}. It is
immediately realized that d(y, t) = |y| + |t |1/2 is a homogeneous distance on the
graded group � ⊂ H

1. In fact, the group law restricted to � is the commutative sum
of vectors.
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On the other hand, all homogeneous distances are bi-Lipschitz equivalent and in-
duce the topology of G. This is an easy consequence of properties (1) and (2), fol-
lowing the classical argument for norms of finite dimensional vector spaces.

Definition 2.3 We define the subsets Bx,r and Dx,r of G as the open and closed ball,
respectively, of center x and radius r > 0 with respect to a homogeneous distance.
We will omit the center of the ball if it coincides with the unit element of the group.

Definition 2.4 (Adapted bases, graded bases and graded coordinates) Let us set mj =
dimVj for any j = 1, . . . , ι, n0 = 0 and ni = ∑i

j=1 mj for any i = 1, . . . , ι. We say
that (W1, . . . ,Wq) is an adapted basis of G if

(Wnj−1+1,Wnj−1+2, . . . ,Wnj
)

is a basis of Vj for any j = 1, . . . , ι. Let us consider the mapping F : R
q → G defined

by

F(y) = exp

(
q∑

i=1

yiWi

)

.

If (W1, . . . ,Wq) is also orthonormal, then we say that it is a graded basis and that F

is a system of graded coordinates. The degree of yi is set as di = j if Wi ∈ Vj .

Definition 2.5 (Degree of p-vectors) Let (W1,W2, . . . ,Wq) be an adapted basis of G .
The degree of the simple p-vector

WJ := Wj1 ∧ · · · ∧ Wjp

in 	p G , with J = (j1, j2, . . . , jp) and 1 ≤ j1 < j2 < · · · < jp ≤ q is the sum dj1 +
· · · + djp . We denote this integer by dJ . Now, let τ ∈ 	p(G) be a simple p-vector
and let 1 ≤ r ≤ Q be an integer. Let τ = ∑

J τJ WJ , τJ ∈ R, be represented with
respect to the fixed adapted basis. The projection of τ with degree r is defined as
(τ )r = ∑

d(J )=r τJ WJ and the degree of τ is defined as the integer

d(τ) = max{dJ | such that τJ �= 0}.

Definition 2.6 (Degree of manifolds) Let � be a C1 smooth p-dimensional subman-
ifold and let τ�(x) be a tangent p-vector of � at x ∈ �. All of them are proportional.
Then the degree of � at x is the positive integer

d�(x) = d
(
τ�(x)

)
.

The degree of � is the number d(�) = maxx∈� d�(x).

Example 2.7 Consider the two step stratified group H
1 × H

1, which we represent by
graded coordinates (x, y, t) = (x1, y1, x2, y2, t1, t2) ∈ R

6, satisfying the group law

(x, y, t)(x′, y′, t ′) = (x + x′, y + y′, t + t ′) + (0,0, x1y
′
1 − y1x

′
1, x2y

′
2 − y2x

′
2).
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Let � be a 3-dimensional submanifold of H
1 ×H

1 passing through the origin, which
is given by the zero level set of f : R

6 → R
3,

f (x, y, t) = (
t1 + t3

1 − x2
1 − y2

1 − x3
2 , x2

1 + x4
2 − t2, x2 − x3

1

)
.

It is easy to see that � can be globally parameterized by


(x1, y1, y2) = (
x1, y1, x

3
1 , y2, ϕ(x2

1 + y2
1 + x9

1), x2
1 + x12

1

)
,

where ϕ : R → R is the inverse function of t → t + t3. Let

X1 = ∂x1 −y1∂t1 , Y1 = ∂y1 +x1∂t1, X2 = ∂x2 −y2∂t2 , Y2 = ∂y2 +x2∂t2

be the left invariant vector fields spanning the first layer V1 of H
1 × H

1. Then
they all have degree equal to one and the tangent space of � at the origin T0� =
{(x1, y1,0, y2,0,0) | x1, y1, y2 ∈ R} is spanned by X1(0), Y1(0) and Y2(0). Thus, by
the definition of degree, we have d�(0) = 3. Fix p = (1,0,1,0,1,2) ∈ � and ob-
serve that Tp� = span{
x1(q),
y1(q),
y2(q)}, where q = (1,0,0) and 
(q) = p.
We define T1 = ∂t1 and T2 = ∂t2 , which are constant left invariant vector fields span-
ning the second layer of H

1 × H
1. Then one can check that


x1(q) = X1(p) + 3X2(p) + 11ϕ′(2)T1(p) + 14T2(p),


y1(q) = Y1(p) − T1(p) and 
y2(q) = Y2(p) − T2(p).

