s

160 NuMBRICAL METHODS: Part il

Table 12.1. MATLAB's ODE solvers.

Soiver Problem type Type of algorithm
odedb Nonstiff FExplcit Runge-Kutta pair, orders 4 and 5
ode23 Nonstiff Explicit Runge-Kutia pair, orders 2 anc 3
ode1i3 Nonstiff Explicit linear multistep, orders 1 to 12
odelss Stiff Implicit linear multistep, orders 1 to 5
ode?23s Stiff Modified Rosenbrock pair (one-step), orders 2 and 3
ode23t Mildly stiff Trapezoidal rule {implicit), orders 2 and 3
Lﬂie'z.?atb Stift Implicit Runge-Kutta type algorithm, orders 2 and 3

return four solution values at equally spaced points over pach “natural” step. The
defanlt interpolation level can be wverridden via the Refine property with cdesst.
A full list of MATLAB’s ODI solvers is given in Table 12.1. The authors of
these solvers, Shampine and Reichelt, discuss some of the theoretical and practical
issues that arose during their development 1n {72). The functions are designed to
be interchangeable in basic use. So, for example, the illustrations in the previous
subsection continue to work if oded is replaced by any of the other solvers. The
functions mainly differ in (a) their officiency on different problem types and (b) their
capacity for accepting information about the problem in connection with Jacobians
and mass matrices. With regard to efficiency, Shampine and Reichelt write in [72]:

The experiments reported here and others we have made suggest that
except in special circumstances, oded5 should be the code tried first. If
there is reason to believe the problem to be stiff, or if the problem turns
oub to be unexpectedly difficult for ode4db, the odelbs code should be
tried.

The stiff solvers in Table 12.1 use information about the J acobian matrix, 81: /8y,
at various points along the solution. By defauls, they automatically generate approx-
imate Jacobians using finite differences. However, the reliability and efficiency of the
solvers is generally improved if a function that evaluates the Jacobian is supplied.
Further options are also available for providing information about whether the Ja-
cobian is sparse, constant or written in vectorized form. To illustrate how Jacobian
information can be encoded, we 1ook at the system of ODEs

M %y(t) = Ay(t) +y(t). = {1 = y(i)) +u,

where A is N-by-N and v is N-by-1 with
[O 1 —1 -2 1 1

. .. 1 e, ‘.. 1
L -1 0 i 1 -2

v =[ra—r,0,...,0 T2+T1]T, r = —a/(2Ax) and = b/Azr®. Here, a, b and Az are
parameters with valuessa=1,b=5x 10-2 and Az = 1/(N + 1} This ODE syster

T

1ons: ParT 11

—_———e————

[—————

15
13

‘ders 2 and 3
13
orders 2and 3 |

ural” step. The
¢ with odeset.

The authors of
:al and practical
are designed to
in the previous
1er solvers. The
aes and (b) their
1 with Jacobians
It write in [72):

1ggest that
ied first. If
iblem turns
v should be

matrix, 8f:/01,
generate approX-
1 efficiency of the
sbian is supplied.
. whether the Ja-
ate how Jacobian

.1
1 -2

re, a, band Az are
This ODE system

12.2 ORDINARY DIFFERENTIAL BQUATIONS 1461

time space

Figure 12.10. Siiff ODFE example, with Jocobian information supplied.

arises when the method of lines based on central differences is used to semi-discretize
the partial differential equation {PDE)

0 a b g e

&u(a:, £+ aau(i,t)): @U(l,ﬁ) +u{z, t)(1 —ul{x,t)), O0<L2x<l,
with Dirichlet boundary conditions u(0,t) = w(1,2) = 1. This PDE is of reaction-
convection-diffusion type (and could be solved directly with pdepe, described in Sec-
tion 12.4). The ODE solution compenent y;{¢) approximates u{jAz,t). We suppose
that the PDE comes with the initial data u(z,0) = {14+cos272}/2, for which it can be
shown that w(z, 1) tends to the steady state u(x, 2} = 1 as ¢+ — co. The corresponding
ODI initial condition is (w); = (1 + cos(2rj/(NV + 11)}/2. The Jacobian for this
ODE hes the form A + I — 2 diag(y(#)}, where [denotes the identity.

Listing 12.2 shows a function red that implements and solves this systemn using
odelSs. It iliusirates how a complete probiem specification and solution can be
encapsulated in a single function, by making use of subfunctions and function handles.
We have set ¥V = 38 and 0 <t < 2. We specify via the Jacobian property of odeset
the subfunction jacobian that evaluates the Jacobian, and the sparsity pattern of
the Jacobian, encoded as a sparse matrix of Os and 1s, is assigned o the Jpatiern
properiy. See Chapter 15 for details about sparse matrices and the function spdiags.
The jth column of the output matrix ¥ containg the approximation to y,;(¢), and we
have created U by appending an extra column ones(size{(t)) at each end of y to
account for the PDE boundary conditions. The plot produced by rcd is shown in
Figure 12.10.

