
MECHANICS MATH 249A, WINTER 2012

Updated version of Reuben Brasher’s LaTeXed notes from the 2010 offering of Math 249A

1. January 9–11: Overview and examples. The harmonic oscillator and the
spherical pendulum

The course will focus on geometric mechanics and conservative systems, emphasiz-
ing mathematical models of (physical) systems with geometric structure that can be used
to simplify analysis of the system. Examples: variational problems, Lagrangian systems,
Hamiltonian systems (symplectic and Poisson). We typically won’t be going for complete
solutions—usually will seek only partial information. E.g., are the solutions constrained to
lie on level sets of known functions? Are there any geometric invariants under the flow?
Any symmetries?

These conservative, highly structured models are usually extreme idealizations. One
strategy for analyzing more realistic models is to first analyze the idealized system, using
all available machinery, then analyze the more complex model as a perturbation of the
“understood” model.

The following examples will be treated bare hands, in detail, but demonstrate most
of the key features of the classes of systems we’ll be studying. Unmotivated observations
for these examples will hopefully be completely predictable and obvious by the end of the
course.

Example 1 (Harmonic oscillator). Consider block of mass m attached to a wall by a spring,
sliding on a frictionless table. Assume the spring has a rest length l and is a linear spring,
that is response is given by Hooke’s law. Force F (x) = k(` − x) for some k > 0 spring
constant. Together Hooke’s law and Newton’s law give

mẍ = k(`− x).

Set y = x− `, displacement from rest length. Then ÿ = ẍ, so

mÿ = −k y.

If we know about trig functions, then

d2

dt2
cos(ω t) = −ω2 cos(ω t) and

d2

dt2
sin(ω t) = −ω2 sin(ω t)

imply that the general solution has the form

y(t) = a cosω t+ b sinω t,

where ω =
√

k
m . Given initial values y(0) = y0 and ẏ(0) = v0, the particular solution is

y(t) = y0 cosω t+
m

k
v0 sinω t.

Pretend we don’t know about trig functions, then what? Rewrite as a first order
system:

ẏ = v

v̇ = − k
m
y

(1)
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Figure 1. Spring–mass system: compressed (y < 0), at rest (y = 0), ex-
tended (y > 0) states. (Figure taken from Wikipedia article on the harmonic
oscillator.)

Observation: If (y(t), v(t)) is a solution of (1) then

d

dt

(
m

2
v2 +

k

2
y2

)
= mv v̇ + k y ẏ = (mv̇ + k y)v = 0.

Hence solutions lie on level curves of C(y, v) := 1
2(mv2 +k y2). Level curves of C are ellipses

centered at the origin.
Given initial data (y0, v0), we can solve C(y, v) = C(y0, v0) to express the speed as a

function of y and the initial data

|ẏ| =
√
v2

0 +
k

m

(
y2

0 − y2
)
.

To compute the period of a given oscillation of the mass, we can compute the time elapsed
moving from the most compressed state, −ymax, to the maximally extended state ymax, for
that trajectory, then double that time. Since the mass is transitioning from moving left to
right (or vice versa) when maximally compressed or extended, the velocity at those states
will be zero, the initial data y0 = −ymax, v0 = 0 will determine an orbit with the desired
trace. If y is increasing, then

dy

dt
=

√
v2

0 +
k

m

(
y2

0 − y2
)

= ω
√
y2

max − y2.

Solve by separation of variables, time elapsed moving from −ymax to +ymax,

t =
1

ω

∫ ymax

−ymax

dy√
y2

max − y2
=
π

ω
.

Hence the period is 2π
ω . Note that the period is the same for all orbits; this property of the

harmonic oscillator is very special.

Figure 2. Sample phase portrait for the spring–mass system. The level
curves of C(y, v) = 1

2(mv2 + k y2) are ellipses; the arrows indicate the direc-
tion of motion along level curves.

Example 2 (Spherical Pendulum). Point mass on sphere of radius ` in R3 acted on by

gravity. Let x ∈ R3 denote the position of the point mass. `2 = ‖x‖2 implies 0 = 2 x · ẋ
implies that ẋ is tangent to the sphere and

0 = ‖ẋ‖2 + x · ẍ

http://en.wikipedia.org/wiki/Harmonic_oscillator
http://en.wikipedia.org/wiki/Harmonic_oscillator
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that is radial component of determined by the velocity.
Newton’s law for an unconstrained particle influenced by gravity is m ẍ = −gm e3

where e3 denotes the upward unit vertical vector, m > 0 is the mass of the particle, and g
is the strength of gravity. The constraint ‖x‖ ≡ ` determines the radial component of the
acceleration; the tangential component satisfies

(2) Px(ẍ + g e3) = 0,

where Px denotes orthogonal projection onto the plane perpendicular to x (identified with
tangent plane TxS

2
` ), given by

(3) Pxw = w − w · x
‖x‖2

x.

Hence

0 = ẍ + g e3 −
1

`2
(x · ẍ + g e3 · x)x

= ẍ + g e3 +
1

`2
(‖ẋ‖2 − g e3 · x)x(4)

Claim: If x(t) is a solution of (2), then

d

dt

(
1
2 ‖ẋ‖

2 + g e3 · x
)

= 0.

Hence ‖ẋ‖2 can be expressed in terms of x · e3 and the initial data.

Proof:
d

dt

(
1
2 ‖ẋ‖

2 + g e3 · x
)

= ẋ · ẍ + g e3 · ẋ = ẋ · (ẍ + g e3).

We know that the radial component of ẋ is 0, since 0 = x · ẋ. Equation (2) implies that
ẍ + g e3 is radial (that is, a rescaling of x). Hence the dot product of ẋ and ẍ + g e3 is zero.
�

Let x(t) be a solution of (2) and let z(t) := 1
`x(t) · e3. Taking the inner product of

(4) with e3 yields

0 = ẍ · e3 + g e3 · e3 +
1

`2

(
‖ẋ‖2 − g e3 · x

)
x · e3 = z̈ + g + f(z)z,

where f(z) := 1
`2

(
‖v0‖2 + g(2 e3 · x0 − 3 z)

)
. Thus, if x(t) is a solution of (2), then z(t)

satisfies the second order, one degree of freedom ODE

(5) z̈ + f(z)z + g = 0.

