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Abstract. Let k be a positive integer and letm be the dimension of the horizontal

subspace of a stratified group. Under the condition k ≤ m, we show that all sub-

manifolds of codimension k are generically non-horizontal. For these submanifolds

we prove an area-type formula that allows us to compute their Q− k dimensional

spherical Hausdorff measure. Finally, we observe that a.e. level set of a sufficiently

regular vector-valued mapping on a stratified group is a non-horizontal submani-

fold. This allows us to establish a sub-Riemannian coarea formula for vector-valued

Riemannian Lipschitz mappings on stratified groups.
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1. Introduction

In the last decade, Geometric Measure Theory with respect to sub-Riemannian metrics has
been the object of many contributions spread into different research streams. We limit
ourselves to mention just a few recent works for a sketchy overview of this subject and
further references, [1], [3], [4], [7], [9], [16], [17], [27], [31], [32], [33].

Scope of our investigations is constituted by stratified groups, that are simply connected
graded nilpotent Lie groups equipped with a homogeneous norm, [13], that is equivalent to
the so-called Carnot-Carathéodory distance, [18]. In fact, these groups are best known as
“Carnot groups”. All notions of this introduction will be precisely introduced in Section 2.
Aim of this paper is to show an area-type formula for a class of submanifolds in stratified
groups, emphasizing its connection with the corresponding sub-Riemannian coarea formula
for vector valued mappings.

We consider a C1 smooth submanifold Σ of the stratified group G and denote by HxG the
horizontal subspace at x, that has dimension m at every point x ∈ G. We say that x ∈ Σ
is a non-horizontal point when the subspaces TxΣ and HxG are transversal, namely, they
span all of TxG. If these subspaces are not transversal, then we say that x is horizontal.
Notice that this definition is equivalent to Definition 2.10 of [27], where horizontal points
are required to satisfy the condition

(1) dimHxG − dim(TxΣ ∩HxG) < k

and k is the codimension of Σ. In fact, due to Grassmann formula, the left hand side of
(1) is equal to dim(TxΣ + HxG) − dimTxΣ and this number is less than k if and only if
dim(TxΣ +HxG) is less than dimTxG.

A submanifold is called non-horizontal if it has at least one non-horizontal point and it is
called horizontal otherwise. Notice that a non-horizontal submanifold may have horizontal
points. These two classes of submanifolds have been recently introduced in the work [31],
whose results can be applied especially to horizontal submanifolds.

Our main motivation for the study of k-codimensional non-horizontal submanifolds is
that they naturally appear as “intrinsically regular” level sets of vector-valued mapping
f : Ω −→ Rk, where Ω is an open set of a stratified group. There are in turn two primary
reasons to investigate this connection. The first one is related to the validity of nontrivial
coarea formulae for vector-valued mapping on stratified groups that involve the horizontal
Jacobian, as we explain below and in Section 7. The second one is that non-horizontal
submanifolds fit into the larger class of (G,Rk)-regular sets, that are locally defined as level
sets of a P-differentiable vector-valued mapping with surjective P-differential, [27]. These
class of sets naturally appeared in the study of intrinsic rectifiability of the reduced boundary
of finite perimeter sets in the Heisenberg group, [12], and have been independently studied
in codimension one for general stratified groups, [15]. Notice that one can find nontrivial
examples of these sets that are highly irregular from the Eulidean viewpoint, [21].

In the present paper, we focus our attention on arbitrary (G,Rk)-regular sets that are in
addition C1 smooth as submanifolds of G and that precisely coincide with non-horizontal
submanifolds. This follows from Lemma 2.11 of [27], taking into account that the horizontal
differential used in the lemma coincides with the P-differential.

By Lie bracket generating condition, that is satisfied in stratified groups, all smooth
hypersurfaces are always non-horizontal. On the other hand, in higher codimension it is not
true that all k-codimensional submanifolds are non-horizontal. First of all, non-horizontal
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submanifolds exist if and only if m ≥ k, where dim(V1) = m, see Section 4. Even if this
condition is satisfied, as for curves in the Heisenberg group H1, wherem = 2, then horizontal
curves provides examples of horizontal submanifolds. On the other hand, in general we have
that all k-codimensional submanifolds are “generically” non-horizontal. Precisely, under
the condition m ≥ k, Theorem 4.3 shows that k-codimensional non-horizontal C 1 smooth
submanifolds are dense with respect to the topology introduced in Definition 4.2.

Our main result is an intrinsic blow-up at non-horizontal points of C 1 submanifolds,
proved in Theorem 5.4. Let Q denote the Hausdorff dimension of a stratified group G
with respect to a homogeneous distance ρ and let q be the topological dimension of G.
Due to Theorem 2.10.17(2) and Theorem 2.10.18(1) of [11], our blow-up (29) joined with
(Q−k)-negligibility of horizontal points, [27], yields the following

Theorem 1.1. Let Σ ⊂ G be a p-dimensional non-horizontal submanifold of class C 1 and
define the codimension k = q − p. Then the following formula holds

∫

Σ
θgρ
(

nH(x)
)

dSQ−k(x) = c(g, g̃)

∫

Σ
|ñg,H(x)| dµ̃p(x),(2)

where g̃ is an arbitrary Riemannian metric generating the Haar measure vol g̃ of the group,
g is the fixed left invariant metric on G, c(g, g̃) satisfies the formula c(g, g̃) vol g̃ = volg,
µ̃p is the p-dimensional Riemannian measure on Σ with respect to g̃ and | · | denotes the
Riemannian norm with respect to g.

The metric factor θgρ(·) takes into account the fixed left invariant metric g and the homoge-
neous distance ρ, see Definition 5.3. The spherical Hausdorff measure SQ−k defined in (7)
only depends on ρ and the horizontal k-normal nH(x) to Σ at x depends on g, according to
Definition 3.2. This shows that the left hand side of (2) is surprisingly independent from the
metric g̃ and the homogeneous distance ρ. In fact, the metric g̃ need not be left invariant
and essentially plays an auxiliary role. The independence of ρ is discussed in Section 6.

Let us consider the first consequences of the area-type formula (2). As a first remark,
usually it is convenient to work with homogeneous distances with constant metric factor.
Section 6 will discuss existence of these distances in arbitrary graded groups. Under this
condition, we immediately achieve the following

Corollary 1.1. Under hypotheses of Theorem 1.1, if in addition the homogeneous distance
ρ has constant metric factor θgρ(·) = α, then

SQ−k
G

(Σ) = c(g, g̃)

∫

Σ
|ñg,H(x)| dµ̃p(x) ,(3)

where we have set SQ−k
G

= α SQ−k.

This formula provides the “natural” intrinsic measure of non-horizontal submanifolds, ac-
cording to [31] and then provides an integral formula for the (Q−k)-dimensional spherical
Hausdorff measure of these C1 smooth k-codimensional submanifolds. As a byproduct, for-
mula (3) also shows in particular that the Hausdorff dimension of smooth non-horizontal
submanifolds is equal to Q−k. This fits into the general formula for the Hausdorff dimension
of smooth submanifolds stated in Section 0.6B of [18]. Finding all possible Hausdorff di-
mensions of submanifolds in a stratified group corresponds to solve the so-called “Gromov’s
dimension comparison problem”, that has been recently raised in Problem 1.1 of [2].
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If we restrict our attention to one codimensional submanifolds, then we first point out
that a non-horizontal point x of a hypersurface Σ exactly coincides with the so-called non-
characteristic point, since HxG * TxΣ, see [27] for more information on characteristic points
and related references. The intrinsic blow-up at non-characteristic points of hypersurfaces
along with formula (3) have been obtained in [15]. Notice that this area-type formula
coincides with ours assuming that the auxiliary metric g̃ equals the Euclidean metric. The
corresponding formulae in [20], [24] and [27] refer to the case where g̃ equals the fixed
left invariant metric g. In all previous cases, (3) can be interpreted as the natural surface
measure with respect to the sub-Riemannian geometry of G, since it naturally appears in
isoperimetric inequalities in stratified groups and more general Carnot-Carathéodory spaces.
In fact, by our formula (9), the surface measure in (3.1.b) of [14] and the perimeter measure
in (3.2) of [8] fit into (3) where g̃ equals the Euclidean metric, under the condition that the
corresponding vector fields define a stratified group.

This suggests that our area-type formula could be also studied in connection with pos-
sible extensions of the isoperimetric inequality to higher codimensional submanifolds. If it
happens that either the boundary conditions or the algebraic structure of the group in an
area minimization problem force the submanifold to be non-horizontal, then one could find
the corresponding Euler-Lagrange equations of the area functional (3). In this perspective,
our area-type formula could be also studied to investigate an “intrinsic” notion of mass for
the associated non-horizontal integral current of codimension k. Incidentally, this was one
of our initial motivations for this type of studies, that started in codimension one in [24].

Previous results for higher codimensional submanifolds have been recently obtained in
[17], where an area-type formula for intrinsically regular submanifolds in Heisenberg groups
have been achieved. In addition, Theorem 4.6 of [17] provides this formula for C 1 smooth
submanifolds of low codimension. This area-type formula in Heisenberg groups fits into
formula (3) with ρ = d∞. In fact, formula (9) with g̃ equal to the Euclidean metric proves
that the density |ñg,H(x)| coincides with the density of formula (61) in [17].