The ODE solvers can be applied to problems of the form

Mo w0 S(®) = F(6,0(0), lto) =0,

where the mass matriz, M(¢,y(t)), is square and nonsingular. (The ode23s soiver
applies only when M is independent of ¢ and y(#).) Mass matrices arise naturaity when

162 NumEeRicAL METHODS: Papi I

oo
jiw]
]

2l

wretion red.

function red
YRCD Stiff ODE from mathod of linss on resction—-convection-diffusion problsm.

N =238 a=1; b= 5a"2;
tspan = [0;2]; space = [1:H]/@@=1);

yo = 0.5%(1+cos(2+#pikspacel});

yo = yo(:};

options = adesat(’Jacobian’,@jacobian,’Jpattern’,jpattarn(N));
options = odeset(options,’RelTol’,le—S,’AbsTol’,1e-3);

[t,y] = odeiﬁs(@f,tspan,yo,options,N,a,b);

e = ones(size(t)); U = [a y el;

vaterfall ([0:1/(N+1):1},£,U)

xlabal(’space’,’FontSize’,lS), ylabal('tima’,’Fontsize’,iﬁ)

§ mmmmmmmmmmmm e i
% Subfunctions.

AR [e S bt
function dydt = i(t,y,¥,a,b)

A3 Differential eguatiomn.

rl = —ax(N+1)/2;

2 = bH(N+1)72;

up = [y(2:1);0]; down = [C;y(1:8-1)1;

el = [1;zeros(N-1,1}]1; el = {zeros(N-1,1);1];

dydt = rix{up-down} + 125 (-2%y+up+davn) + (r2-rl)=el + (z2eri)=el + y.x(21-7);

fuaction dfdy = jacobian(t,y,N,a,b)
¥ JACOBIAN Jacobian matrix.

= ~ax(N+1)/2;

2 = bx(N+1}"2;
(r2-r1)=onas(N,1);
(-2#r2+1)*ones{N,1} - 2*y;
(r2+ri)+ones(N,1};

H
-
|

g < B
nono

dfdy = spdiags(fu v w],[-1 0 1]1,N,1);

A —— - -
function § = jpattern(i)
YIPATTERN Sparsity pattern of Jacobizn matrix.

= gnes(N,1);
spdiags(le e el,[-1 0 1],N,N);

m o
i

T
o
5
—
=

1 problem.

12.3 Bounpany Varug FROBLENS WiTH bypdc 183

semi-discretization jg performed with 4 finite elemeng method, A mass matrix can
be specified in 4 similar manner £ 5 Jacobian, vig odeset. The odeibs and ode23%
functions can solve certain problems where A js singular but does not depend on
¥(i)-—more precisely, they can be ysed if the resulting diﬂerential—a]gebraic equation
Is of index 1 and Yo is cloge to being consistent,

‘The ODE solvers ofler other features that you may find useful. Type help odeset
to see the ful] range of properties that can he controlled through the options strue-
ture. The funetion odeget extracts the current value of the eptions structure, The
MATLAB ODE solvers are wel] documented and are supported by a rich variety of
example files, some of which we list below. I each case, help filename gives an
informative description of the file, type Tilename lists the contents of the file, and
typing filename Tuns a demonstration.

rigidode: nonstif ODE,
brussode, vdpods: stiff ODEs.

ballode: event location probien:.

orbitode: problem involving event location and the use of an output funetion (odephas?)

to process the solution as the integration proceeds.
fTemiods, fem2ode, batonode: ODEs with mass matrices,

hbldae, ampidas: diﬁerential-aﬂgebraic equations,

Type odedens to run the example ODEs from a Graphical User Interface that offers
a choice of solvers ang plots the solutions,

12.3. Boundary Value Problems with bvpdc

The function bvpdc uses g collocation method to solve systems of ODEs in two-point
boundary value formi. These Systems may be written

YD) = 56,000, atu(a)uh) — 0

section and is now labeled z. This is consistent with MATLAR's documentation ang
reflects the fact that two-point; boundary valye problems (BVPs) usually arise over
an interval of Space rather than tjme, Generally, BVPs are more computationally
challenging than initial value problems. In particular, it js common for more thap
one solution to exist. Foy this reason, bvpdc requires an initial guess to he supplied
for the solution. The initial guess and the final solution are stored in structures (see
Section 18.3). We introduce bvpdc through a simple example before giving more
details. : '

A scalar BVP describing the Cross-sectional shape of 5 water droplet on a flat
surface is given by [66]

3

: ay 3/9
fgzh(m‘) + (1)) (1 + (ﬁh(m))) =0, A(~1)=0, h(1) =0,