On the other hand, a solution z(t) of (5) describes a solution of the full spherical
pendulum problem modulo rotation about the vertical axis. (This is a special case of
singular reduction with respect to a symmetry group of a conservative system.) Define

H(z, v) := 1
2v

2 +

∫ z

(f(u)u+ g)du.

If z(t) is a solution of (5), then H(z(t), ż(t)) is constant with respect to t. If ż 6= 0
for t0 ≤ t ≤ t1, we can find an implicit algebraic equation relating t and z by solving
H(z, ż) = h0 := H(z(t0), ż(t0)) for ż, then solving the resulting separable first order ODE
ż = X(z). (See previous example.)

How to get the “angle” information, given z(t)? Given a solution z(t) of (5) satisfying
given initial conditions

z(0) = x0 · e3,

ż(0) = v0 · e3,
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let s(t) =
(√

1− z(t)2, 0, z(t)
)
∈ S2 ∩ x–z plane. (The intersection of the unit sphere and

the x–z plane is an example of a “slice” for the circle action on the sphere given by rotations
about e3).

Let Rθ denote the rotation matrix

Rθ :=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

Multiplication by Rθ implements rotation about e3 through the angle θ. Seek curve θ(t)
such that x(t) = `Rθ(t)s(t) satisfies the spherical pendulum equation.

Observe that if x(t) is a solution of the pendulum equation, then

d

dt
(x× ẋ) = ẋ× ẋ + x× ẍ

= x× Pxẍ

= x× (−Pxg e3)

= g e3 × x.

In particular, (x × ẋ) · e3 is constant along solutions, i.e. the vertical component of the
angular momentum is a constant of the motion.

Now plug in x = Rθs.

ẋ =

(
d

dt
Rθ

)
s +Rθṡ = Rθ(θ̇ e3 × s) +Rθ˙s

= Rθ(θ̇ e3 × s + ṡ).

(Here we’ve used the fact that y(t) = Rty0 is the solution of the linear IVP ẏ = e3 × y,
y(0) = y0. See upcoming notes on matrix groups, matrix exponentiation, and linear systems
of ODEs if this material is unfamiliar or has gotten a little rusty.) Inserting the expression
for ẋ into the vertical component of the angular momentum gives

(x× ẋ) · e3 =
(
Rθ(s)×Rθ(θ̇e3 × s + ṡ)

)
· e3

= (s× (θ̇e3 × s + ṡ)) · e3,

since Rθx ·e3 = x ·R−θe3 = x ·e3 for any θ ∈ R and and x ∈ R3. Since s is in the x–z plane
for all t, s× ṡ is a scalar multiple of e2, and hence perpendicular to e3, it follows that

(x× ẋ) · e3 = θ̇(s× (e3 × s)) · e3 = θ̇ ‖e3 × s‖2 .

Hence θ̇ ‖e3 × s‖2 ≡ µ for some constant µ if Rθs is a solution of the pendulum equations.

Case 1: If µ 6= 0, then s is never vertical and

θ̇ =
µ

‖e3 × s‖2
=

µ

`2 − z2
.

Hence, since we already know z(t),

θ(t)− θ0 = µ

∫ t

0

du

`2 − z(u)2
.

Case 2: µ = 0. If s is ever vertical, then the vertical component of the angular momentum
doesn’t determine θ̇—the circle group action fixes ±e3. (This can only occur if µ = 0. Pop
quiz: must this occur if µ = 0?) Go back to the expression for the vertical component of
the angular momentum in terms of x = (x, y, z), namely 0 = (x × ẋ) · e3 = xẏ − ẋy. This
ODE is separable:

ẋ

x
=
ẏ

y
, with solution lnx = ln y + C,
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Figure 3. Two trajectories of the spherical pendulum. Top: traces of tra-
jectories. Bottom: graphs of the spherical coordinates of the solutions, as
functions of time.

so x and y are proportional. Thus there exists θ0 such that x(t) = Rθ0s(t) for all t. That
is, if µ = 0, the solution remains in a fixed vertical plane.

Exercise 1. Compute the full evolution of equations in spherical coordinates, that is plug
x(θ, φ) = (cos θ cosφ, cos θ sinφ, sin θ), where θ and φ are functions of t, into Px(ẍ+g e3) =
0 and derive the evolution equations for θ and φ. (Use of a symbolic computation language,
e.g. Mathematica or SAGE, is strongly recommended—lots of trig identities need to be
invoked to get something tolerable.)

Exercise 2. Determine the equations of motion and conservation laws for a point mass in
R3 connected to the origin by a spring with rest length ` moving under the influence of
gravity. Assume a linear spring (Hooke’s Law) with spring constant k; the spring cannot
bend, i.e. it must always be radial. Let m denote the mass and g denote the strength of
gravity.

2. January 11–18: Calculus of Variations

Consider a manifold Q, two points q0, q1 in Q, and a closed interval I = [t0, t1] in R.
Let

C(I, q0, q1) = {γ ∈ C(I,Q) : γ(q0) = q0 and γ(q1) = q1} .
Very formal/nonrigorous assertion: C(I, q0, q1) is an infinite-dimensional manifold. What
are the tangent vectors?

Consider a smooth curve γε where |ε| < ε0 in C(I, q0, q1). If t0 < t < t1, then γε(t) is
a curve parameterized by ε. Define

δγ(t) :=
d

dε
γε(t)

∣∣∣∣
ε=0

∈ Tγ0(t)Q.

Since the endpoints are fixed, δγ(tj) = 0, j = 0, 1. δγ is a vector field over γ0, that is, δγ
assigns to each point in I a tangent vector to Q with δγ̇(t) ∈ Tγ0(t)Q. Since the endpoints
are fixed, δγ(tj) = 0, j = 0, 1.
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Figure 4. A family of parameterized curves on a manifold Q. (From Foun-
dations of Mechanics.)

On the other hand, if V is a smooth vector field on a neighborhood U in Q containing
γ(I), the trace of γ, for some curve γ ∈ C(I, q0, q1), with V (γ(tj)) = 0, j = 0, 1, then there
is a curve γε ∈ C(I, q0, q1), such that γ = γ0 and δγ = V ◦ γ. Sketch of construction: Let Fε
be the flow of V . Since for each t∗ ∈ I, Fε(t∗) is defined for |ε| < ε0(t∗) for some E : I → R+

and I is compact, so there is ε0 such that Fε(t) is defined for all |ε| < ε0. Set γε = Fε ◦ γ.
Hence

d

dε
γε =

d

dε
Fε ◦ γ = V ◦ Fε ◦ γ = V ◦ γε.