Taking into account that ϕ′(2) = 1/4 and expanding the wedge product

(
X1(p) + 3X2(p) + 11

4
T1(p) + 14T2(p)

)
∧ (

Y1(p) − T1(p)
) ∧ (

Y2(p) − T2(p)
)
,

we get that all addends with maximum degree are the following:

X1(p) ∧ T1(p) ∧ T2(p), 3X2(p) ∧ T1(p) ∧ T2(p),

−11

4
T1(p) ∧ Y1(p) ∧ T2(p), −14T2(p) ∧ T1(p) ∧ Y2(p).

Taking into account that d(T1) = d(T2) = 2, along with Definition 2.5 and Defini-
tion 2.6, one easily realizes that d�(p) = d(�) = 5.

Remark 2.8 Let us consider the class of smooth horizontal submanifolds; see 0.7.C
and 3.1 of [22]. Then it is not difficult to check that in a stratified group the pointwise
degree of these submanifolds equals their topological dimension.

Remark 2.9 Let � be a p-dimensional C1 smooth submanifold and let h =
dim(Tx� ∩ HxG). If G is of step two, then the pointwise degree of � at x is given
by

d�(x) = 2p − h.
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In fact, one can take a horizontal basis X1, . . . ,Xh of Tx� ∩ HxG and linearly in-
dependent vectors T1, . . . , Tp−h such that (X1, . . . ,Xh,T1, . . . , Tp−h) is a basis of
Tx�. Then it is easy to observe that d�(x) = h + 2(p − h). In particular, if � has
codimension one, then

d�(x) =
{

Q − 1 if xis not characteristic,

Q − 2 otherwise,
(4)

where Q = m1 + 2m2 is the Hausdorff dimension of G, also called the homogeneous
dimension.

Definition 2.10 (Polynomial mappings) Let G be a connected and simply connected
nilpotent Lie group. A mapping of vector spaces is polynomial if it has polynomial
components when it is expressed with respect to some bases both in the domain and
in the range. A mapping P : G → R

k is said to be polynomial if so is the composition
P ◦ exp : G → R

k .

Remark 2.11 The previous definitions make sense, since the exponential mapping
exp : G → G is an analytic diffeomorphism when G is connected, simply connected
and nilpotent. The notion of polynomial mapping of vector spaces does not depend
on the fixed bases to represent the mapping; see [12] for more details.

Definition 2.12 (Homogeneous algebraic varieties) Let G be a graded group. Then
the set of zeros of a polynomial mapping P : G → Rk for some k ≥ 1 defines an
algebraic variety in G. We say that an algebraic variety A is homogeneous if δr A ⊂
A for every r > 0.

Notice that an algebraic variety defined by a homogeneous polynomial mapping
P : G → R is clearly a homogeneous algebraic variety.

Example 2.13 The set � = {(x, y, xy) | x, y ∈ R} is a homogeneous algebraic variety
of the Heisenberg group H

1 equipped with the standard coordinates (x, y, t) of Exam-
ple 2.2. In these coordinates, the mapping P : H

1 → R is given by (x, y, t) → t −xy.

Of course homogeneous algebraic varieties need not be regular. It suffices to con-
sider the zero level set of P(x, y, t) = x2 − y2 in the Heisenberg group with the
coordinates defined in Example 2.2.

3 Blow-Up Estimates and Blow-Ups

This section is devoted to the proof of all our main results.

Proof of Theorem 1.1 We first choose a neighborhood V of x and a function
f : V → R

k such that � ∩ V = f −1(0), the differential df (s) is surjective when-
ever s ∈ f −1(0) and the kernel of df (x)|HsG : HxG → R

k has dimension h =
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dim(Tx� ∩ HxG). Let κ = m − h and notice that x is non-horizontal if and only
if κ = k, namely df (x)|HsG is surjective. In this case, the following proof holds
and becomes even simpler. Then it suffices to consider the interesting case κ < k,
namely, the case when x is horizontal. Let (vκ+1, . . . , vm) be an orthonormal basis of
Tx� ∩HxG. We choose an orthonormal basis (v1, . . . , vκ) of (Tx� ∩HxG)⊥ ∩HxG

and define the unique left invariant orthonormal vector fields (Y1, . . . , Ym) of V1 such
that Yj (x) = vj for every j = 1, . . . ,m. As a consequence, we get

Yjf
i(x) = 0 whenever j = κ + 1, . . . ,m and i = 1, . . . , k. (5)

Our hypothesis on the step of G implies that TxG = HxG ⊕ H 2
x G, where

H 2
x G = {U(x) | U ∈ V2}.