By virtue of Proposition 3.2, according to which the length of the vertical tangent vector
τΣ,V is proportional to the length of the horizontal normal, also Theorem 1.2 of [28] follows
from (3) with g̃ = g, see Remark 3.3. As we show in Section 3, we also have another

Corollary 1.2. Let U be an open subset of Rd and let Φ : U −→ G be a C1 embedding.
Then

SQ−k
G

(

Φ(U)
)

=

∫

U

∣

∣

∣

(

Φξ1(ξ) ∧ · · · ∧ Φξp(ξ)
)

Q−k

∣

∣

∣
dξ .(4)

If v is a p-vector, then we denote by (v)Q−k its component of degree equal to Q−k. In
Definition 3.3, we recall this notion, that have been introduced in [31] to study the intrinsic
measure of higher codimensional submanifolds. In rough terms, the projection (v)Q−k

represents the component of v having weight equal to Q−k with respect to intrinsic dilations
of the group. Taking into account (10) and Proposition 3.3, one easily notices that horizontal
points coincide with those points of degree less than Q−k.

It is rather clear how (4) resembles an area-type formula, where the “weighted” Jacobian
of the parametrization Φ takes into account only terms of degree Q−k. In addition, by
Proposition 3.3, the previous corollary allows us to characterize all k-codimensional non-

horizontal submanifolds Σ of class C1 as those submanifolds where the restriction SQ−k
G

xΣ
does not vanish. In Section 6 we add an example of non-horizontal C 1 submanifold for which
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we explicitly compute its SQ−k
G

-measure. Other computations for more regular submanifolds
can be found in [28] and [31].

In fact, if we assume C1,1 regularity and Sd-negligibility for points of degree less than
d, then (4) can be extended to arbitrary submanifolds of degree d, [31]. We also point out
that results of [29] show that Sd-negligibility holds in two step groups for C1,1 submanifolds
of arbitrary degree. There is a sort of compensation between the regularity of Σ and the
degree of the point where we perform the blow-up. In fact, in broad terms, C 1 regularity
suffices for (4), since the Taylor expansion of the submanifold at a non-horizontal point
has a non-vanishing first order term. This fact introduces us to the sub-Riemannian coarea
formula, that is the main application of (3) in this paper.

We first notice that a.e. level set of a C1 smooth vector-valued mapping on a stratified
group has an SQ−k-negligible set of horizontal points. This follows by a weak Sard-type
theorem, [23]. To achieve the sub-Riemannian coarea formula (5), we apply Corollary 1.1 to
these level sets. Through the Whitney extension theorem, Riemannian Lipschitz mappings
differ from C1 mappings outside a set of small measure. This extends (5) to Lipschitz
continuous mappings. Unfortunately, this C1 approximation prevents us to use the general
area-type formula of [31] that would require slightly more smoothness.

Theorem 1.2. Let f : A −→ Rk be a Riemannian Lipschitz map, where A ⊂ G is a
measurable subset and let u : A −→ [0,+∞] be a measurable function. We assume that the
homogeneous distance ρ has constant metric factor θgρ(·) = α. Then we have

∫

A
u(x) Jg,Hf(x) dvolg(x) =

∫

Rk

(

∫

f−1(t)
u(y) dSQ−k

G
(y)

)

dt.(5)

There are several results concerning sub-Riemannian coarea formulae for real-valued func-
tions, see for instance [25] and [26] for relevant discussions and references. Here we just
point out that (5) extends previous coarea formulae obtained in [20], [24], [26] and [28].
Notice that in this formula the auxiliary metric g̃ does not appear. The horizontal Jacobian
Jg,Hf(x) corresponds to the restriction of the Riemannian Jacobian of f to the horizon-
tal subspace, see Section 7. Let us point out that this restriction exactly corresponds to
the Pansu differential of the mapping. As we have already pointed out in previous works
focused on some special cases, the proof of (5) relies on the the key formula

(6) Jg̃f(x) |ñg,H(x)|g = Jg,Hf(x)

that relates the horizontal k-normal with the horizontal Jacobian. Notice that both sides
of (6) vanish in the case dim(V1) < k, since there do not exists k-codimensional horizontal
submanifolds and the horizontal Jacobian vanishes. For these special cases, it might be
interesting to investigate novel notions of Jacobian that would go beyond the P-differential
of the mapping, since the condition dim(V1) < k implies that this differential of f is never
surjective. We also wish to stress that in all cases where k > 1, the validity of (5) for a
Lipschitz mapping with respect to the Carnot-Carathéodory distance is presently an open
question.

Let us give a short overview of the paper. Section 2 recalls all notions about stratified
groups that will be used throughout the paper. In Section 3 we introduce the horizontal
k-normal and the vertical tangent vector with respect to the metrics g̃ and g. We recall
the notion of degree of a simple p-vector and present a formula to compute the horizontal
normal and its relationship with the vertical tangent vector. In Proposition 3.3 we show that
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non-horizontal points are characterized as those points where the vertical tangent vector
τΣ,V does not vanish. These results lead to a short proof of Corollary 1.2. In Section 4 we
show that non-horizontal submanifolds exist if and only if the geometric condition k ≥ m
is satisfied and in this case they form a dense family of k-codimensional submanifolds with
respect to a suitable topology. Section 5 is devoted to the proof of the blow-up theorem at
non-horizontal points. We introduce the notion of vertical subalgebra and of metric factor
associated with a k-vector. In the blow-up theorem we also show that the intrinsically
rescaled submanifold converges with respect to the Hausdorff convergence of sets to a normal
subgroup. In Section 6 we introduce a class of homogeneous distances with constant metric

factor and we discuss its role that strikingly makes the measure SQ−k
G

xΣ independent of the
homogeneous distance used to construct it. We also present an example where we compute

SQ−k
G

xΣ for a C1 submanifold. In Section 7 we recall the definition of horizontal Jacobian,
we show the validity of formula (6) and prove the coarea formula stated in Theorem 1.2.

2. Basic notions

Let us consider a simply connected nilpotent Lie group G, whose Lie algebra G admits the
grading G = V1 ⊕ · · · ⊕ Vι, where [Vi, Vj] ⊂ Vi+j and Vi = {0} iff i > ι. Then we say that G
is a graded group. A graded group G where the stronger condition [Vi, Vj ] = Vi+j holds for
every i, j is called stratified group, or Carnot group. The subspace V1 of G defines at any
point ξ ∈ G the horizontal subspace

HξG = {X(ξ) | X ∈ V1}.

Left translations of the group are denoted by lξ : G −→ G, lξ(y) = ξy. The graded structure
defines a one parameter group of dilations δr : G −→ G, where r > 0. Precisely, we have

δr

(

ι
∑

j=1

vj

)

=

ι
∑

j=1

rjvj ,

where
∑

ι

j=1 vj = v and vj ∈ Vj for each j = 1, . . . ι. To any element of Vj we associate
the integer j, which is called the degree of the vector. Since G is simply connected and
nilpotent it follows that exp : G −→ G is a diffeomorphism, hence we have a canonical way
to transpose dilations from G to G. We will use the same symbol to denote dilations of the
group. The following standard properties hold

(1) δr(x · y) = δrx · δry for any x, y ∈ G and r > 0 ,
(2) δr(δsx) = δrsx for any r, s > 0 and x ∈ G.

To provide a metric structure on the group we will fix a graded metric g on G, namely a
left invariant metric such that all the subspaces Vj of the Lie algebra G are orthogonal each
other. This metric will be always understood throughout the paper.

A continuous distance ρ : G × G −→ R is said homogeneous if it satisfies the following
properties

(1) ρ(x, y) = ρ(ux, uy) for every u, x, y ∈ G ,
(2) ρ(δrx, δry) = r ρ(x, y) for every r > 0 .

The Carnot-Carathèodory distance provides an important example of homogeneous distance
in stratified groups. In Section 6 we will see an example of homogeneous distance that can be
defined in arbitrary graded groups. Notice that all homogeneous distances are bi-Lipschitz
equivalent and induce the topology of G.
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Definition 2.1 (Graded coordinates). Let us set nj = dimVj for any j = 1, . . . , ι, m0 = 0

and mi =
∑i

j=1 nj for any i = 1, . . . ι. Let (X1, . . . , Xq) of G be an orthonormal basis with
respect to g and assume that

(Xmj−1+1, Xmj−1+2, . . . , Xmj )

is a basis of Vj for any j = 1, . . . ι. We consider the mapping F : Rq −→ G, defined by

F (y) = exp
(

q
∑

i=1

yiXi

)

.

We say that (X1, . . . , Xq) is a graded basis and that F is a system of graded coordinates.

Definition 2.2 (Metric ball). The open ball and the closed one with center at x ∈ G and
radius r > 0 with respect to the homogeneous distance ρ are denoted by Bx,r and Dx,r,
respectively. We omit the center when it coincides with the unit element of the group.

Recall that the subspace associated with a simple p-vector τ is defined as {v ∈ G | v∧τ = 0}.
In this paper, our definition of spherical Hausdorf measure does not consider any dimensional
factor, namely, we set

(7) SQ−k(E) = lim
ε→0+

inf
{

∞
∑

j=1

rQ−k
i | E ⊂

∞
⋃

i=1

Bxi,ri , ri ≤ ε
}

,

where a fixed homogeneous distance ρ is understood.