It follows that TγC(I, q0, q1) is, roughly speaking, the set of smooth vector fields over γ
equalling 0 at the end points.

Now consider a smooth function L : TQ→ R and define L : C(I, q0, q1)→ R by

L(γ) =

∫
I
L(γ̇(t)) dt.

Seek curve γ ∈ C(I, q0, q1) such that γ is a critical point of L. (Historical focus was on
curves minimizing L.) γ is a critical point of L if and only if d

dtL ◦ γε
∣∣
ε=0

= 0 for all
smooth γε ∈ C(I, q0, q1) satisfying γ0 = γ.

0 =
d

dε
L(γε)

∣∣∣∣
ε=0

=
d

dε

∫
I
L(γ̇ε(t)) dt

∣∣∣∣
ε=0

=

∫
I

∂

∂ε
L(γ̇ε(t))

∣∣∣∣
ε=0

dt

=

∫
I
dL(γ̇0(t))

∂

∂ε
γ̇ε(t)

∣∣∣∣
ε=0

dt

=

∫
I
dL(γ̇0(t))(δγ̇0(t)) dt,

since mixed partials commute.
δγ̇(t) ∈ TTQ—it involves position, velocity, variation of position, and variation of

velocity information. Focus on two special cases— vector spaces and matrix groups—where
these pieces of information can easily be teased apart to further simplify the expression
d
dεL(γε)

∣∣
ε=0

.

Special case 1: Q = X, a vector space. Identify TX with X2, so L : X2 → R. Define
∂L
∂q ,

∂L
∂v : X2 → X∗ by

(6)
∂L

∂q
(q, v) · u+

∂L

∂v
(q, v) · w = dL(q, v) ((q, u), (v, w))

for q, v, u, w ∈ X. (Here · denotes the natural pairing between X and X∗.)
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In a slight abuse of notation, let d
dtγ(t) = (γ(t), γ̇(t)). Then

∂

∂ε

∂

∂t
γε(t)

∣∣∣∣
ε=0

=
∂

∂ε
(γε(t), γ̇ε(t))

∣∣∣∣
ε=0

and

∂

∂ε
L(γε)

∣∣∣∣
ε=0

=

∫
I
dL(γ(t), γ̇(t))(γ(t), δγ(t), γ̇(t), δγ̇(t)) dt

=

∫
I

(
∂L

∂q
(γ, γ̇) · δγ +

∂L

∂v
(γ, γ̇) · δγ̇

)
dt.

Using the product rule and the fundamental theorem of calculus,∫
I

(
d

dt

(
∂L

∂v
(γ, γ̇)

)
· δγ +

∂L

∂v
(γ, γ̇) · δγ̇

)
dt =

∫
I

d

dt

(
∂L

∂v
(γ, γ̇) · δγ

)
dt

=

(
∂L

∂v
(γ, γ̇) · δγ

)∣∣∣∣t1
t0

= 0,

since δγ(tj) = 0, j = 0, 1. Hence

(7)
d

dε
L(γε)

∣∣∣∣
ε=0

=

∫
I

(
∂L

∂q
(γ, γ̇)− d

dt

(
∂L

∂v
(γ, γ̇)

))
· δγ dt.

If γ is a smooth curve such that (7) equals zero for any smooth δγ satisfying δγ(t0) =
δγ(t1) = 0, then

(8)
d

dt

(
∂L

∂v
(γ, γ̇)

)
=
∂L

∂q
(γ, γ̇)

on I. (8) is called the Euler-Lagrange equation determined by the Lagrangian L. On
more general function spaces, a curve γ such that (7) equals zero for any smooth δγ is called
a weak solution of the Euler-Lagrange equations, and need not satisfy (8) pointwise. Curves
satisfying (8) at all points on I are called strong solutions of the Euler-Lagrange equations.

Example 3. Let X be an inner-product space, V : X → R a smooth function, and m ∈ R+.
If

L(q, v) =
m

2
‖v‖2 − V (q),

then
∂L

∂q
(q, v) = −dV (q) and

∂L

∂v
(q, v) = mv[

where v[ ∈ X∗ is the element of the dual space X∗ satisfying v[ · w = 〈v, w〉 for all w ∈ X.
Why?

d

dε
L(q, v + εw)

∣∣∣∣
ε=0

=
d

dε

(m
2
‖v + εw‖2 − V (q)

)∣∣∣∣
ε=0

=
d

dε

(m
2
〈v + εw, v + εw〉

)∣∣∣∣
ε=0

=
m

2

d

dε

(
‖v‖2 + 2ε 〈v, w〉+ ε2 ‖w‖2

)∣∣∣∣
ε=0

= m 〈v, w〉 .
Thus the Euler-Lagrange equation is

d

dt

(
mv[

)
= −dV (γ).

If we let ∇V : X → X denote the map satisfying

〈∇V (q), w〉 = dV (q) · w
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for q, w ∈ X, then the Euler-Lagrange is equivalent to mγ̈ = −∇V (γ).

Note: to have a well defined second order ODE on X, we need to have a non-degenerate
dependence of d

dt

(
∂L
∂v (γ, γ̇)

)
on γ̈, ie. we need a non-degenerate ∂2L/∂v2. A Lagrangian L

satisfying this nondegeneracy condition is called a regular Lagrangian.

3. January 18 and 23, the calculus of variations on matrix groups

What’s special about vector spaces, that we started with that case? The tangent
bundle of a vector space is trivial: TX ≡ X ×X, so we can define the partial derivatives
(6) of a smooth function L on TX and derive the Euler-Lagrange equation

d

dt

∂L

∂v
(γ, γ̇) =

∂L

∂q
(γ, γ̇)

as the condition of criticality for the functional L(γ) =
∫ T

0 L(γ, γ̇) dt.
Given a smooth function on an arbitrary tangent bundle TQ, we can define the partial

with respect to the velocity, ∂L
∂v (vq) : TqQ→ T ∗qQ, at vq ∈ TQ by

∂L

∂v
(vq) · wq :=

d

dε
L(vq + εwq)

∣∣∣∣
ε=0

for all wQ ∈ TqQ,

but the partial with respect to position, ∂L
∂q (vq), cannot be defined without a trivialization

or connection. If we want to ‘freeze’ the velocity while varying the position, we need some
way of propagating the frozen value from fiber to fiber in the tangent bundle.

