JUMEBRICAL METHODS: j&J.

o

—

[$1]

i
-

12.2.2. Case Study: Dyursuit Problem with Bvent Location

Next we consider a pursuit problem [12, Chap. B}, Suppose that o rabbit follows a

predefined path {ri(t), 72 (t)) in the plane, and that a fox chases the rabbit in such a

way that (a) at each moment the tangent of the fox's path points sowards the rabbit
: and (b) the speed of the fox is some constant I: times the speed of the rabbit. Then
the path {11 (t), ya(t)} of the fox is determined by the ODE

| L p(6) =) (O ~)
2 ot = 516) (r20) ~ (0

where . _
By (Em@) + (Lra(t))”
mm—mmf+mmfm@f

Note that this ODE system becomes ill-defined if the fox approaches the rabbit. We
let the rabbif follow an outward spiral,

rl(t)} o {cost] ’

T (t) sint

. and start the fox at y1(0) = 3, ya(0) = 0. The cunction foxl implements the ODE,
. with k set to 0.75:

S(f,) =

function yprime = foxl(t,y)
YFOXL Fox-rabbit pursitit gimelation.

% YPRIME = FOXL(T.Y) .
k = 0.75;
r = sqri(i+t)=icos(¥); sin(t)]; ‘
“ T_P =(0.5/sqrt (1+t))* [cos(t)—z*(1+t)*sin(t) ;sin(t)+2*(1+t)*cos ()];

dist = norm{T-y);
if dist > le-4
factor = snorm(r_p) /dist;
yprime = factor*(r-y);
glse
error{’ODE model jli-defined.’)
end

The error function (see Section 14.1) has been used so that execution terminates
with an error message if the denominator of s(t) in the ODE becomes too small.
The script below calls fox1 to produce Figure 12.6. Initial conditions are denoted by
circles and the dashed and solid lines show the phase plane paths of the rabbit and
fox, respectively.

¢span = [0 10]; yzero = [3:01;
[tfox,yfox] = odeés(@foxl,tspan,yzero);
plot (yfox(: 1), yfox(:,2)). hold on

i plot(sqrt (1+tfox) .xcos(tfox) ,sqrt (1+tfox) asin(tfox),’—=")
7 plot ([3 11,00 01,707);
@g?ﬁﬁ@a% - axis equal, axis([-3.5 3.5 -2.b 3.11)

legend(*Fox? , 'Rabbit’,0), hold off

38 Parr 11

sit follows a
»it in such a
ls the rabbit
abhbit. Then

y rabbis. We

ss the ODE,

1=cos{t)];

1 terminates
s too small.
: denoted by
2 rabbit and

12.2 ORDINARY DURPERENTIAL EQuaTions 158

ra
T
~
~
N
. A}
i
. ’
P
L
-
!

Figure 12.6. Pursust ezample,

The implementation zbove is unsatisfactory for & > 1, that is, when the fox is
faster than the rabbit. In this case, if the rabbit is caught within the specified time
interval then no solution is displayed. It would be more natural to ask odeé5 to
return with the computed solution if the fox and rabbit become close. This can be
done using the event location facility. The following script file uses the functions fox?
and events, which are given in Listing 12.1, to produce Figure 12.7. We have allowed
k to be a parameter, and set k = 1.1 in the script file. The initial condition and the
rabbit's path are as for Figure 12.6.

k=11;

tspan = [0;10]; yzero = {3;0];

optiens = mdeset(’ﬂelTol’,ie—G,’AbsTol’,ie—G,’Events’,@events);
[tfox,yfox,te,ye,ie] = 0de45(@foxE,tspan,yzero,options,k);
plot(yfox(:,1),yfox(:,2)), hold on
plot(sqrt(1+tfox).*cos(tfox),sqrt(1+tfox).$sin(tfox},’——’)

plot ({3 11,[0 01,70°), plot(yfox(end,i),yfox(end,?),’*’)

axis equal, axis([~3.5 3.5 -2.5 3.1

legend(’Fox’,’Rabbit’,o), hold off

Here, we use odeset to set the event location property to the handle of the func-
tion events in Listing 12.1. This function has the three output arguments value,
isterminal, and direction. It is the responsibility of ode45 to use events to
check whether any component passes through zero by monitoring the quantity re-
turned in value. In our example value is a scalar, corresponding to the distance
between the rabbit and fox, minus a threshold of 10—, Hence, ode45 checks if the
fox has approached within distance 107* of the rabbit. We set direction = -1,
which signifies that value must be decreasing through zero in order for the event
to be considered. The alternative choice direction = 1 tells MATLAB to consider
only crossings where value is increasing, and direction = 0 allows for any type of

nops: Part (1

Listing 12.1. Functions oxX2 and events.