3. Horizontal k-normal, vertical tangent vector and applications

Throughout the paper, g̃ will denote a Riemannian metric whose corresponding Riemannian
volume is the Haar measure of the group. We denote by volg and volg̃ the Riemannian
volume measures arising from g and g̃, respectively. The Riemannian norm of vectors with
respect to the fixed graded metric g will be denoted by | · |.

Definition 3.1 (Horizontal projections). Let g be a Riemannian metric on G. We in-
troduce the horizontal projection with respect to g as the smooth mapping of bundles
πg,H : Λ(TG) −→ Λ(HG) such that for each x ∈ G and 1 ≤ k ≤ m it is defined by setting

πg,H(x) : Λk(TxG) −→ Λk(HxG),

that is the orthogonal projection of Λk(TxG) onto Λk(HxG) with respect to the metric
induce on Λk(TxG) by g.

Definition 3.2 (Horizontal k-normal). Let Σ ⊂ G be a k-codimensional submanifold of
class C1 and let x ∈ Σ. We denote by n(x) and ñ(x) the unit k-normals to Σ at x with
respect to g and g̃, respectively. We define the k-vector

ñg(x) = (g∗k)
−1g̃∗k

(

ñ(x)
)

(8)

where g∗k, g̃
∗
k : Λk(TG) −→ Λk(TG) are canonically induced by the Riemannian metrics

g̃∗, g∗ : TG −→ T ∗G. The horizontal k-normal with respect to both metrics g and g̃ is
defined by ñg,H(x) = πg,H (ñg(x)). The horizontal normal with respect to g is given by
πg,H

(

n(x)
)

and it is denoted by nH(x).
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Remark 3.1. We notice that ñg(x) = λ n(x) for some λ ∈ R\{0}. Let n(x) = n1∧· · ·∧nk
and let ñ(x) = ñ1 ∧ · · · ∧ ñk. We have

ñg(x) = (g∗k)
−1g̃∗k

(

ñ(x)
)

=
(

(g∗k)
−1g̃∗k(n1)

)

∧ · · · ∧
(

(g∗k)
−1g̃∗k(nk)

)

.

All vectors vj = (g∗k)
−1g̃∗k(nj) are normal to TxΣ with respect to g and they are linearly

independent. Then both vj and nj span the orthogonal space to TxΣ with respect to g. It
follows that v1 ∧ · · · ∧ vk = λ n1 ∧ · · ·nk for some λ ∈ R \ {0}.

Proposition 3.1. Let Σ ⊂ G be a k-codimensional submanifold of class C 1, let x ∈ Σ and
let (X1, X2, . . . , Xm) be an orthonormal basis of V1 with respect to g. Then we have

|ñg,H(x)|2 =
∑

1≤α1<···<αk≤m

〈ñ(x), Xα1
(x) ∧ · · · ∧Xαk

(x)〉2g̃(9)

Proof. Let us fix the set of multi-indexes

I = {(α1, . . . , αk) ∈ Nk | 1 ≤ α1 < α2 < · · · < αk ≤ m} .

By definition of horizontal projection, we have

|ñg,H(x)|2 =
∑

α∈I

〈ñg(x), Xα(x)〉2

and the definition of ñg(x) exactly yields

〈ñg(x), Xα(x)〉 = 〈ñ(x), Xα(x)〉g̃,

leading us to formula (9). 2

Definition 3.3 (Degree of p-vectors). Let (X1, . . . , Xq) be a graded basis of G. The degree
d(j) of Xj is the unique integer k such that Xj ∈ Vk. Let

Xα := Xα1
∧ · · · ∧Xαp

be a simple p-vector of ΛpG, where α = (α1, α2, . . . , αp) and 1 ≤ α1 < α2 < · · · < αp ≤ q.
The degree of Xα is the integer d(α) defined by the sum d(α1)+· · ·+d(αp). If τ =

∑

β cβ Xβ

is a p-vector, then we define its component of degree d ≤ Q as

(τ)d =
∑

d(β)=d

cβ Xβ .

Notice that the q-vector containing all directions Xj has clearly degree Q, corresponding to
the Hausdorff dimension of G.

Definition 3.4 (Vertical tangent vector). Let Σ ⊂ G be a p-dimensional submanifold of
class C1, with x ∈ Σ, and let τΣ(x) be a unit p-tangent vector of Σ at x with respect to the
metric g̃. We define the vertical tangent p-vector at x as

τΣ,V(x) =
(

τΣ(x)
)

Q−k
,(10)

where k = q − p is the codimension of Σ.

Remark 3.2. Notice that Q − k is exactly the highest degree that can have a p-vector,
where k = q − p. We use the adjective “vertical”, according to [28], since the subspace
associated with τΣ,V(x) contains all directions of the layers Vj with j ≥ 2. Notice that this
also fits the terminology of Definition 5.2.
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Definition 3.5 (Hodge operator). Let X be a q-dimensional, oriented Hilbert space with
orientation e ∈ Λq(X), |e| = 1 and let 1 ≤ k ≤ q. The Hodge operator is the mapping
∗ : Λk(X) −→ Λq−k(X) defined on each η ∈ Λk(X) as the unique vector ∗η ∈ Λq−k(X)
satisfying the relation

ξ ∧ ∗η = 〈ξ, η〉 e(11)

for every ξ ∈ Λk(X).

Proposition 3.2. Let Σ be a C1 smooth k-codimensional submanifold of G and let x ∈ Σ.
Then

(12) |τΣ,V(x)| = c(g, g̃) |ñg,H(x)|,

where c(g, g̃) volg̃ = volg.

Proof. We fix the graded basis (X1, . . . , Xq) and consider

Xα = Xα1
∧ · · · ∧Xαk

and I = {(α1, . . . , αk) | 1 ≤ α1 < · · · < αk ≤ m} ,

wherem = dimV1. Notice that (Xα)α∈I defines an arthonormal basis of Λk(V1) with respect
to the metric induced by g. Now, we choose a basis (B1, . . . , Bq) of TxG that is orthonormal
with respect to g̃ and has the same orientation of (X1(x), . . . , Xq(x)). Then the definition
of Hodge operator along with Lemma 5.1 yields

Xα ∧ τΣ(x) = (−1)kp
〈

Xα, ∗̃
(

τΣ(x)
)〉

g̃
B = ± (−1)kp 〈Xα, ñ(x)〉g̃ B,(13)

where ∗̃ is the Hodge operator with respect to the metric g̃ and the orientation

B = B1 ∧ · · · ∧Bq.

Recall that p = q−k is the dimension of Σ. We obtserve that p-vectors of degree Q−k can
be represented as linear combinations of elements ∗Xα, where α varies in I and ∗ denotes
the Hodge operator with respect to g and the orientation X1 ∧ · · · ∧Xq. Thus, we can write

(14) τΣ(x) =
∑

α∈I

γα ∗Xα(x) +
∑

d(β)<Q−k

cβXβ(x),

observing that the definition of vertical tangent p-vector yields

(15) τΣ,V(x) =
∑

α∈I

γα ∗Xα(x).

The relationship between the metrics g and g̃ is contained in the formula

B1 ∧ · · · ∧Bq =

√

det(gij(x))

det(g̃ij(x))
X1 ∧ · · · ∧Xq,(16)

that holds for any coordinate system with respect to which we consider gij and g̃ij . In fact,

let C = (cij) be the matrix defined by the equations Bi =
∑q

j=1 c
j
i Xj(x). We have

(17) B1 ∧ · · · ∧Bq = det(C) X1 ∧ · · · ∧Xq

where det(C) > 0, since (Bj) and (Xj) have the same orientation. Let (∂/∂yj) be local
vector fields around x with respect to a fixed system of coordinates. Then we have the
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relationships ∂/∂yi(x) =
∑q

j=1 a
j
i Bj. As a consequence, we get

(18) g̃ij(x) =

q
∑

l,s=1

ali a
s
j g̃(Bl, Bs) = (ATA)is

where A = (aji ). Similar computations yield

gij(x) =

q
∑

l,s,k,p=1

ali a
s
j c
k
l c

p
s g
(

Xk(x), Xp(x)
)

= (ATCTCA)ji

that joined with (17) and (18) leads to (16). Left invariance of volg and volg̃ imply that
det
(

gij(x)
)

and det
(

g̃ij(x)
)

are independent of x, therefore

B1 ∧ · · · ∧Bq = c(g, g̃) X1 ∧ · · · ∧Xq,(19)

Inserting (14) in (13) and using (19), we get

(20) γαXα ∧ ∗Xα = c(g, g̃) (−1)kp 〈Xα, ñ(x)〉g̃ X1 ∧ · · · ∧Xq .

According to the definition of horizontal k-normal, we have 〈Xα, ñ(x)〉g̃ = 〈Xα, ñg(x)〉 and

ñg,H(x) =
∑

α∈I

〈Xα, ñg(x)〉Xα ,(21)

therefore (20) implies

|ñg,H(x)|2 =
1

c(g, g̃)2

∑

α∈I

γ2
α(22)

that along with (15) concludes the proof. 2

Proposition 3.3. Let Σ be a C1 smooth k-codimensional submanifold of G. Then x ∈ Σ
is a non-horizontal point if and only if τΣ,V(x) 6= 0.