A Lie group is the next best thing after a vector space in this regard. The spaces of
left and right invariant vector fields on Lie groups (see Lie groups mini-tutorial) provide
natural and convenient trivializations of the tangent bundles (and induce corresponding
trivializations of the cotangent bundle etc.). The maps τ`, τr : TG→ G× g given by

τ`(vg) := (g, Lg−1
∗vg) and τr(vg) := (g,Rg−1

∗vg)

are global trivializations of the tangent bundle of G, with inverses τ−1
` (g, ξ) = Lg

∗ξ etc.; for

a matrix group, τ`(VA) = (A,A−1VA) and τ−1
` (A, ξ) = Aξ.

(g,Ω) ∈ G× g, vg = gΩ

TgG 3 vg

left-trivialization
55jjjjjjjjjjjjjjj

right-trivialization ))TTTTTTTTTTTTTTT

(g, ω) ∈ G× g, vg = ωg

Given a smooth function L : TG→ R on the tangent bundle of a matrix group, define
the left-trivialized partial derivatives δL

δg ,
δL
δΩ : G× g→ g∗ by

δL

δg
(g,Ω) · η +

δL

δΩ
(q,Ω) · ξ = dL(gΩ) · (g ηΩ + g ξ)

for all g ∈ G and Ω, η, ξ ∈ g. (The right trivialized partial derivatives are defined analo-
gously.) If the Lagrangian is explicitly given as a function on G× g, then

δL

δg
(g,Ω) · η +

δL

δΩ
(g,Ω) · ξ = dL(g,Ω) · (g η, (Ω, ξ)).

(Here T (G× g) ∼ TG× (g× g).) The definitions for an arbitrary Lie group are analogous,
but involve the tangent maps of left or right multiplication.

In the vector space case, commutation of partial derivatives, ∂
∂ε

∂
∂t = ∂

∂t
∂
∂ε , played a

crucial role in the derivation of the Euler-Lagrange equations. In the Lie group setting,
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how does the trivialization of the tangent bundle interact with the exchange of order of
differentiation? For notational simplicity, consider curves in a matrix group G.

Given a smooth curve γε ∈ C(I, g0, g1), let Ωε : I → g be the parametrized family of
maps such that

∂

∂t
γε(t) = γε(t)Ωε(t),

that is, (γε,Ωε) = τ`(γ̇e) is the left trivialization of γε, and let η : I → g denote the algebra
component of the left trivialization of d

dεγε(t)
∣∣
ε=0

. If we let ′ denote the evaluation of ∂
∂ε at

ε = 0, and let γ = γ0, then τ`(γ
′) = (γ, η).

∂

∂ε

∂

∂t
γε(t)

∣∣∣∣
ε=0

=
∂

∂ε
(γε(t)Ωε(t))

∣∣∣∣
ε=0

=

(
∂

∂ε
γε(t)

∣∣∣∣
ε=0

)
Ω0(t) + γ0(t)

(
∂

∂ε
Ωε(t)

∣∣∣∣
ε=0

)
=
(
γ′Ω + γ Ω′

)
(t)

=
(
γ ηΩ + γ Ω′

)
(t),

where Ω = Ω0. On the other hand

∂

∂t

∂

∂ε
γε(t)

∣∣∣∣
ε=0

=
d

dt
(γ(t), η(t)) = (γ̇ η + γ η̇) (t) = (γ Ω η + γ η̇) (t).

Hence, by equality of mixed partials

γ
(
ηΩ + Ω′

)
= γ(Ω η + η̇).

Solving for Ω′ (γ is invertible) yields

Ω′ = η̇ + Ω η − ηΩ =

(
d

dt
+ adΩ

)
η,

where adΩ : g→ g is given by adΩ η := [Ω, η] = Ω η − ηΩ.
Now consider L : G× g→ R and L(γ) :=

∫
I L(τ`(γ̇)) dt.

d

dε
L(γε)

∣∣∣∣
ε=0

=
d

dε

∫
I
L(γε,Ωε) dt

∣∣∣∣
ε=0

=

∫
I
dL(γ,Ω) · (γ η, (Ω,Ω′)) dt

=

∫
I

(
δL

δg
(γ,Ω) · η +

δL

δΩ
(γ,Ω) · Ω′

)
dt

=

∫
I

(
δL

δg
(γ,Ω) · η +

δL

δΩ
(γ,Ω) · (η̇ + adΩ η)

)
dt.

Integrate the term involving η̇ by parts to get∫
δL

δΩ
(γ,Ω) · η̇ dt = −

∫
d

dt

(
δL

δΩ
(γ,Ω)

)
· η dt;

the boundary terms are zero, since γε(tj) ≡ gj implies η(tj) = 0. We can ‘flip adΩ across
the pairing’ using the dual operator ad∗Ω : g∗ → g∗, defined by ad∗Ω µ · η = µ ◦ adΩ η for all
η ∈ g and µ ∈ g∗, to get

d

dε
L(γε)

∣∣∣∣
ε=0

=

∫
I

(
δL

δg
(γ,Ω) +

(
ad∗Ω−

d

dt

)
δL

δΩ
(γ,Ω)

)
· η dt.

Thus γ is a critical point of L with respect to smooth variations η satisfying η(t0) = η(t1) = 0
if and only if

d

dt

(
δL

δΩ
(γ,Ω)

)
=
δL

δg
(γ,Ω) + ad∗Ω

δL

δΩ
(γ,Ω).
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The above construction generalizes naturally to arbitrary Lie groups, even infinite
dimensional ones. (Just use the appropriate linearizations of left or right multiplication in
place of matrix multiplication.) Since any vector space is an additive Lie group, the vector
space case can be regarded as a special case of the Lie group one.

Conservation of energy. Given a Lagrangian L : G × g → R, define the associated energy
E : G× g→ R by

E(g,Ω) :=
δL

δΩ
(γ,Ω) · Ω− L(g,Ω).

If g(t),Ω(t)) is a solution of the Euler-Lagrange equations, then

d

dt
E(g,Ω) =

Example 4. G = SO(3).

The algebra so(3) of SO(3) is isomorphic to R3; ξ ∈ R3 maps to ξ̂, the skew symmetric

real matrix satisfying ξ̂y = ξ × y for all y ∈ R3.