function yprime = fox2 t, ¥,k
YFOY? Fox-rabbit pursuit gsimulation with relative spesd parametsl.
h YPRIME = FOX2(T,Y,K).

= sqrt(1+t)*[cos(t); sinf{t)];

(0.5/sgzre(1+t)) =* [cos(t)y-2=(1+s)ssin(t); sin(g)+2x(i+tdwcos(t)];
dist = max{norm(z-y),le-6);

factor = kxnorm{r_p)/dist;

ng?rime = factor={r-yl;

IH Lo}
o
[}

function [value,isterminal,directiun] = events(t,y,%)
YEVENTS Events function for FOXZ.
% Locate when fox is closs to Tabbit.

r = sqrt(t+e)+lcos{t); sin{t)];

yalue = norm{r-y) - le—4; ¥ Fox close to rabbit.
isterminal = 1; ¥ Stop integraticn.
direction = -1; Y% Value must be decreasing through zZsro.

T T T T T —

r T 3
3 — Fox
— ~ Rabbil

-2

5 ' Figure 12.7. Pursuit ezample, with capture.

()]

Zero.

-

i ATV

12.2 ORDINARY DHFFERENTIAL EauaTions

157

zero. Since we sei isterminal = 1, integration will cease when a suitable ZOT0D Cross-
ing is detected. With the other option, isterminal = 0, the event js recorded and
the integration continues. Note that the function events must accept the additional
parameter k passed to ode45, even though it does not need it in this example.

The output arguments from oded5 are [t¥ox,yfox,te »¥ye.ie]l. Here, tfox and
vox are the usual solution approximations, so yfox (i) approximates y(¢) at time
£ = tfox{i). The arguments te and ye record those t and y values at which the
event(s) were recorded and, for vector valued events, ie specifies which component
of the event oceurred each time, (If no events are detected then te, ye and ie are
returned as empty matrices.) In our example, we have

>> te, ye

te =

5.0710
ye =
0.8646 ~2.,3073

showing that the rabbit was captured after 5.07 time units at the point {0.86, —2.31).

12.2.3. StiF Problems and the Choice of Solver
The Robertson QODE system

d .

T (t) = =0.04y1(2) + 10" ya(t)ya (1),

d - D)
Eyg(t) = D.Ozlyl{t} - 104y3(t)y3(t) —3x IO’yg(t)‘,

!

d 7 2
, gE¥a(®) = 3 % 107go(e)?

models a reaction between three chemicals [25, p. 3, (69, p. 418]. We set the system
up as the function chem:

function yprime = chem(t,y)

#ACHEM Robertson’s chemical reaction model,
yA YPRIME = CHEM(T,Y).
yprime = [4xy (1) + ledsy(2)=xy(3);

-0.0
0.04%y(1) - ledsy(2)=y(3) - 3eT+y(2)"2;
3eT+y(2)"2];

The script file below solves this ODE for 0 < ¢ < 3 with initial condition [1;0; 0], first
using ode45 and then using another solver, odel5s, which is based on implicit linear
multistep methods. (Implicit means that a nonlinear equation must be solved at each
step.) The results for ya(t) are plotted in Figure 12.8.

tspan = [0 3]; yzero = [1;0;03;

[ta,ya] = odeés(@chem,tspan,yzero);

subplot(121), Plot(ta,ya{:,2),7-+*)

ax = axis; ax(1) = -0.2; axis(ax) % Make initial transient clearer.
xlabel(’t?), ylabel(Py_2(t)?), title(’odeéS’,’FontSize’,14)

[tb,yb] = ode15s(@chem, tspan,yzero) ;

subplot{122), plot(tb,yb(:,z),’—*’), axis(ax)

xlabel{’t?), ylabel (y_a(t)?), title(’odeiSs’,’FontSize’,ié)