Proof. We set p = q − k and s = q − m, where m = dimV1 and notice that p
is the dimension of Σ. The integer s is the dimension V2 ⊕ · · · ⊕ Vι. If k > m, then
HxG + TxΣ $ TxG, hence x is horizontal. In addition, we also have p < s, then

(t1 ∧ · · · ∧ tp)Q−k = 0

for every basis (t1, . . . , tp) of TxΣ. Now we assume that k ≤ m, namely, s ≤ p. If x
is non-horizontal, then by definition we have HxG + TxΣ = TxG. Thus, we can find an
orthonormal basis (t1, . . . , tp) of TxΣ such that

ti = Wi(x) + ωi, ωi ∈ HxG for i = 1, . . . , s

and ti ∈ HxG for each i = s+1, . . . , p, where (W1, . . . ,Ws) is a basis of V2 ⊕ · · · ⊕ Vι. Then

τΣ,V(x) =
(

(W1(x) + ω1) ∧ · · · ∧ (Ws(x) + ωs) ∧ ts+1 ∧ · · · ∧ tp
)

Q−k

= W1(x) ∧ · · · ∧Ws(x) ∧ ts+1 ∧ · · · ∧ tp 6= 0.

Conversely, we suppose that τΣ,V(x) 6= 0. Any orthonormal basis (t1, . . . , tp) of TxΣ can
be written in the form ti = Wi(x) + ωi, where Wi ∈ V2 ⊕ · · · ⊕ Vι and ωi ∈ HxG. By
contradiction, if we had

span{W1, . . . ,Wp} $ V2 ⊕ · · · ⊕ Vι,
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then (t1 ∧ · · · ∧ tp)Q−k = 0, that conflicts with our assumption. As a consequence, the
vectors W1, . . . ,Wp must generate all of V2 ⊕ · · · ⊕ Vι. This implies that

span{W1(x) + ω1, . . . ,Wp(x) + ωp} +HxG = TxG,

namely x is a non-horizontal point. 2

Proof of Corollary 1.2. First, in the case Φ(U) is a horizontal submanifold, then
Theorem 2.16 of [27] implies that SQ−k(Φ(U)) = 0. In fact, horizontal submanifolds coincide
with their subset of horizontal points. Furthermore, the vertical tangent vector τΣ,V vanishes
at horizontal points, due to Proposition 3.3. It follows that

(Φξ1(ξ) ∧ · · · ∧ Φξd(ξ))Q−k = 0 for every ξ ∈ U.

This makes the validity of (4) trivial. Now we assume that Φ(U) is non horizontal. Then
we can apply formula (3), obtaining

SQ−k
G

(

Φ(U)
)

= c(g, g̃)

∫

Φ(U)
|ñg,H(x)| dµ̃p(x).

Due to Proposition 3.2, we get

SQ−k
G

(

Φ(U)
)

=

∫

Φ(U)
|τΣ,V(x)| µ̃p(x) =

∫

U
|τΣ,V(Φ(ξ))| |Φξ1(ξ) ∧ · · · ∧ Φξd(ξ)|g̃ dξ.

Observing that

τΣ,V(Φ(ξ)) =

(

Φξ1(ξ) ∧ · · · ∧ Φξd(ξ)
)

Q−k

|Φξ1(ξ) ∧ · · · ∧ Φξd(ξ)|g̃
we are then lead to our claim. 2

Remark 3.3. Notice that in [28], the vertical tangent vector τΣ,V(x) has been defined as
the orthogonal projection of τΣ(x) onto the ideal of p-vectors generated by the Heisenberg
vertical direction Z. This orthogonal projection is considered with respect to the metric g.
It is then immediate to check that this notion coincides with ours exactly in the case g̃ = g.

4. Density of non-horizontal submanifolds

By definition of non-horizontal point, it is immediate to check that graded groups where
dim(V1) < k do not have non-horizontal submanifolds Σ of codimension k. In fact, we have

dim(HxG + TxΣ) < dim(TxG) for every x ∈ Σ.

Then we consider the existence of non-horizontal k-codimensional submanifolds in graded
groups, wherem = dim(HxG) ≥ k. Under this condition, we show that any k-codimensional
submanifold can be modified around a horizontal point by a local perturbation that preserves
the point and makes it non-horizontal.

In fact, up to left translations, we can assume that the unit element e of Σ be horizontal
and that the C1 mapping Φ : U −→ Σ parametrizes Σ, with Φ(0) = e. The open set U is
contained in Rp and it can be chosen such that

λ = inf
ξ∈U

|φξ1(ξ) ∧ · · · ∧ φξp(ξ)| > 0,(23)

where we have set p+ k = q = dim G and Φ(ξ) = expφ(ξ) for every ξ ∈ U . Vectors φξj (ξ)
are thought of as elements of the Lie algebra G equipped with the norm induced by the
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graded metric g. In other words we identify Tφ(ξ)G with G. Now we define the canonical

projection π2 : G −→ S2, where

S2 = V2 ⊕ · · · ⊕ Vι.

Then for every j = 1, . . . , p, we define wj = π2
(

Φξj (0)
)

. Our assumption on k implies that

p ≥ s, where dim(S2) = s. By contradiction, if dim
(

span{w1, . . . , wp}
)

= s, then there
exists α 6= 0 such that

τΣ,V(x) = α
(

(w1 + ω1) ∧ · · · ∧ (wp + ωp)
)

Q−k
,

with ωi ∈ V1. Arguing as in the proof of Proposition 3.3, one gets τΣ,V(e) 6= 0 that conflicts
with our assumption. Then we must have

s0 = dim
(

span{w1, . . . , wp}
)

< s.

We define s1 = s − s0 and s2 = p − s0, observing that s2 ≥ s1. There exist integers
1 ≤ α1 < · · · < αs0 ≤ p such that

span{wα1
, . . . , wαs0

} = span{w1, . . . , wp}.

We consider the integers 1 ≤ β1 < · · · < βs2 ≤ p such that

{α1, . . . , αs0} ∩ {β1, . . . , βs2} = ∅

and choose linearly independent vectors z1, . . . , zs1 ∈ S2 such that

span{wα1
, . . . , wαs0

, z1, . . . , zs1} = S2.

Clearly, it follows that

(24) span{wα1
, . . . , wαs0

, wβ1
+ tz1, . . . , wβs1

+ tzs1} = S2

for every t 6= 0. We define L : Rp −→ S2 such that

L(ξ) = ξβ1
z1 + · · · + ξβs1

zs1

and choose χ ∈ C∞
c (B

|·|
δ ) such that χ(ξ) = 1 whenever ξ ∈ B

|·|
δ/2. Here B

|·|
δ denotes the

Euclidean ball, where the radius δ > 0 is chosen such that B
|·|
δ ⊂ U . We define the

functions

ψ(ξ) = χ(ξ) L(ξ) and Φε(ξ) = exp
(

φ(ξ) + εψ(ξ)
)

.

We first observe that

∂ξαj
Φε(0) = wαj + ωj and ∂ξβl

Φε(0) = wβl
+ ε zβl

for every j = 1, . . . , s0 and l = 1, . . . , s1, where ωj ∈ V1. By (24), it follows that

dim
(

span
{

π2
(

∂ξ1Φε(0)
)

, . . . , π2
(

∂ξpΦε(0)
)})

= s .

Then for every ε > 0 we have
(

∂ξ1Φε(0) ∧ · · · ∧ ∂ξpΦε(0)
)

Q−k
6= 0.

Now, we are left to check that for some ε > 0 suitably small the differential dΦε(ξ) is
injective for every ξ ∈ U . To see this, we notice that

|(φξ1 + εψξ1) ∧ · · · ∧ (φξp + εψξp)| ≥ |φξ1 ∧ · · · ∧ φξp | − εC

p
∑

j=1

(

p
j

)

εj−1|∇ψ|j |∇φ|p−j
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where |∇ψ| =
∑p

j=1 |ψξj |, |∇φ| =
∑p

j=1 |φξj | and

|γ1 ∧ · · · ∧ γp| ≤ C |γ1| · · · |γp|

for every γ1, . . . , γp ∈ G, where we have identified G with Tφ(ξ)+εψ(ξ)G by left translations.
As a consequence, we can find ε0 > 0 depending on C and on λ, which is defined in (23),
such that for every ε ∈]0, ε0[ we have

|(φξ1 + εψξ1) ∧ · · · ∧ (φξp + εψξp)| > 0

at every point of U . Taking into account that exp : G −→ G is a diffeomorphism, this
implies that dΦε(ξ) : Rp −→ TΦ(ξ)G is injective for every ξ ∈ U and every ε ∈]0, ε0[. Now,
we wish to prove that Φε is also injective for ε > 0 suitably small. To do this, we can clearly
assume that Φ : U −→ Σ is an embedding and that

|φ(ξ) − φ(ξ′)| ≥ κ |ξ − ξ′|

for a constant κ > 0 and every ξ, ξ ′ ∈ U . By contradiction, if we had an infinitesimal
sequence (εj) ⊂]0, ε0[ and couples of distinct points ξj, ηj ∈ U such that Φεj (ξj) = Φεj (ηj),
then we would get

|φ(ξj) − φ(ηj)| = εj |ψ(ξj) − ψ(ηj)|

that implies
κ

εj
≤

|ψ(ξj) − ψ(ηj)|

|ξj − ηj |
≤ Lip(ψ)

leading to a contradiction as εj → 0. Then we have shown the existence of some ε1 ∈]0, ε0]
such that Φε : U −→ G is an immersion for every ε ∈]0, ε1[. In addition, we have

Φε(ξ) = Φ(ξ) whenever ξ ∈ U \ B
|·|
δ and Φε(0) = e

namely Φε(U) is a perturbation of Φ(U) around e.
Denote by Sk(G) be the family of C1 smooth k-codimensional submanifolds of G without

boundary. Then we have shown the following

Theorem 4.1. Let Σ ∈ Sk(G) and let x ∈ Σ be a horizontal point. Then for every open
set A ⊂ G containing x there exists Σ′ ∈ Sk(G) such that x ∈ Σ′ is a non-horizontal point
of Σ′ and Σ′ \ A = Σ \ A.