[ξ̂, ζ̂]y = (ξ̂ ζ̂ − ζ̂ ξ̂)y
= ξ × (ζ × y)− ζ × (ξ × y)

= (ξ × ζ)× y

= ξ̂ × ζ y

implies that the R3 implementation of ad is adξ ζ = ξ × ζ. It follows that

(ad∗Ω µ) · η = µ · adΩ η = µ · (Ω× η)

= (µ× Ω) · η.

Hence ad∗Ω µ = µ× Ω.
Consider

L(g,Ω) =
1

2
Ω · IΩ− V (g),

where I is a positive definite symmetric matrix (the inertia tensor) and V : SO(3) → R is
smooth.

What are the trivialized derivatives? δL
δg (g,Ω) = − δV

δg (g) ∈ R3, which is determined

by
δV

δg
(g) · η = dV (g) · (g η̂)

for all η ∈ R3. Until we choose a specific V , we can’t simplify that any further.

δL

δΩ
(g,Ω) · ζ =

d

dε
L(g,Ω + ε ζ)

∣∣∣∣
ε=0

=
d

dε

(
1

2
(Ω + ε ζ) · I(Ω + ε ζ)− V (g)

)∣∣∣∣
ε=0

=
d

dε

(
1

2

(
Ω · IΩ + ε(ζ · IΩ + Ω · Iζ) + ε2ζ · Iζ

))∣∣∣∣
ε=0

=
1

2
(ζ · IΩ + Ω · Iζ)

= (IΩ) · ζ,

since I is symmetric. Thus δL
δΩ (g,Ω) = IΩ and the Euler-Lagrange equations are

d

dt
IΩ = −δV

δg
(g) + ad∗Ω(IΩ).
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Since I is constant, we have

IΩ̇ = (IΩ)× Ω− δV

δg
(g) .

4. January 25, the free rigid body and heavy top. Action and energy.

Special case 1: V ≡ 0. The free rigid body.

The evolution equations are

ġ = gΩ̂ and IΩ̇ = (IΩ)× Ω.

This system has one scalar and one vector-valued conserved quantity: Define

E(g,Ω) := 1
2Ω · IΩ and α(g,Ω) := gIΩ.

E is the energy (more about that soon) and α is the spatial angular momentum. If
(g(t),Ω(t)) is a solution of the Euler-Lagrange equations for V ≡ 0, then

d

dt
E(g(t),Ω(t)) =

1

2
(Ω̇ · IΩ + Ω · IΩ̇)

= Ω · IΩ̇
= Ω · (IΩ)× Ω

= 0

and

d

dt
α(g(t),Ω(t)) = ġIΩ + gIΩ̇

= gΩ̂IΩ + g((IΩ)× Ω)

= g(Ω× (IΩ) + (IΩ)× Ω)

= 0.

Use of the conserved quantities in analysing the system: Given initial data (g0,Ω0),
if we set set µ = α(g0,Ω0) = g0IΩ0, then

α(g(t),Ω(t)) = α(g0,Ω0) = µ =⇒ Ω(t) = I−1g(t)Tµ.

(g(t) ∈ SO(3) implies g(t)T = g(t)−1; I’ve used gT , since it’s faster to compute.) The
evolution equation for g reduces to the first order IVP

ġ = g ̂I−1gTµ g(0) = g0

on SO(3). Given a solution of that first order system, the trivialized velocity can be found

by differentiation: Ω̂(t) = g(t)T ġ(t), or algebraically: Ω(t) = I−1g(t)Tµ.

Sneak preview of reduction, part I. We can also solve the equations on some interval [0, T ]
by first solving the first order IVP

IΩ̇ = (IΩ)× Ω Ω(0) = Ω0

on R3, then using that solution to define a linear, time dependent IVP ġ(t) = g(t)Ω̂(t) on
SO(3) and solving for g(t). Why would we do this? This approach involves solving two
systems of first order IVPs in succession, rather than just one. If you’re using numerical
approximations, you’re probably better off just solving the first order system for g(t), but
the two-step approach arguably offers some visual intuition that isn’t quite so accessible in
the ‘just work on SO(3)’ approach.

For the sake of convenience and tradition, introduce the body angular momentum
M = IΩ = gα(g,Ω) [I need to find boldface Greek letters—I’d like to have all of my vectorial
quantities be boldface.]. The body angular momentum satisfies the evolution equation

Ṁ = M× I−1M.
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Figure 5. Heavy top. Left: stolen off the web (some labels aren’t relevant
to our formulation); center: familiar implementation with fixed point (also
stolen off the web); right: level sets of the conserved quantities in body an-
gular momentum space (M space), from Mechanics and Symmetry, Marsden
& Ratiu.

We can express the energy and spatial angular momentum in terms of g and M:

E(g, I−1M) = 1
2(I−1M) · I(I−1M) = 1

2M · I−1M

and
α(g, I−1M) = gI(I−1M) = gM.

Whether we use Ω or M, the energy doesn’t depend on g; the spatial angular momen-
tum does, but its magnitude doesn’t. Conservation of ‖M‖ implies M(t) stays on a sphere
centered at 0 (for now, this is where the convenience of M relative to Ω comes in—I find
spheres easier to visualize than level sets of ‖IΩ‖). Conservation of 1

2M · I−1M implies that
M(t) stays on an ellipsoid determined by I and M0. Intersections of these sets determine
the traces of solutions M(t), unless I is a scalar multiple of the identity (in that case, the
two scalar conservation laws are equivalent). The right hand (yellow background) plot in
Figure 4 shows the intersections of representative level sets of the energy expressed as a
function of M with a representative sphere in M–space.

Solution curves for the evolution of M are relatively easy to visualize; if you are good
at inferring the actual rotation from the body angular momentum, you can guesstimate the
motion of the body from M(t). WARNING: do not confuse M and Ω when attempting

this; since the evolution equation can be written in mixed notation as Ω̇ = M×Ω, you can
see that the only time this won’t cause trouble is when there’s not much going on for that
particular trajectory anyway—if Ω and M are parallel, Ω (and hence M) is constant and
the body just rotates at a fixed rate about a fixed axis forever.