In view of the surjectivity of df (p), there exist orthonormal vectors vm+1, . . . , vm+l ∈
H 2

x G, with l = k − κ , such that

dim(span{df (x)(v1), . . . , df (x)(vκ), df (x)(vm+1), . . . , df (x)(vm+l )}) = k. (6)

As a consequence, we choose a graded basis (Y1, . . . , Ym,Ym+1, . . . , Yq) of G such
that

Yj (x) = vj for every j ∈ {1, . . . , κ} ∪ {m + 1, . . . ,m + l}.
We fix a system of graded coordinates F : R

q → G defined by F(y) =
exp(

∑q

j=1 yjYj ) and set Fx(y) = lxF (y). We introduce the function f̃ (y) =
f (Fx(y)) and notice that

∂yj
f̃ (0) = Yjf (p).

Then in a neighborhood V ′ ⊂ V of x we get

∂y1 f̃ ∧ ∂y2 f̃ ∧ · · · ∧ ∂yκ f̃ ∧ ∂ym+1 f̃ ∧ · · · ∧ ∂ym+l
f̃ �= 0

on F−1
x (V ′) ⊂ R

q . From the implicit function theorem there exists

ψ(ξ) = (ϕ1(ξ), . . . , ϕκ(ξ), ξκ+1, . . . , ξm,ϕm+1(ξ), . . . , ϕm+l(ξ ), ξm+l+1, . . . , ξq)

(7)
such that

f̃ (ϕ1(ξ), . . . , ϕκ(ξ), ξκ+1, . . . , ξm,ϕm+1(ξ), . . . , ϕm+l(ξ ), ξm+l+1, . . . , ξq) = 0.

Setting 
(ξ) = Fx(ψ(ξ)) with ξ = (ξκ+1, . . . , ξm, ξm+l+1, . . . , ξq), we clearly have
f ◦ 
 = 0. We wish to compute the limit of r−[h+2(p−h)]volg̃(� ∩ Bx,r ) as r → 0+.
This quotient equals

r−[h+2(p−h)]
∫


−1(Bx,r )

∣∣∣∣
∂


∂ξκ+1
(ξ) ∧ · · · ∧ ∂


∂ξm

(ξ) ∧ ∂


∂ξm+l+1
(ξ) ∧ · · ·

∧ ∂


∂ξq

(ξ)

∣∣
∣∣
g̃

dξ. (8)
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We restrict dilations to the subspace

� = {ξ ∈ R
q | ξ1 = ξ2 = · · · = ξκ = ξm+1 = · · · = ξm+l = 0}

and perform the change of variable

ξ =
m∑

j=κ+1

rηj ej +
q∑

j=m+l+1

r2ηj ej = δ̃rη. (9)

Observing that the Jacobian of δ̃r restricted to � is

m − κ + 2(q − m − l) = h + 2(p − h),

the quotient (8) becomes
∫

δ̃1/r

−1(Bx,r )

∣∣∣∣
∂


∂ξκ+1
(δ̃rη) ∧ · · · ∧ ∂


∂ξm

(δ̃rη) ∧ ∂


∂ξm+l+1
(δ̃rη) ∧ · · · ∧ ∂


∂ξq

(δ̃rη)

∣∣∣∣
g̃

dη,

where δ̃1/r

−1(Bx,r ) equals the set of points ξ ∈ R

p such that

(
ϕ1(δ̃r ξ )

r
, . . . ,

ϕκ(δ̃r ξ )

r
, ξκ+1, . . . , ξm,

ϕm+1(δ̃r ξ )

r2
, . . . ,

ϕm+l(δ̃r ξ )

r2
, ξm+l+1, . . . , ξq

)

(10)
belongs to F−1(B1). Differentiating the equality f (
(ξ)) = f̃ (ψ(ξ)) = 0, we get

∂f̃

∂ξi

(ψ) +
κ∑

j=1

∂f̃

∂ξj
(ψ)

∂ϕj

∂ξ i
+

m+l∑

j=m+1

∂f̃

∂ξj
(ψ)

∂ϕj

∂ξ i
= 0,

whenever i = κ + 1, . . . ,m. As a consequence of the previous equality, from (5) we
get

[
∂f̃

∂ξ1
· · · ∂f̃

∂ξκ

∂f̃

∂ξm+1
. . .

∂f̃

∂ξm+l

]

|ξ=0

[
∂ϕ

∂ξi

]

|ξ ′=0
= 0,

hence (6) yields

∂ϕj

∂ξ i
(0) = 0 whenever

{
j ∈ {1, . . . , κ} ∪ {m + 1, . . . ,m + l},
i ∈ {κ + 1, . . . ,m}. (11)

As a consequence, Taylor expansion yields

ϕj (δ̃r ξ) = r2
∑

m + l < i ≤ q

∂ϕj

∂ξi

(0)ξi + Oj(|δrξ |2), (12)

where |Oj(|y|)| ≤ L|y|2 and L is the Lipschitz constant of ∇ϕj . Thus, there exists
M > 0, depending on L, such that

∣∣∣r−2ϕj (δ̃r ξ)

∣∣∣ ≤ M|ξ |
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for r > 0 sufficiently small. Let us choose a product of open intervals

J = I1 × I2 × · · · × Iq ⊂ F−1(B1)

such that 0 ∈ J . Now we define the open set AL formed by those points ξ ∈ R
p such

that

(M|ξ |, . . . ,M|ξ |, ξκ+1, . . . , ξm,M|ξ |, . . . ,M|ξ |, ξm+l+1, . . . , ξq) ∈ J and

(−M|ξ |, . . . ,−M|ξ |, ξκ+1, . . . , ξm,−M|ξ |, . . . ,−M|ξ |, ξm+l+1, . . . , ξq) ∈ J.