Definition 4.2 (Open sets of Sk(G)). Let A be an open set of G and denote by OA the
family of all submanifolds Σ ∈ Sk(G) such that Σ∩A 6= ∅. We denote by Tk(G) the topology
generated by these sets, namely, the family of submanifolds of Sk(G) formed by arbitrary
unions of finite intersections of sets of the form OA.

Theorem 4.3. The family of non-horizontal submanifolds of G forms a dense subset of
Sk(G) with respect to the topology Tk(G).

Proof. Let Σ be a horizontal submanifold of Sk(G) and consider an open subset U of
Tk(G) containing Σ. It follows that Σ ∈ OA1

∩ · · · ∩ OAn for some open sets Aj of G. We
choose xj ∈ Σ ∩ Aj for every j = 1, . . . , n. Let H be an open subset of G containing x1

and not containing all xj different from x1. Then xj ∈ Σ \ H whenever xj 6= x1. The
condition m ≥ k allows us to apply Theorem 4.1, hence there exists Σ′ ∈ Sk(G) such
that Σ \ A1 = Σ′ \ A1 and x is a non-horizontal point of Σ′. It follows that Σ′ ∩ Aj 6= ∅
whenever xj 6= x1 and clearly Σ′ ∩ Ai 6= ∅ in the case xj = x1. We have proved that
Σ′ ∈ OA1

∩ · · · ∩ OAn ⊂ U and that it is a non-horizontal submanifold. 2
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Remark 4.1. The terminology “generically” we have used in the introduction usually
refers to countable intersections of open dense subsets. Then for different scopes, it might
be of interest either checking whether non-horizontal submanifolds have this property with
respect to the topology Tk(G) or finding another topology with this property.

5. Blow-up at non-horizontal points

Proposition 5.1. Let (X, d) be a metric space where closed bounded sets are compacts. Let
(An) be a sequence of compact sets contained in a bounded set of X and let A be a compact
set of X. Let us consider the following statements:

(1) maxy∈A dist(y,An) −→ 0 as n→ ∞,
(2) for every y ∈ A, there exists a sequence (xn) such that xn → y and dist(xn, An) → 0.
(3) maxx∈An dist(x,A) −→ 0 as n→ ∞
(4) for every subsequence (Aν) and every converging sequence (xν) such that xν ∈ Aν,

we have limν xν ∈ A.

Then (1) is equivalent to (2) and (3) is equivalent to (4).

Proof. We show that statement 2 implies statement 1. By contradiction, if we have a
subsequence such that

max
y∈A

dist(y,Aµ) = dist(yµ, Aµ) ≥ ε > 0(25)

for every µ, then we get a further subsequence yν convering to y0 belonging to A and a
sequence (xn) such that xn → y0 and dist(xn, An) → 0, then

lim sup
ν

dist(yν , Aν) ≤ lim sup
ν

[

dist(yν , y0) + dist(y0, Aν)
]

(26)

≤ lim sup
ν

[d(y0, xν) + dist(xν , Aν)] = 0,(27)

which conflicts with (25). If statement 1 holds, then for an arbitrary element y ∈ A we
consider the sequence (xn) such that dist(y,An) = d(y, xn), where xn ∈ An and observe
that

d(y, xn) ≤ max
z∈A

dist(z,An) −→ 0.

This shows the validity of statement 2. Now, we wish to show that statement 3 implies
statement 4. By contradiction, assume that there exists ε > 0 such that

ε ≤ max
x∈Aµ

dist(x,A) = dist(xµ, A)(28)

for some subsequence xµ. Then we get a further subsequence xν converging to y. By
hypothesis we have that y ∈ A. This conflicts with (28). If statement 3 holds, then for
every subsequence (Aν) and every sequence (xν) such that xν ∈ Aν and xν → y, we have

d(y,A) = lim
ν
d(xν , A) ≤ lim

ν
max
x∈Aν

dist(x,A) = 0,

hence y ∈ A. This shows the validity of statement 4 and concludes the proof. 2

Remark 5.1. Under notation of the previous proposition, by definition of Hausdorff dis-
tance bewteen sets, we have

dH(A,B) = max

{

sup
y∈B

dist(y,A), sup
x∈A

dist(x,B)

}
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where A,B ⊂ X. Thus, conditions (2) and (4) of Proposition 5.1 characterize the Hausdorff
convergence.

Lemma 5.1. Let N and S be orthogonal subspaces of a q-dimensional oriented Hilbert space
and assume that X = N ⊕ S. We set dim(N) = k and consider the simple multivectors
n ∈ Λk(N) and τ ∈ Λq−k(S). Then there exists λ ∈ R such that ∗n = λτ .

Proof. It is clearly not restrictive assuming that that both n ∈ Λk(N) and τ ∈ Λq−k(S)
have unit norm. We define d=q−k and assume that

n = n1 ∧ n2 ∧ · · · ∧ nk and τ = t1 ∧ t2 ∧ · · · ∧ td ,

where (n1, n2, . . . , nk) and (t1, t2, . . . , td) are orthonormal bases of N and S, respectively.
Taking into account the possible orientations of n and τ we have

n1 ∧ n2 ∧ · · · ∧ nk ∧ t1 ∧ t2 ∧ · · · ∧ td = ±η,

where η ∈ Λq(X) defines the orientation of X and the Hodge operator according to (11).
Thus, by definition of ∗ we get ∗n = ±τ. 2

Definition 5.2 (Vertical subalgebra and vertical subgroup). Let G be a graded algebra
equipped with a graded metric g and let ν be a simple k-vector of Λk(V1). We define the
vertical subalgebra L(ν) with respect to ν as the orthogonal complement to the subspace
associated with ν. Its image through the exponential mapping is called vertical subgroup
and it is denoted by N(ν).

Remark 5.2. The terminology of Definition 5.2 fits the fact that the orthogonal comple-
ment of any subspace of V1 with respect to a graded metric is a subalgebra. Precisely, it is
an ideal of G. Then the vertical subgroup N(ν) is clearly a normal subgroup.

Definition 5.3 (Metric factor). Let G be a stratified Lie algebra equipped with a graded
metric g and let ν be a simple k-vector of Λk(V1). The metric factor of a homogeneous
distance ρ with respect to ν is defined by

θgρ(ν) = Hp
|·|(F

−1
(

B1 ∩N(ν)
)

) ,

where F : Rq −→ G is a system of graded coordinates with respect to g. The symbol Hp
|·|

denotes the p-dimensional Hausdorff measure with respect to the Euclidean distance of Rp

and B1 is the unit ball of G with respect to ρ.

In the case of subspaces L of codimension one, the notion of metric factor fits into the
one introduced in [24]. As we have already pointed out in [24] the metric factor does not
depend on the system of coordinates we are using, since F −1

1 ◦F2 : Rq −→ Rq is an Euclidean
isometry whenever F1, F2 : Rq −→ G represent systems of graded coordinates with respect
to the same graded metric.

Theorem 5.4 (Blow-up Theorem). Let Σ be a p-dimensional submanifold of G and let
x ∈ Σ be a non-horizontal point. Then the following limit holds

(29)
µ̃p(Σ ∩Bx,r)

rQ−k
−→ c(g̃, g)

θgρ
(

nH(x)
)

|ñg,H(x)|
as r → 0+,

where the integer k is the codimension of Σ. Moreover, for every R > 0 we have

DR ∩ δ1/r (lx−1Σ) −→ DR ∩N(nH(x))(30)

with respect to the Hausdorff distance of sets.
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Proof. Due to the fact that x is a non-horizontal point, the Grassmann formula yields

dim(TxΣ ∩HxG) = m− k.

As a result, we can find an open neighbourhood Ω ⊂ G of x and a mapping f : Ω −→ Rk

of class C1 such that Σ ∩ Ω = f−1(0) and df(s)|HsG : HsG −→ Rk is surjective for every
s ∈ Ω. We choose an orthonormal basis (vk+1, vk+2, . . . , vm) of TxΣ ∩ HxG and consider
the corresponding left invariant vector fields (Yk+1, Yk+2, . . . , Ym) such that Yj(x) = vj for
every j = k + 1, . . . ,m. Thus, we get

(31) Yjf(x) = 0 whenever k + 1 ≤ j ≤ m

and we can find (Y1, Y2, . . . , Yk) such that (Y1, . . . , Yk, Yk+1, . . . , Ym) is a left invariant or-
thonormal frame such that

span {Y1(s), Y2(s), . . . , Ym(s)} = HsG

for every s ∈ G. We complete this frame to the following orthonormal basis of G

(Y1, Y2, . . . , Ym, Ym+1, . . . , Yq).