Special case 2: Heavy top. Take V (g) = gm · e3, where e3 is the upward unit vertical
vector and m is the vector from a fixed point in the top to the center of mass, scaled by the
mass (see the middle picture in Figure 4—the top is not free to move across the supporting
surface, but has a ‘universal joint’ at one point). Consider V : SO(3)→ R. Then

dV (g)(gη̂) = (gη̂m) · e3 = (η ×m) · gTe3

= (m× gTe3) · η

Hence δV
δg (g) = m× gTe3 and the Euler-Lagrange equations for the heavy top are

ġ = g Ω̂ and IΩ̇ = (IΩ)× Ω−m× gTe3.

The conserved quantities are now:

E(g,Ω) =
1

2
Ω · IΩ + (gm) · e3 (energy)

αvert(g,Ω) = (gIΩ) · e3 (vertical component of angular momentum).
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Where does I come from? The kinetic energy of a rigid body is the integral over the body
of the kinetic energies of all particles forming the body. If the body rotates about some
fixed point, then there is a curve g(t) ∈ SO(3) such that the trajectory x(t,X) of the
particle with reference position X relative to the fixed point is x(t,X) = g(t)X. (If X is
the initial position of the particle, then g(0) = 11.) The mass is given by a density function
ρ : Bref → R+ where Bref is the reference configuration. The total kinetic energy of the
rotating body is

KE =

∫
Bref

ρ(X)

2
‖ẋ(t,X)‖2 dX

=

∫
Bref

ρ(X)

2
‖ġ X‖2 dX

=
1

2

∫
Bref

ρ(X)
∥∥∥gΩ̂X

∥∥∥2
dX

=
1

2

∫
Bref

ρ(X) ‖Ω×X‖2 dX,

since g ∈ SO(3) preserves the Euclidean norm. Now use the vector identity

‖Ω×X‖2 = ‖x‖2 ‖Ω‖2 − (X · Ω)2

= Ω ·
(
‖X‖2 11−XXT

)
Ω,

since X · Ω = XTΩ. Integrating this expression over the body, keeping in mind that Ω is
independent of X, gives

KE =
1

2

∫
Bref

ρ(X)Ω ·
(
‖X‖2 11−XXT

)
Ω dX

=
1

2
Ω ·
(∫

Bref

ρ(X)
(
‖X‖2 11−XXT

)
dX

)
︸ ︷︷ ︸

I

Ω.

Exercise 3. Sneak preview of reduction, part II. The evolution equation for Ω in the heavy
top system depends on g only through gTe3. Given a solution (g(t),Ω(t)) of the heavy top
equations, define γ(t) := g(t)Te3 ∈ S2. Show that (γ,Ω) satisfy

γ̇ = γ × Ω

I Ω̇ = (IΩ)× Ω + γ ×m.

Show that the functions C1, C2 : S2 × R3 → R given by

C1(γ,Ω) := 1
2Ω · IΩ + γ ·m and C2(γ,Ω) := (IΩ) · γ

are constants of the motion, i.e. are constant along solutions of the induced dynamical
system on S2 × R3. (Note: S2 × R3 ≈ SO(3)/S1 × R3 ≈ (SO(3)× R3)/S1.)

Fiber derivatives, action, energy.

Given a Lagrangian on a tangent bundle, we can construct an associated energy
function that generalizes the energies from the examples. Let Q be an arbitrary manifold,
and L : TQ→ R be a smooth function. Define

i. the fiber derivative FL : TQ→ T ∗Q by

FL(vq) · wq :=
d

dε
L(vq + εwq)

∣∣∣∣
ε=0
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Figure 6. Fiber derivatives, energy, etc.; here τQ = πTQ and τ∗Q = πT ∗Q.

(From Foundations of Mechanics.)

ii. the action A : TQ→ R by

A(vq) := FL(vq) · vq =
d

dε
L((1 + ε)vq)

∣∣∣∣
ε=0

iii. the energy E : TQ→ R by E(vq) := A(vq)− L(vq).

Example 5. Let Q = X be a vector space, vq ∼ (q, v) ∈ X2.

FL(q, v) · (q, w) =
d

dε
L(q, v + εw)

∣∣∣∣
ε=0

=
∂L

∂v
(q, v) · w

Here FL is modeled as taking values in X∗.
Special case, L(q, v) = 1

2(mv) · v − V (q) where m ∈ L(X,X∗) is symmetric and
V : X → R.

FL(q, v) · (q, w) =
d

dε

(
1

2
m(v + εw) · (v + εw)− V (q)

)∣∣∣∣
ε=0

=
1

2
((mv) · w + (mw) · v)

= (mv) · w.

Thus FL(q, w) = (q,mv), A(q, v) = (mv) · v, and

E(q, v) = (mv) · v −
(

1

2
(mv) · v − V (q)

)
=

1

2
(mv) · v + V (q).

Example 6. Let Q = G a matrix group. Consider the left trivializations of TG and T ∗G.
Given ` : G× g→ R, define L : TG→ R by L(gΩ) := `(g,Ω) =; then

FL(gΩ) · (gη) =
d

dε
`(g,Ω + εη)

∣∣∣∣
ε=0

=
δ`

δΩ
(g,Ω) · η

for g ∈ G, Ω, η ∈ g. The action and energy satisfy

A(gΩ) =
δ`

δΩ
(g,Ω) · Ω and E(gΩ) =

δ`

δΩ
(g,Ω) · η − `(g,Ω).

The solutions of the Euler-Lagrange equations on a vector space or matrix group
conserve the energy. In the matrix group case, if (g(t),Ω(t)) satisfies the Euler-Lagrange
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equations determined by ` : G× g→ R, then

d

dt
E(g,Ω) =

d

dt

(
δ`

δΩ
(g,Ω) · Ω− `(g,Ω)

)
=

d

dt

(
δ`

δΩ
(g,Ω)

)
· Ω +

δ`

δΩ
(g,Ω) · Ω̇− δ`

δg
(g,Ω) · Ω− δ`

δΩ
(g,Ω)Ω̇

=

(
d

dt

(
δ`

δΩ
(g,Ω)

)
− δ`

δg
(g,Ω)

)
· Ω

= ad∗Ω
δ`

δΩ
(g,Ω) · Ω

=
δ`

δΩ
(g,Ω) · adΩ Ω

= 0,

since adΩ Ω = [Ω,Ω] = 0. The vector space calculation is analogous.

Principle of least action

Recall that for a one dimensional Euler-Lagrange system, we used conservation of
energy to implicitly solve the system: if L(q, v) = m

2 q̇
2 − V (q), then E(q, q̇) = m

2 q̇
2 + V (q).