Clearly, the size of AL depends on L and we have

AL ⊂ δ̃1/r

−1(Bx,r )

for r sufficiently small. It follows that

volg̃(� ∩ Bx,r )

rh+2(p−h)
≥ Hd|·|

(
AL ∩ F−1(B1)

)
γ (d
), (13)

where

γ (d
) = inf
y∈U

∣∣∣∣
∂


∂ξκ+1
(y) ∧ · · · ∧ ∂


∂ξm

(y) ∧ ∂


∂ξm+l+1
(y) ∧ · · · ∧ ∂


∂ξq

(y)

∣∣∣∣
g̃

and U is a suitable neighborhood of the origin. From Hadamard’s inequality we get
∣∣∣∣

∂


∂ξκ+1
(y) ∧ · · · ∧ ∂


∂ξm

(y) ∧ ∂


∂ξm+l+1
(y) ∧ · · · ∧ ∂


∂ξq

(y)

∣∣∣∣
g̃

(14)

≤
∏

i∈K

√√√√
∑

j∈K

〈
∂


∂ξi

(y),
∂


∂ξj

(y)

〉2

g̃

≤
⎛

⎝
∑

j∈K

∣∣∣∣
∂


∂ξj

(y)

∣∣∣∣

2

g̃

⎞

⎠

p

≤ pp‖d
(y)‖2p, (15)

where K = {κ +1, . . . ,m}∪ {m+ l +1, . . . , q}. As a consequence, observing that we
can find a bounded set S ⊂ R

p containing δ̃1/r

−1(Bx,r ) for every r > 0, we obtain

volg̃(� ∩ Bx,r )

rh+2(p−h)
≤ Hp

|·|
(
S ∩ F−1(B1)

)
ppL

2p

0 , (16)

where L0 is the Lipschitz constant of the local parameterization 
 of the submani-
fold, the estimate (1) follows, taking into account Remark 2.9. Now, we have to study
the dependence of our constants in (13) and (16) on the point x when it varies in the
subset of points having the same degree. Let U be a neighborhood of x such that (6)
holds, replacing x with any point of U . If U ∩ {z ∈ � | d�(z) = d�(x)} coincides
with x there is nothing to prove, then assume that

U ∩ {z ∈ � | d�(z) = d�(x)} \ {x} �= ∅.

Since the degree � � z → d�(z) is lower semicontinuous, then the set

Ax = {z ∈ � | d�(z) > d�(x) − 1}
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is an open neighborhood of Sx = {z ∈ � | d�(z) = d�(x)}. Furthermore, Sx is closed
in Ax , since

Sx = Ax ∩ {z ∈ � | d�(z) ≤ d�(x)}.
Since the degree is constant on S′

x = Sx ∩ U , then we can find locally Lipschitz
continuous vector fields T1, . . . , Th on S′

x such that

span{T1(z), . . . , Th(z)} = HzG ∩ Tz�

for every z ∈ S′
x ; see Remark 3.1. Then one can repeat the proof of the estimates (13)

and (16), replacing x with z ∈ S′
x and the basis (vκ+1, . . . , vm) of HxG ∩ Tx� with

(T1(z), . . . , Th(z)). It is not restrictive assuming that Tj (x) = Yj (x). The key point is
that (5) is replaced by

Tjf
i(z) = 0 whenever j = 1, . . . , h, i = 1, . . . , k and z ∈ S′

x. (17)

Furthermore, the vectors
(
Y1(z), . . . , Yκ(z), T1(z), . . . , Th(z), Ym+1(z), . . . , Yq(z)

)

are linearly independent and locally Lipschitz continuous on S′
x . Thus, the corre-

sponding local graph centered at z

ψz(ξ) = (ϕ1
z (ξ), . . . , ϕκ

z (ξ), ξκ+1, . . . , ξm,ϕm+1
z (ξ), . . . , ϕm+l

z (ξ), ξm+l+1, . . . , ξq)

(18)
is a Lipschitz deformation of (7) and it coincides with it for z = x. Then the constants
appearing in (13) and (16) can be taken to be independent of z as it varies in a compact
neighborhood S′′

x ⊂ S′
x of x in the relatively open set Ax . This concludes the proof. �

Remark 3.1 Let � be a C1 manifold with a countable basis for its topology and con-
sider a closed subset F of �. Let F � x → C(x) ∈ Mn(R) be a Lipschitz continuous
matrix having constant rank equal to s < n on all points of F ⊂ Rq . Then one can
find locally Lipschitz continuous vector fields T1, . . . , Th on F , with h = n − s, such
that

span{T1(x), . . . , Th(x)} = kerC(x) for every x ∈ F.