Let F : Rq −→ G be a system of graded coordinates defined by

F (y) = exp
(

q
∑

j=1

yj Yj

)

(32)

and let us center this system of coordinates at x defining

Fx(y) = lxF (y) and f̃(y) = f(Fx(y)).

Then we have

(33) ∂yj f̃ = df ◦ ∂yjFx.

We consider the canonical vector fields ej in Rq and define their images

Zj = (Fx)∗(ej), where Zj(x) = Yj(x).(34)

Then in a neighbourhood Ω′ ⊂ Ω of x, we get

Z1f ∧ Z2f ∧ · · · ∧ Zkf 6= 0(35)

in a neighbourhood of x. By definition of image of vector field, we get

Zjf(z) = (Fx)∗(ej)f(z) =
∂

∂yj

(

f ◦ Fx
)

(F−1
x (z)) = ∂yj f̃(F−1

x (z)).

It follows that ∂y1 f̃ ∧ ∂y2 f̃ ∧ · · · ∧ ∂yk
f̃ 6= 0 on F−1

x (Ω′) ⊂ Rq. From the implicit function
theorem there exist a bounded open neighbourhood U ⊂ Rp of the origin and a mapping

(36) ψ(ξ) = (ϕ1(ξ), . . . , ϕk(ξ), ξ1, . . . , ξp)

defined on U such that f̃(ϕ1(ξ), . . . , ϕk(ξ), ξ1, . . . , ξp) = 0 for every ξ ∈ U . We define

Φ(ξ) = Fx(ψ(ξ)), where f ◦ Φ = 0.

We have the formula

µ̃p(Σ ∩Bx,r)

rQ−k
= rk−Q

∫

Φ−1(Bx,r)

∣

∣

∣

∣

∂Φ

∂ξ1
(ξ) ∧ · · · ∧

∂Φ

∂ξd
(ξ)

∣

∣

∣

∣

g̃

dξ.
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Dilations with respect to graded coordinates become δ̃r = F−1 ◦ δr ◦ F , then we restrict δ̃r
to the subspace {ξ ∈ Rq | ξ1 = ξ2 = · · · = ξk = 0} and perform the change of variable

(37) ξ =

q
∑

j=k+1

rd(j)ξ′j−kej = δ̃rξ
′.

Observing that Q− k =
∑q

j=k+1 d(j), we get

µ̃p(Σ ∩Bx,r)

rQ−k
=

∫

δ̃1/rΦ−1(Bx,r)

∣

∣

∣

∣

∂Φ

∂ξ1
(δ̃rξ

′) ∧ · · · ∧
∂Φ

∂ξp
(δ̃rξ

′)

∣

∣

∣

∣

g̃

dξ′,

where

δ̃1/rΦ
−1(Bx,r) =

{

ξ ∈ Rp
∣

∣

∣

(

ϕ1(δ̃rξ)

r
, . . . ,

ϕk(δ̃rξ)

r
, ξ1, . . . , ξp

)

∈ F−1(B1)

}

.

For every i = 1, . . . , k, Taylor expansion yields

(38) r−1ϕi(δ̃rξ) =
m−k
∑

j=1

ϕiξj (0)ξj + o(1).

In view of (31) and (33), we obtain

ϕξj (0) = −
(

∇y1···yk
f̃(0)

)−1
f̃yj+k

(0) = −
(

∇y1···yk
f̃(0)

)−1
Yj+kf(x) = 0

for every j = 1, . . . ,m− k. It follows that

sup
ξ∈A

∣

∣

∣

ϕ(δ̃rξ)

r

∣

∣

∣
−→ 0 as r → 0+,(39)

where A is a bounded subset of Rp. As a result, we have proved that

lim
r→0+

µ̃p(Σ ∩Bx,r)

rQ−k
= Hp

|·|

(

Π ∩ F−1(B1)
)

∣

∣

∣

∣

∂Φ

∂ξ1
(0) ∧ · · · ∧

∂Φ

∂ξp
(0)

∣

∣

∣

∣

g̃

,(40)

where we have set Π = {(0, 0, . . . , 0, ξ1, ξ2, . . . , ξp) ∈ Rq}. Now we wish to obtain a geometric
characterization of the limit (40). Let us consider the Hodge operator ∗̃ with respect to
g̃ and the orientation e = T1 ∧ · · · ∧ Tq, where the frame of vector fields (T1, . . . , Tq) is an
orthonormal frame with respect to g̃ defined on a neighbourhood of x. We define

N = span
{

∇g̃f
1,∇g̃f

2, . . . ,∇g̃f
k
}

and S = span

{

∂Φ

∂ξ1
, . . . ,

∂Φ

∂ξp

}

,

observing that they are orthogonal with respect to g̃. Due to Lemma 5.1 and the identity
∗̃∗̃ = (−1)k d, we get λ 6= 0 such that

∇g̃f
1 ∧ · · · ∧ ∇g̃f

k = λ ∗̃

(

∂Φ

∂ξ1
∧ · · · ∧

∂Φ

∂ξp

)

,(41)
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where ∗̃ denotes the Hodge operator with respect to the metric g̃. The same identity and
the defining property (11) yield

〈

Z1 ∧ · · · ∧ Zk, ∗̃

(

∂Φ

∂ξ1
∧ · · · ∧

∂Φ

∂xp

)〉

g̃

T1 ∧ · · · ∧ Tq(42)

= (−1)kp Z1 ∧ · · ·Zk ∧
∂Φ

∂ξ1
∧ · · · ∧

∂Φ

∂ξp
.

From equality

∂Φ

∂ξi
= dFx ◦

∂ψ

∂ξi
,

observing that ψξi = ek+i +
∑k

s=1 ϕ
s
xi
es and taking into account (34), we achieve

∂Φ

∂ξi
= Zk+i ◦ Φ +

k
∑

s=1

ϕsξi Zs ◦ Φ.

The last formula along with (42) implies that
〈

Z1 ∧ · · · ∧ Zk, ∗

(

∂Φ

∂ξ1
∧ · · · ∧

∂Φ

∂ξp

)〉

g̃

T1 ∧ · · · ∧ Tq(43)

= (−1)kp Z1 ∧ · · ·Zk ∧ Zk+1 ∧ · · · ∧ Zq.

Applying the relationships

T1 ∧ · · · ∧ Tq =
1

√

det(g̃ij)

∂

∂y1
∧ · · · ∧

∂

∂yq
, Y1 ∧ · · · ∧ Yq =

1
√

det(gij)

∂

∂y1
∧ · · · ∧

∂

∂yq

and evaluating (43) at x, we get

(44)

〈

Y1 ∧ · · · ∧ Yk, ∗

(

∂Φ

∂ξ1
∧ · · · ∧

∂Φ

∂ξp

)〉

g̃

(x) = (−1)kp

√

det(g̃ij(x))

det(gij(x))

hence (41) yields

λ(x) = c(g, g̃) (−1)kp
〈

Y1 ∧ · · · ∧ Yk,∇g̃f
1 ∧ · · · ∧ ∇g̃f

k
〉

g̃
(x),(45)

where c(g, g̃) is equal to
√

det(gij(x))/det(g̃ij(x)) and it is a constant independent from x,
due to the left invariance of both volg̃ and volg. We precisely have

c(g̃, g) =

√

det(g̃ij(x))

det(gij(x))
=

volg̃(B1)

volg(B1)
.

From (41) and (45), it follows that

(46)

∣

∣

∣

∣

∂Φ

∂ξ1
(0) ∧ · · · ∧

∂Φ

∂ξp
(0)

∣

∣

∣

∣

g̃

= c(g̃, g)
|∇g̃f

1(x) ∧ · · · ∧ ∇g̃f
k(x)|g̃

∣

∣

∣
〈Y1(x) ∧ · · · ∧ Yk(x),∇g̃f1(x) ∧ · · · ∧ ∇g̃fk(x)〉g̃

∣

∣

∣

g̃

.

We consider the following unit normal k-vector field

ñ =
∇g̃f

1 ∧ · · · ∧ ∇g̃f
k

|∇g̃f1 ∧ · · · ∧ ∇g̃fk|g̃
.
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In view of Definition 3.2, we notice that

ñg = (g∗k)
−1g̃∗k

(

ñ
)

=
∇gf

1 ∧ · · · ∧ ∇gf
k

|∇g̃f1 ∧ · · · ∧ ∇g̃fk|g̃
.

Thus, taking into account also Definition 3.1, we get

ñg,H =
∑

1≤α1<···<αk≤m

〈∇gf
1 ∧ · · · ∧ ∇gf

k, Yα1
∧ · · · ∧ Yαk

〉

|∇g̃f1 ∧ · · · ∧ ∇g̃fk|g̃
Yα1

∧ · · · ∧ Yαk
.