To implicitly find the solution of the IVP with initial data q(0 = q0 and q̇(0) = v0, note
that conservation of energy gives

E(q, q̇) = E(q0, v0) = e, and hence |q̇| =
√

2

m
(e− V (q)).

On an interval [t0, t] of time for which q̇ 6= 0,

t− t0 = ±
∫ q

q0

dq√
2
m(e− V (q))

.

Great, but if you can’t get down to one dimension, how much does conservation of energy
help in understanding they system?

Claim: The solutions of the variational problem of finding the critical points of

L(γ) =

∫ b

a
L(γ(t), γ̇(t)) dt

over curves γ : [a, b]→ Q with γ(a) = q0, γ(b) = q1 is equivalent to the variational problem
of finding critical points of

A(γ) =

∫ b

a
A(γ(t), γ̇(t)) dt

over curves γ : [α, β]→ Q with γ(α) = q0, γ(β) = q1, E ◦ γ ≡ e, where A is the action of L,
E is the energy and [α, β] is not fixed.

We allow different durations by introducing reparametrizations of time. Given an
interval I = [a, b] and endpoints q0, q1 ∈ Q, let Ω(I, q0, q1) denote the set of smooth maps
γ : I → Q satisfying the boundary conditions γ(a) = q0 and γ(b) = q1, and let Ω(I, q0, q1, e)
denote the set of smooth maps (τ, γ) where τ : I → R satisfies τ̇ > 0 for t ∈ I and
γ ∈ Ω(τ(I), q0, q1) satisfies the energy constraint E(γ(t), γ̇(t)) ≡ e for t ∈ τ(I). Assume
that e is a regular value of E, so that E−1(e) is a smooth manifold.

Given a curve Γε in Ω(I, q0, q1) and τε : I → R, with τ0(t) = t and τ̇ε > 0 for all t ∈ I,
find conditions on τε,Γε such that (τε,Γε ◦ τ−1) ∈ Ω(I, q0, q1, e). If we define γε = Γε ◦ τ−1

ε ,
then

Γ̇ε(t) =
d

dt
(γε ◦ τε)(t) =

dγε
dτ

(τε(t))τ̇ε(t)



16 MECHANICS MATH 249A, WINTER 2012

implies
dγε
dτ
◦ τε =

1

τ̇ε
Γ̇ε.

Hence the energy is constant along γε iff

0 ≡ d

dε
E (γ̇ε(t))

∣∣∣∣
ε=0

=
d

dε
E

(
1

τ̇ε
Γ̇ε(t)

)∣∣∣∣
ε=0

=
d

dε
E(Γ̇ε(t))

∣∣∣∣
ε=0

+
d

dε

1

τ̇ε(t)

∣∣∣∣
ε=0

FE(γ̇(t)) · γ̇(t).

If the fiber derivative term FE(γ, γ̇) · γ̇ is nonzero for all t ∈ I, we have the ODE

δ̇τ =

d
dεE(Γε, Γ̇ε)

∣∣∣
ε=0

FE(γ, γ̇) · γ̇
for the linearization δτ = d

dετε
∣∣
ε=0

of the reparametrization of time. Since γ is either con-
stant or has zero velocity only at isolated points, if the fiber derivative of the energy is
non-degenerate, the linearized energy constraint can be satisfied for any Γε in Ω(I, q0, q1, e)
except at isolated points, by appropriate choice of τ . Using E = A − L, and hence
A|Ω(I,q0,q1,e) = e+ L, we can now relate the two variational problems.

If Q is a vector space, then E(q, v) = ∂L
∂v (q, v) · v − L(q, v) and

FE(q, v) ·w =
∂E

∂v
(q, v) ·w =

∂2L

∂v2
(q, v)(v, w)+

∂L

∂v
(q, v) ·w− ∂L

∂v
(q, v) ·w =

∂2L

∂v2
(q, v)(v, w).

Hence if ∂2L/∂v2 is non-degenerate and γ̇ is everywhere nonzero,

δ̇τ =

d
dεE(Γε, Γ̇ε)

∣∣∣
ε=0

∂2L
∂v2

(γ, γ̇)(γ̇, γ̇)
.

Exercise 4. Consider the Lagrangian L : Rn×Rn → R given by L(q,v) := 1
2 ‖v‖

2. Given two
points q0 and q1 ∈ Rn, show that the solution of the Euler-Lagrange equations determined
by L with end points q0 and q1 is the constant speed straight parametrized curve connecting
those points. Then show that there is no parametrized curve γ : [a, b]→ Rn minimizing the

total action A(γ) =
∫ b
a A(γ(t), γ̇(t)) dt over the set of smooth curves with arbitrary domain

and without an energy constraint; decreasing the speed along the straight path decreases A.
Finally, show that if a constant (nonzero) energy e is specified, the total action is minimized
over the set of smooth curves from q0 and q1 with that pointwise energy by the constant
speed straight parametrized curve with the energy e.

The action and the canonical one-form

Given a curve γ : I → Q, let C(γ) = {γ̇(t) : t ∈ I} ⊂ TQ denote the trace of γ̇. Then

A(γ) =

∫
I
A(γ̇(t)) dt =

∫
I
FL(γ̇(t)) · γ̇(t) dt =

∫
C(γ)

FL(vq) dq.

We can regard the 1-form vq 7→ FL(vq)dq on TQ as the pullback by FL of the canonical
1-form Θ0 on T ∗Q, which is defined as follows. Let πT ∗Q : T ∗Q→ Q denote the canonical
projection on T ∗Q, namely πT ∗Q(µq) = q for µq ∈ T ∗Q and q ∈ Q. Then

Θ0(µq) · wµq := µq ·
(
πT ∗Q

∗wµq
)
.

The canonical 1-form on the cotangent bundle of a vector space satisfies

Θ0(q, p)(q, p, v, w) = (q, p) · (q, v) = p · v,
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often expressed as Θ0(q, p) = pdq.

Example 7. Let Q = G ⊆ GL(n) be a matrix group. Define

τ̃L,R : G× g∗ → T ∗G

by

τ̃L(g, µ) = g−Tµ

τ̃R(g, µ) = µg−T

respectively the linearizations left and right multiplication by g−1.
Then

τ̃L(g, µ) · (gξ) =
〈
g−Tµ, gξ

〉
=
〈
µ, g−1gξ

〉
= 〈µ, ξ〉 .