Since � admits a C1 partition of unity that can be eventually restricted to F , it suffices
to prove that Tj can be found in any neighborhood of a point of F . Then it is not
restrictive assuming that for instance the first s columns C1, . . . ,Cs of C are linearly
independent on a relatively open subset A of F . Then there exists a projection π :
R

q → R
s , such that C̃ = [πC1 · · ·πCs] is an invertible matrix of Ms(R) on a possibly

smaller open subset A′ and for every x ∈ A′ we have that

ηξ (x) = C̃(x)−1[πCs+1(x) · · ·πCn(x)
]
ξ

is locally Lipschitz continuous for every ξ ∈ R
h. Taking ξ = ej for every j =

1, . . . , h, where (ej ) is the canonical basis of R
h and identifying this basis with a

basis of {0} × R
h ⊂ R

n, we get

Tj (x) = (
η1

ej
(x), . . . , ηs

ej
(x),0, . . . ,0

) + ej
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that are clearly linearly independent and locally Lipschitz continuous on A′.

Proof of Theorem 1.4 We will use the notation of the proof of Theorem 1.1. If x is
non-horizontal, namely, κ = k, then the following proof holds and becomes simpler
and in this special case, our claim is already explicitly shown in [28]. Then we con-
sider the case κ < k, namely, x is horizontal, and we argue exactly as in the proof of
Theorem 1.1, until we have obtained the local parameterization 
 = lx ◦ F ◦ ψ of �

around x ∈ �, where ψ is defined in (7).
As a consequence of C2 regularity, for every j ∈ {1, . . . , κ} ∪ {m + 1, . . . ,m + l},

the expansion (12) can be written more precisely as follows

ϕj (δrξ) =
∑

m+l<i≤q

ϕ
j
ξi
(0)r2ξi + 1

2

∑

κ<i,j≤m

ϕ
j
ξiξj

(0)r2ξiξj + o(|δrξ |2)

= r2Qj(ξm+l+1, . . . , ξq) + o(|δrξ |2), (19)

where dilations δ̃r are defined in (9) and Qj are homogeneous polynomials. Now we
consider the variables

ξ =
m∑

j=κ+1

ξj ej +
q∑

j=m+l+1

ξj ej and ξ ′ =
q∑

j=m+l+1

ξj ej

that vary in a p-dimensional subspace of R
p and in a (q−m−l)-dimensional sub-

space of R
q , respectively. Then the polynomial mapping

T (ξ) = (0, . . . ,0, ξκ+1, . . . , ξm,Qm+1(ξ
′), . . . ,Qm+l (ξ

′), ξm+l+1, . . . , ξq) (20)

defines the d-dimensional homogeneous algebraic variety

A = (F ◦ T )(Rp) ⊂ G

that has no singular points, since it is the graph of a polynomial mapping. We recall
that F : R

q → G is the system of graded coordinates defined in the proof of Theo-
rem 1.1.

The variety A is the zero set of the homogeneous polynomial mapping P : G →
R

k , where

P ◦ F(y) = (
y1, . . . , yκ , ym+1 − Qm+1(ym+l+1, . . . , yq), . . . ,

ym+l − Qm+l (ym+l+1, . . . , yq)
)
.

Notice that P ◦ F has exactly k components, since κ + l = k, by the definition of l,
according to the notation in the proof of Theorem 1.1.

To show that δ1/r lx−1� ∩ DR converges to A ∩ DR in the Kuratowski sense, as
r → 0+, we will use Proposition 4.5.5 of [2]. Then we fix an infinitesimal sequence
rn > 0 and show that

(i) if z = limn→∞ zn for some sequence {zn} such that zn ∈ (δ1/rn lx−1�) ∩ DR and
rn → 0, then z ∈ A ∩ DR ;
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(ii) if z ∈ A ∩ DR , then there exist zn ∈ (δ1/rn lx−1�) ∩ DR such that zn → z.

Consider the sequence

zn ∈ (
δ1/rn lx−1�

) ∩ DR,

converging to z, we have that zn = (F ◦ δ1/rn ◦ ψ ◦ δ̃rn)(ξn), for some ξn. Due to
formula (10), which constitutes the explicit formula of (δ1/rn ◦ ψ ◦ δ̃rn)(ξn), the
boundedness of zn implies the boundedness of ξn. Then we get a subsequence ξν

of ξn converging to ξ ∈ DR . As a consequence of (19) and (10), it follows that
zν → F ◦ T (ξ) = z ∈ A ∩ DR . This shows the validity of (i).