Applying (31), it follows that

(47) ñg,H(x) =
〈∇gf

1(x) ∧ · · · ∧ ∇gf
k(x), Y1(x) ∧ · · · ∧ Yk(x)〉

|∇g̃f1(x) ∧ · · · ∧ ∇g̃fk(x)|g̃
Y1(x) ∧ · · · ∧ Yk(x) .

We also observe that

〈∇gf
1 ∧ · · · ∧ ∇gf

k, Y1 ∧ · · · ∧ Yk〉 = 〈∇g̃f
1 ∧ · · · ∧ ∇g̃f

k, Y1 ∧ · · · ∧ Yk〉g̃ ,

hence joining (46) with (47), we establish that
∣

∣

∣

∣

∂Φ

∂ξ1
(0) ∧ · · · ∧

∂Φ

∂ξp
(0)

∣

∣

∣

∣

g̃

= c(g̃, g)
1

|ñg,H(x)|
.(48)

Next, we will give a geometric characterization of the number Hp
|·|

(

Π ∩ F−1(B1)
)

. By virtue

of (47), the subspace orthogonal to that associated with ñg,H(x) is exactly

span{Yk+1(x), . . . , Yq(x)} ⊂ G.

Due to Remark 3.1 we have ñg = λn for some λ 6= 0, then ñg,H(x) = λnH(x). Being ñg,H(x)
a simple k-vector, it follows that nH(x) is simple too. As a consequence, Definition 5.3
implies that

N(nH(x)) = exp (span{Yk+1(x), . . . , Yq(x)}) = F (Π),

therefore we get

θgρ
(

nH(x)
)

= Hp
|·|

(

Π ∩ F−1(B1)
)

.(49)

Taking into account formulae (40), (48) and (49), the proof of (29) is achieved.
Now, we are left to prove the validity of the Hausdorff convergence (30). Let R > 0 be

fixed. For every r > 0 suitably small, we observe that

(50) DR ∩ δ1/r
(

lx−1Σ
)

= DR ∩ δ1/r
(

lx−1Φ(U)
)

= DR ∩ δ1/rF
(

ψ(U)
)

,

where Φ : U −→ Σ parametrizes a neighbourhood of x in Σ and ψ is defined in (36). In
order to apply Proposition 5.1, we will prove its conditions (2) and (4). Let (rn) be a
positive sequence such that rn → 0+ and let (xn) be a converging sequence such that

xn ∈ DR ∩ δ1/rnF
(

ψ(U)
)

.

We have

xn = F

(

ϕ(ξn)

rn
, δ̃1/rnξn

)

where the restriction δ̃r is defined in (37). If we set δ̃1/rnξn = ηn, then the convergence
of (xn) implies the convergence of (ηn) to a vector η ∈ Rp. Due to (39), it follows that

ϕ(δ̃rnηn)/rn → 0, therefore

xn −→ F (0, . . . , 0, η) ∈ F (Π).
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Thus, we have proved that

lim
n→∞

xn ∈ DR ∩ F (Π) = DR ∩N
(

ñg,H(x)
)

.

This shows condition (4) of Proposition 5.1. Now we choose

x = F (0, η) ∈ DR ∩N
(

ñg,H(x)
)

,

where η ∈ Rp and define

xn = F

(

ϕ(δ̃rnη)

rn
, η

)

and xn(t) = F

(

ϕ
(

δ̃rn(tη)
)

rn
, tη

)

where we have arbitrarily fixed 0 < t < 1. For n sufficiently large, depending on t, we have

xn(t) ∈ BR ∩ δ1/rnF
(

ψ(U)
)

,

since xn(t) → F (0, tη) ∈ BR. In particular, by (50) we have

dist
(

xn(t), DR ∩ δ1/rnF
(

ψ(U)
)

= dist
(

xn(t), DR ∩ δ1/rn
(

lx−1Σ
)

)

−→ 0.(51)

We also notice that

lim
n→∞

ρ
(

xn(t), xn
)

= ρ
(

F (0, tη), F (0, η)
)

= σ(t) −→ 0 as t→ 1−.

Triangle inequality yields

lim sup
n→∞

dist
(

xn, DR ∩ δ1/rn
(

lx−1Σ
)

)

≤ σ(t) + lim sup
n→∞

dist
(

xn(t), DR ∩ δ1/rn
(

lx−1Σ
)

)

,

then (51) gives lim supn→∞ dist
(

xn, DR ∩ δ1/rn
(

lx−1Σ
)

)

≤ σ(t). Letting t → 1−, we have

shown that

dist
(

xn, DR ∩ δ1/rn
(

lx−1Σ
))

→ 0.

This shows the validity of condition (2) of Proposition 5.1. As pointed out in Remark 5.1,
conditions (2) and (4) of Proposition 5.1 characterize the Hausdorff convergence, hence the
proof is finished. 2

6. Remarks on the role of the metric factor

We wish first to present a class of homogeneous distances such that θgρ(·) is constant.

Definition 6.1. Let F : Rq −→ G be a system of graded coordinates and let x = (y1, . . . , yι)
belong to Rq, where yj ∈ Rnj and nj = dimVj for every j = 1, . . . , ι. We say that a
homogeneous distance ρ on G is symmetric on all layers if there exists ω : Rq −→ R only
depending on the Euclidean norms of yj such that

ρ(x, e) = ω
(

F−1
(

x
))

,

where x ∈ G and e is the unit element of G.

Proposition 6.1. Let ν, µ be in Λk(V1) and let ρ be a homogeneous distance, which is
symmetric on all layers. Then θgρ

(

ν
)

= θgρ
(

µ
)

.
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Proof. Assume that ν = U1∧U2∧· · ·∧Uk and µ = W1∧W2∧· · ·∧Wk, where Ui,Wi ∈ V1

for every i = 1, . . . , k. Both orthogonal spaces L(ν) and L(µ) can be written as

L(ν) = T1 ⊕ V2 ⊕ V3 ⊕ · · · ⊕ Vι and L(µ) = T2 ⊕ V2 ⊕ V3 ⊕ · · · ⊕ Vι ,

where the (m−k)-dimensional subspaces T1 and T2 are orthogonal to span{U1, U2, . . . , Uk}
and to span{W1,W2, . . . ,Wk} in V1, respectively. Let us define Sj = F−1

(

exp
(

Tj
))

⊂ Rq

and consider an Euclidean isometry l : Rq −→ Rq such that l(S1) = S2, l(S
⊥
1 ) = S⊥

2 and
F ◦ l◦F−1 : exp(V2⊕· · ·⊕Vι) −→ exp(V2⊕· · ·⊕Vι) equal to the identity mapping. Defining
L = F ◦ l ◦ F−1 : G −→ G we have L

(

exp
(

L(ν)
))

= exp
(

L(µ)
)

and

ρ
(

L(x), e
)

= ω
(

F−1
(

L(x)
))

= ω
(

l
(

F−1(x)
))

= ω(F−1(x)
)

= ρ
(

x, e).

This implies both inclusions L(B1) ⊂ B1 and L−1(B1) ⊂ B1, then L(B1) = B1, where
B1 = {p ∈ G | ρ(p, e) = ω(F−1(p)) < 1}. As a consequence, it follows that

F−1 (expL(µ) ∩B1) = F−1 ◦ L
(

exp
(

L(ν)
)

∩B1

)

and we notice that F−1 ◦L ◦ F = l is an Euclidean isometry. Then the definition of metric
factor concludes the proof. 2

Example 6.1. An interesting example of homogeneous distance which is symmetric on all
layers is given in Theorem 5.1 of [16], where

ω(x) = max
j=1,...,ι

{εj |(x
mj−1+1, . . . , xmj )|1/j},(52)

yj = (xmj−1+1, . . . , xmj ), mj =
∑j

s=1 dimVs and εj are suitably small constants, depending
only on the group. Then the corresponding distance d∞(p, s) = ω

(

F−1(p−1s)
)

has constant
metric factor with respect to all horizontal k-vectors.

Other examples arise from some classes of H-type groups, including Heisenberg groups,
where the metric factor on horizontal vectors with respect to the Carnot-Carathéodory
distance is constant, [24].

Now we recall that in the introduction we have used the notation SQ−k
G

= αSQ−k, where
it has been assumed that ρ has constant metric factor and then

α = θgρ(ν) for every ν ∈ Λk(V1).

Due to formula (4) it is easy to realize a rather surprising phenomenon. In fact, the measure

SQ−k
G

xΣ does not depend on the homogeneous distance ρ used to construct it, since in the
right hand side of (4) the distance ρ does not appear. This means that the metric factor in
a sense really makes the measure

θgρ
(

nH(·)
)

SQ−k
xΣ

more intrinsic, compare with [31]. As an easy example to test this fact, we simply consider
two homogeneous distances ρ and ρ = λ ρ, where we have fixed λ > 0. Then it is easy to
observe that

(53) SQ−k
ρ = λQ−kSQ−k

ρ .

We consider the formula

θgρ
(

nH(x)
)

= Hp
(

F−1
(

Bρ
1 ∩N(nH(x))

)

)
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and notice that Bρ
1 = δ1/λ

(

Bρ
1

)

. The key observation is that the restriction δ̃r to the

vertical subgroup N
(

nH(x)
)

has Jacobian equal to rQ−k. In other words, the simple p-

vector associated with the vertical subalgebra L
(

nH(x)
)

has degree Q− k. Then we have

F−1
(

Bρ
1 ∩N(nH(x))

)

= δ̃1/λ

(

F−1
(

Bρ
1 ∩N(nH(x))

)

)

that implies

(54) θgρ(nH(x)) =
1

λQ−k
θgρ(nH(x)).