Now, we set U = F ◦ T and fix z ∈ A ∩ DR , hence we have ξ such that U(ξ) = z.
Let us define �n = F ◦ δ1/rn ◦ ψ ◦ δrn and set �n = δ1/rn lx−1�. If we show that

dist
(
ξ,�−1

n (DR)
)

→ 0, (21)

with respect to the Euclidean norm | · | on R
q , then we get a sequence ξn that is

bounded, due to (10), and such that

DR � �n(ξn) → U(ξ) = z,

since �n uniformly converges to U on compact sets. Taking into account that for n

large

�n ∩ DR = Im (�n) ∩ DR,

it follows that �n(ξn) ∈ �n ∩ DR and (ii) follows. We are left with showing (21).
By contradiction, if this limit were not true, then possibly taking a subsequence, we
would get

dist
(
ξ,�−1

ν (DR)
)

≥ ε0 > 0.

We fix an arbitrary 0 < h < 1. Since �n uniformly convergences to U on compact
sets, then

U−1(DhR) ⊂ �−1
n (DR)

whenever n ≥ n0, for some n0 depending on h. In fact, U−1(DhR) is a compact set,
due to formula (20). Observing that δh(U(ξ)) ∈ DhR and taking into account the
homogeneity U ◦ δh = δh ◦ U , for ν ≥ n0, we achieve

ε0 ≤ dist
(
ξ,�−1

ν (DR)
)

≤ dist
(
ξ,U−1(DhR)

)
≤ |ξ − δ̃hξ |.

The arbitrary choice of h yields a contradiction and concludes the proof of (21). �

Remark 3.2 According to the previous proof, formula (20) yields the limit set A as
the image of T in some system of graded coordinates. Since T is a homogeneous
polynomial mapping, then A is clearly a homogeneous algebraic variety. Further-
more, this variety is everywhere analytic, since it is the graph of a polynomial map-
ping with respect to some system of graded coordinates. In particular, A is an analytic
manifold without boundary.
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Proof of Corollary 1.3 For each j = 1, . . . , δ, we define the subsets

�j = {
x ∈ � | estimates (1) hold withd�(x) = j

}
.

Then Zδ = ⋃m
1≤j≤δ �j . Note that some �j might be empty. This is always true for

instance if δ > Q − k, where k is the codimension of � and Q is the Hausdorff
dimension of the group. From estimates (1) and standard differentiability theorems
for measures, see for instance 2.10.17(2) and 2.10.18(1) of [17], taking into account
that the Riemannian surface measure μ̃p is countably finite, then �j is countably
Hj -finite. In particular, Zδ is Hδ-countably finite. �

Proof of Corollary 1.2 Let d = d(�) be the degree of �. In view of Corollary 1.3 the
subset Zd−1 of points in � with degree less than d is countably Hd−1-finite. Then
in particular, (2) holds. At points of degree d the blow-up limit exists. Precisely,
Theorem 1.2 of [29] holds, along with the negligibility condition (2), hence formula
(1.4) of [29] also holds. This formula coincides with (3). �

4 Some Remarks

In this section we add remarks complementary to our main results.

Remark 4.1 The Hausdorff dimension of a C1,1 submanifold � in a two step strati-
fied group coincides with its degree d = d(�). In fact, from the lower semicontinuity
of x → d�(x) on �, it follows that the subset �d of degree d points is an open subset
of �. Thus, formula (3) yields

∫

�d

θ(τd
�(x))dS d(x) =

∫

�d

|τd
�(x)|dμ̃p(x) > 0.

From the definition of τd
�(x) given in (2.17) of [29], using the simple argument of

Remark 2.18 in [27], one easily finds two positive constants c1 and c2, such that

c1 ≤ θ(τ ) ≤ c2 for every τ ∈ 	p(G).

This implies that S d(�) > 0, taking into account that S d�� is finite on compact
sets. In particular, the Hausdorff dimension of � is d .

Remark 4.2 Let � be a p-dimensional submanifold of a graded group. We consider
the flag

H ′
j (x) = (

H 1
x G + · · · + H

j
x G

) ∩ Tx�,

on Tx�, where H
j
x G = {X(x) | X ∈ Vj }. Let (t1

1 , . . . , t1
m′

1(x)
) be a basis of H ′

j (x) and

complete this basis with (t2
1 (x), . . . , t2

m′
2(x)

) to a basis (t1
1 , . . . , t1

m′
1(x)

, t2
1 , . . . , t2

m′
2(x)

)
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of H ′
2(x). We iterate this procedure to construct bases

(t1
1 , . . . , t1

m′
1(x)

, . . . , t
j

1 , . . . , t
j

m′
j (x)

) of subspaces H ′
j (x).

One immediately observes that the dimensions dim(H ′
j (x)/H ′

j−1(x)) coincide with
m′

j (x). In 0.6 B of [22], Gromov defines the number

D′(x) =
ι∑

j=1

jm′
j (x).

Let us define the canonical projection πj : TxG → H
j
x G and observe that

(
πj (t

j

1 ), . . . , πj (t
j

m′
j (x)

)
)

must be linearly independent. If this were not the case, then we could find a nontrivial
linear combination of t

j
i belonging to H ′

j−1(x), but that it cannot be a linear combi-

nation of elements of this space and this is a contradiction. Setting τ
j
i = πj (t

j
i ) and

taking into account that τj ∈ H
j
x G, it follows that

(τ 1
1 , . . . , τ 1

m′
1(x)

, . . . , τ ι
1, . . . , τ

ι
m′

ι(x)) are linearly independent. (22)

Since (t ij ) is a basis of Tx�, we have

d�(x) = d
(
t1
1 ∧ · · · ∧ t1

m′
1(x)

∧ · · · ∧ t ι1 · · · ∧ t ιm′
ι(x)

)
. (23)

It is understood that some mj0 may vanish for some j0; this would mean that there

are no vectors t
j0
i both in (22) and (23). We have

t1
1 ∧ · · · ∧ t1

m′
1(x)

∧ · · · ∧ t ι1 ∧ · · · ∧ t ιm′
ι(x) = τ 1

1 ∧ · · · ∧ τ 1
m′

1(x)
∧ · · · ∧ τ ι

1 · · · ∧ τ ι
m′

ι(x) + r,

where the first addend is nonvanishing due to (22) and d(r) < d(τ), where we have
set

τ = τ 1
1 ∧ · · · ∧ τ 1

m′
1(x)

∧ · · · ∧ τ ι
1 · · · ∧ τ ι

m′
ι(x).

An immediate verification shows that d(τ) = ∑ι
j=1 jm′

j (x). This shows that

d�(x) = D′(x).

Notice that we have computed the degree d�(x) by choosing an arbitrary adapted
basis. Then the previous formula also shows that the degree does not depend on the
choice of the adapted basis. Since DH (�) = maxx∈� D′(x), according to the defini-
tion given in 0.6 B of [22], then we obviously have DH (�) = d(�).
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Example 4.3 Let � and ϕ be as in Example 2.7. To determine the blow-up set of
� at the origin, we consider a converging sequence (xn, yn, tn) → (x, y, t) and an
infinitesimal sequence rn → 0. Thus, taking into account that ϕ′(0) = 1, the blow-up
sequence

δ1/rn

(

(rnx

n
1 , rny

n
1 , rny

n
2 )

)

= (
xn

1 , yn
1 , r2

n(xn
1 )3, yn

2 , r−2
n ϕ

(
r2
n

(
(xn

1 )2 + (yn
1 )2 + rn(x

n
2 )3)), rn(xn

1 )2),

converges to (x1, y1,0, y2, x
2
1 + y2

1 ,0), which defines the blow-up set

{
(x1, y1,0, y2, x

2
1 + y2

1 ,0) : x1, y1, y2 ∈ R
}
. (24)

This set is a homogeneous algebraic variety, according to Theorem 1.4. Recall from
Example 2.7 that the degree of � at zero is equal to three. Since the blow-up set at
maximum degree points is a subgroup and in particular a subspace, [29], it follows
that d(�) > 3. This agrees with the computations of Example 2.7, where it is shown
that d(�) = 5. Another reason for which the origin of � cannot be a point of max-
imum degree is that there are no smooth 3-dimensional horizontal submanifolds in
H

1 × H
1, namely, submanifolds of degree equal to three.

Acknowledgements It is a pleasure to thank Roberto Monti for an interesting discussion on the con-
stants of the blow-up estimates.

References

1. Ambrosio, L.: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure
spaces. Adv. Math. 159, 51–67 (2001)

2. Ambrosio, L., Tilli, P.: Selected Topics on Analysis in Metric Spaces. Oxford University Press, Lon-
don (2003)

3. Ambrosio, L., Kleiner, B., Le Donne, E.: Rectifiability of sets of finite perimeter in Carnot groups:
existence of a tangent hyperplane. J. Geom. Anal. 19(3), 509–540 (2009)

4. Arena, G., Serapioni, R.: Intrinsic regular submanifolds in Heisenberg groups are differentiable
graphs. Calc. Var. Partial Differ. Equ. 35(4), 517–536 (2009)

5. Balogh, Z.M., Tyson, J.T., Warhurst, B.: Sub-Riemannian vs. Euclidean dimension comparison and
fractal geometry on Carnot groups. Adv. Math. 220(2), 560–619 (2009)