Taking into account (53) and (54), we have shown that

θgρ(nH(x)) SQ−k
ρ xΣ = θgρ(nH(x)) SQ−k

ρ xΣ

for every non-horizontal submanifold Σ.

Example 6.2. Let us consider the stratified group G = H1 × H1 that is the direct prod-
uct of two Heisenberg groups. Let represent G through the system of graded coordinates
(x1, x2, y1, y2, t, τ) with respect to the vector fields

X1 = ∂x1
− x2∂t, X2 = ∂x2

+ x1∂t, T = ∂t,

Y1 = ∂y1 − y2∂τ , Y2 = ∂y2 + y1∂τ , Z = ∂τ .

Notice that here only 1-dimensional submanifolds are always horizontal. We consider a
function h ∈ C1(R2) such that h(0, 0) = 1. Then we consider the surface parametrized by

Φ(u, v) =
(

u, h(u, v), u, v, u, 0
)

.

We compute the partial derivatives, getting










Φu(u, v) =
(

∂x1
+ hu ∂x2

+ ∂y1 + ∂t

)

|Φ(u,v)

Φv(u, v) =
(

hv∂x2
+ ∂y2

)

|Φ(u,v)

therefore, using the expressions of the left invariant vector fields, we obtain
{

Φu(u, v) = X1 + Y1 + (h− uhu + 1)T + huX2 + vZ
Φv(u, v) = hvX2 + Y2 − uT − uZ

.(55)

The homogeneous dimension Q of H1 ×H1 is 8 and the codimension k of Φ(R2) is 4. Then
we consider

(

Φu ∧ Φv

)

4
= u (h+ 1 − uhu − v)Z ∧ T

Then our assumption on h implies that any neighbourhood in Φ(R2) of Φ(0) clearly contains
a non-horizontal point. Then the C1 submanifold Σ = Φ(R2) is non-horizontal and we have
the formula

S4
H1×H1xΣ = Φ#

(

|u (h+ 1 − uhu − v)| L2
)

where L2 denotes the Lebesgue measure of R2 and we have fixed a precise homogeneous
distance ρ in H1 × H1 with constant metric factor.
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7. Proof of the coarea formula

The proof of coarea formula (5) essentially follows the same steps of [28], where the domain
of the mapping is an Heisenberg group. For the sake of the reader, in this section we wish
to present its proof with the appropriate definitions extended to this more general context,
where the domain is a stratified group and the auxiliary metric g̃ is also taken into account.

Definition 7.1 (Horizontal Jacobian). Let f : Ω −→ Rk be a mapping of class C1 defined
on an open subset Ω ⊂ G and let x ∈ Ω. The horizontal Jacobian of f at x is defined by

Jg,Hf(x) =
∣

∣

∣
πg,H

(

∇f1(x) ∧ · · · ∧ ∇fk(x)
)∣

∣

∣
.

Proposition 7.1. Let Σ be a submanifold of G and let f : U −→ Rk be a C1 mapping
defined on a neighbourhood U of x ∈ Σ such that U ∩Σ = U ∩f−1(0). We have the formula

(56) Jg̃f(x) |ñg,H(x)| = Jg,Hf(x).

Proof. One of the two possible horizontal k-normals ñ(x) with respect to g̃ can be
defined as follows

ñ(x) =
∇g̃f

1(x) ∧ · · · ∧ ∇g̃f
k(x)

|∇g̃f1(x) ∧ · · · ∧ ∇g̃fk(x)|g̃
.

Then we have

|ñg,H(x)| =
∣

∣πg,H
(

(g∗k)
−1g̃∗k

(

ñ(x)
))
∣

∣ =

∣

∣πg,H
(

(g∗k)
−1
(

df1(p) ∧ · · · ∧ dfk(x)
))∣

∣

|∇g̃f1(x) ∧ · · · ∧ ∇g̃fk(x)|g̃

=

∣

∣πg,H
(

∇f1(x) ∧ · · · ∧ ∇fk(x)
)
∣

∣

|∇g̃f1(x) ∧ · · · ∧ ∇g̃fk(x)|g̃
=
Jg,Hf(x)

Jg̃f(x)
.

This concludes the proof. 2

Proof of Theorem 1.2. We first recall the following Riemannian coarea formula from
Section 13.4 of [6]:

(57)

∫

G

u(x) Jg̃f(x) dvolg̃(x) =

∫

Rk

(
∫

f−1(t)
u(y) dµ̃p(y)

)

dt,

where f : G −→ Rk is a Riemannian locally Lipschitz mapping, u : G −→ R is a summable
function and µ̃p is the p-dimensional Riemannian surface measure with respect to g̃ restricted
to f−1(t). Notice that for a.e. t ∈ Rk the measure µ̃p is well defined on f−1(t), since the

set of singular points in f−1(t) is µ̃p-negligible. We first suppose that f : G −→ Rk is of
class C1. Let Ω be a bounded open set of G and consider the summable function

u0(x) = 1{y∈Ω|Jg,Hf(y)6=0}(x)
Jg,Hf(x)

Jg̃f(x)
.

If the subset f−1(t) ∩ {y ∈ Ω | Jg,Hf(y) 6= 0} is nonempty, then it is a C1 submanifold.
Thus, taking into account (56) and applying (57) to u0, we get

∫

Ω
Jg,Hf(x) dvolg̃(x) =

∫

Rk

(
∫

f−1(t)∩{y∈Ω|Jg,Hf(y)6=0}
|ñg,H(y)| dµ̃p(y)

)

dt.
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Multiplying the previous equation by c(g, g̃) and taking into account (3), we get
∫

Ω
Jg,Hf(x) dvolg(x) =

∫

Rk

SQ−k
G

(

f−1(t) ∩ {y ∈ Ω | Jg,Hf(y) 6= 0}
)

dt.

Notice that we can apply (3), since the set

f−1(t) ∩ {y ∈ Ω | Jg,Hf(y) 6= 0},

when nonempty, is a non-horizontal submanifold. This follows from formula (56) and taking
into account both Proposition 3.2 and Proposition 3.3. Due to the generallized Sard type
theorem of [23], we get

∫

Ω
Jg,Hf(x) dvolg(x) =

∫

Rk

SQ−k
G

(

f−1(t) ∩ Ω
)

dt.

In the previous assertion, we have used the fact that the Pansu differential of f at x
considered in [23] is surjective if and only if Jg,Hf(x) 6= 0. The previous formula can be
extended to all measurable sets E of G as follows

∫

E
Jg,Hf(x) dvolg(x) =

∫

Rk

SQ−k
G

(

f−1(t) ∩E
)

dt.(58)

In fact, the Eilenberg inequality 2.10.25 of [11] and the outer approximation of bounded
measurable sets by open sets show the validity of (58) for all bounded measurable sets. Its
extension to all measurable sets is then obtained by the Beppo Levi convergence theorem.

Now, we consider the Lipschitz mapping f defined on a measurable set A. Then we
extend it to a Lipschitz mapping f̃ defined on all of G. Let ε > 0 be arbitrarily fixed and
apply the classical Whitney’s extension theorem, see for instance 3.1.15 of [11], according

to which there exists a C1 mapping f̃1 : G −→ Rk such that the open set

O = {x ∈ G | f1(x) 6= f̃1(x)}

has volume measure volg less than or equal to ε. Notice that volg in a system of graded
coordinates corresponds to the Lebesgue measure up to a factor. In view of definition of
horizontal Jacobian, we have

Jg,Hf(x) ≤ C

k
∏

j=1

|∇f j| ≤ C Lip(f)k.

for a.e. x ∈ A, where Lip(f) is the Riemannian Lipschitz constant of f . It follows that
∫

A∩O
Jg,Hf(x) dvolg(x) ≤ C Lip(f)k ε.(59)

By Eilenberg inequality 2.10.25 of [11], we have
∫

Rk

SQ−k(f−1(t) ∩O) dt ≤ C Lip(f)k ε(60)

for some geometric constant C. Applying (58) to the subset E = A \O
∫

A\O
Jg,Hf(x) dvolg(x) =

∫

Rk

SQ−k
G

(

f−1(t) \ O
)

dt.(61)
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As a consequence, estimates (59), (60) along with equality (61) give

(62)

∣

∣

∣

∣

∫

A
Jg,Hf(x) dvolg(x) −

∫

Rk

SQ−k
G

(

f−1(t)
)

dt

∣

∣

∣

∣

≤
(

C Lip(f)k + C Lip(f)k
)

ε.

Arbitrary choice of ε proves the formula
∫

A
Jg,Hf(x) dvolg(x) =

∫

Rk

SQ−k
G

(

f−1(t)
)

dt(63)

It is clearly not restrictive considering u ≥ 0 a.e. Thus, our claim is achieved taking an
increasing sequence of step functions a.e. converging to let u, since one can apply the Beppo
Levi convergence theorem. 2

Acknowledgements. I thank Alessio Figalli and Davide Vittone for fruitful discussions.
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