6. Barone Adesi, V., Serra Cassano, F., Vittone, D.: The Bernstein problem for intrinsic graphs in Heisen-
berg groups and calibrations. Calc. Var. Partial Differ. Equ. 30(1), 17–49 (2007)

7. Bigolin, F., Serra Cassano, F.: Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non
linear first-order PDEs. Adv. Calc. Var. (to appear)

8. Capogna, L., Garofalo, N.: Boundary behavior of nonnegative solutions of subelliptic equations in
NTA domains for Carnot-Carathéodory metrics. J. Fourier Anal. Appl. 4, 403–432 (1998)

9. Capogna, L., Garofalo, N.: Ahlfors type estimates for perimeter measures in Carnot-Carathéodory
spaces. J. Geom. Anal. 16(3), 455–497 (2006)

10. Capogna, L., Pauls, S.D., Tyson, J.: Convexity and horizontal second fundamental forms for hyper-
surfaces in Carnot groups. Trans. Am. Math. Soc. (to appear)

11. Cheeger, J., Kleiner, B.: Differentiating maps into L1 and the geometry of BV functions. Ann. Math.
(to appear)

12. Corwin, L., Greenleaf, F.P.: Representation of Nilpotent Lie Groups and Their Applications. Part 1:
Basic Theory and Examples. Cambridge University Press, Cambridge (1990)

13. Danielli, D., Garofalo, N., Nhieu, D.M.: Non-doubling Ahlfors measures, Perimeter measures, and
the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces. Mem.
Am. Math. Soc. 182, 857 (2006)



V. Magnani

14. Danielli, D., Garofalo, N., Nhieu, D.M.: Sub-Riemannian calculus on hypersurfaces in Carnot groups.
Adv. Math. 215(1), 292–378 (2007)

15. Danielli, D., Garofalo, N., Nhieu, D.M.: A notable family of entire intrinsic minimal graphs in the
Heisenberg group which are not perimeter minimizing. Am. J. Math. 130(2), 317–339 (2008)

16. Danielli, D., Garofalo, N., Nhieu, D.M., Pauls, S.D.: Instability of graphical strips and a positive
answer to the Bernstein problem in the Heisenberg group H

1. J. Differ. Geom. 81(2), 251–295 (2009)
17. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)
18. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton University Press,

Princeton (1982)
19. Franchi, B., Serapioni, R., Serra Cassano, F.: On the structure of finite perimeter sets in step 2 Carnot

groups. J. Geom. Anal. 13(3), 421–466 (2003)
20. Franchi, B., Serapioni, R., Serra Cassano, F.: Regular submanifolds, graphs and area formula in

Heisenberg groups. Adv. Math. 211(1), 152–203 (2007)
21. Garofalo, N., Nhieu, D.M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces

and the existence of minimal surfaces. Commun. Pure Appl. Math. 49, 1081–1144 (1996)
22. Gromov, M.: Carnot-Carathéodory spaces seen from within. In: Bellaïche, A., Risler, J. (eds.) Subrie-

mannian Geometry. Progress in Mathematics, vol. 144. Birkhäuser, Basel (1996)
23. Hajlasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (2000)
24. Jerison, D.: The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math.

J. 53(2), 503–523 (1986)
25. Le Donne, E., Magnani, V.: Measure of submanifolds in the Engel group. Rev. Mat. Iberoam. 26(1),

333–346 (2010)
26. Magnani, V.: A blow-up theorem for regular hypersurfaces on nilpotent groups. Manuscr. Math.

110(1), 55–76 (2003)
27. Magnani, V.: Characteristic points, rectifiability and perimeter measure on stratified groups. J. Eur.

Math. Soc. 8(4), 585–609 (2006)
28. Magnani, V.: Non-horizontal submanifolds and coarea formula. J. Anal. Math. 106, 95–127 (2008)
29. Magnani, V., Vittone, D.: An intrinsic measure for submanifolds in stratified groups. J. Reine Angew.

Math. 619, 203–232 (2008)
30. Monti, R., Morbidelli, D.: Regular domains in homogeneous groups. Trans. Am. Math. Soc. 357(8),

2975–3011 (2005)
31. Monti, R., Rickly, M.: Convex isoperimetric sets in the Heisenberg group. Ann. Sc. Norm. Super. Pisa

Cl. Sci. (5) 8(2), 391–415 (2009)
32. Ritorè, M., Rosales, C.: Area-stationary surfaces in the Heisenberg group H1. Adv. Math. 219(2),

633–671 (2008)


	Blow-Up Estimates at Horizontal Points and Applications
	Abstract
	Introduction
	Basic Notions
	Blow-Up Estimates and Blow-Ups
	Some Remarks
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