The computation for τ̃R is analogous. Compute Θ̃0 = τ̃∗LΘ0, 1-form on T (G×g∗) ∼= TG×g×g
T(g,µ) (πT ∗G ◦ τ̃L) (gξ, µ, ν) = gξ.

Hence

Θ̃0(g, µ) · (gξ, µ, ν) = τ̃L(g, µ) · T(g,µ) (πT ∗G ◦ τ̃L) (gξ, µ, ν)

= τ̃L(g, µ) · gξ
= 〈µ, ξ〉 .

Remark 8. Given L : TQ→ R,

(FL∗Θ0) (vq) = Θ0 (FL(vq)) · FL∗.
Formally,

Θ0 (FL(vq)) · FL∗ = FL(vq) · πT ∗Q
∗ ◦ FL∗

= FL(vq) · πTQ∗.

Remark 9. Given a 1-form β on Q, then β∗Θ0 = β. The proof is unwinding of definitions:

(β∗Θ0)(q) · vq = Θ0(β(q))︸ ︷︷ ︸
∈T ∗

β(q)
T ∗Q

· β∗ · vq︸ ︷︷ ︸
Tβ(q)T

∗Q

= β(q)(vq)

5. February 1–7. Symplectic structures and Hamilton’s equations

Definition 10 (Vertical lift). Given µq, νq ∈ T ∗q , define vertµq : T ∗qQ→ TµqT
∗Q by

vertµq (νq) =
d

dε
(µq + ενq)

∣∣∣∣
ε=0

Compute

TµqπT ∗Q · vertµq (νq) =
d

dε
πT ∗Q(µq + ενq)

∣∣∣∣
ε=0

=
d

dε
q

∣∣∣∣
ε=0

= 0

vertµq is one-to-one, so vertµq(T
∗
qQ) is isomorphic to T ∗qQ.

Lemma 11. If µq = β(q) for some 1-form β on Q, then given wµq ∈ TµqT ∗Q, let vq =
TµqπT ∗Q ·wµq ∈ TqQ. Then wµq −β∗vq ∈ vertµq(T

∗
qQ). That is, there is νq ∈ T ∗qQ such that

wµq = β∗νq + vertµq (νq)

Proof. It suffices to show that ker (πT ∗Q
∗) = vertµq (T ∗Q), since

πT ∗Q
∗ (wµq − β∗vq) = πT ∗Q

∗wµq − (πT ∗Q ◦ β)∗vq = vq − vq = 0.

Since vertµq (T ∗Q) ≈ T ∗q (Q) in finite dimensions it is sufficient to argue that

dim ker (πT ∗Q
∗) = dimQ,
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which in turn happens when rank (πT ∗Q
∗) = dimQ. Since πT ∗Q ◦ β is the identity, the

restriction of πT ∗Q
∗ to β∗(TqQ) is an isomorphism, and hence rank (πT ∗Q

∗) ≥ dimQ. The
rank-nullity theorem completes the proof of the claim.

�

Definition 12 (Symplectic structure). A symplectic structure ω on a manifold M is a
closed, (weakly) non-degenerate 2-form on M .

(Jargon: ω is weakly non-degenerate if the kernel of (u,w) 7→ i(u,w)ω is trivial and strongly
non-degenerate if the map is also onto. ‘Weak’ is relevant only in the infinite-dimensional
setting.)

Example 13. Examples of symplectic structures.

• The canonical symplectic structure on a cotangent bundle: ω0 := −dΘ0.
Note: Many sources use the opposite sign convention, but also use a different sign
convention when defining Hamilton’s equations. so a given Hamiltonian yields the
same vector field for everyone.
• A Lagrangian L : TQ → R is said to be regular if FL∗ is surjective at all points of
Q. The pullback of the canonical symplectic structure on T ∗Q to TQ by the fiber
derivative FL of a regular Lagrangian is a symplectic structure on TQ.
• M = S2, The area element ω(m)(u×m,w×m) = m · (u×w) for m ∈ S2, u,w ∈ R2

is non-degenerate; any 2-form on a two dimensional manifold is closed.

The separate document ‘The canonical symplectic structure on a cotangent bundle
in terms of a vertical-horizontal split’ (canonicalsymp.pdf) shows one approach to ‘com-
ponentizing’ the canonical symplectic structure. Comments on those notes: Sorry about
the Marsden-style tangent map notation. (I think the LaTeX source is trapped on an old
machine and I haven’t gotten around to retyping it.) The ε α term: To clarify what is, and
what isn’t, being scaled by ε, let αε denote the parametrized family of one-forms satisfying
αε(q) = ε (α(q)), with multiplication by ε indicating scalar multiplication within the vector
space T ∗qQ. (In particular, ε does not rescale the base point q; if Q is nonlinear, this rescaling
isn’t defined.) Then the flow of the vector field Yα(µq) = vertα(q) (µq) is Fε(µq) = µq+αε(q),
i.e. Fε = id + αε ◦ πT ∗Q.

If ω is a (strongly) symplectic structure of M , then a any smooth function H on M
determines a vector field XH via

iXHω = dH.

XH is called the Hamiltonian vector field of the Hamiltonian H.

Claim: H is preserved by the flow of XH .

Proof: If Ft is the flow map of XH , then

d

dt
H ◦ Ft =

d

dt
(F∗tH)

= F∗t (LXHH)

= F∗t (iXHdH) (use Cartan’s formula LX = ιXd+ dιX)

= F∗t (iXH iXHω) = 0.

Example 14. M = T ∗Rn = R2n.
The canonical symplectic structure on a vector space satisfies

ω(q,p)
(
(u,w), (ũ, w̃)

)
= w̃ · u−w · ũ.

If the partial derivatives of the Hamiltonian H : R2n → R are defined in the usual way, so
that

dH(q,p)(u,w) =
∂H

∂q
(q,p) · u +

∂H

∂p
(q,p) ·w
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for all q,p,u,w ∈ Rn, then

dH(q,p)(u,w) = ω(q,p)

((
∂H

∂p
(q,p),−∂H

∂p
(q,p)

)
, (u,w)

)
implies

XH(q,p) =

(
∂H

∂p
(q,p),−∂H

∂q
(q,p)

)
.

Example 15. M = S2.
Let δH

δm : S2 → R3 satisfy

dH(m)(u×m) =
δH

δm
(m) · (u×m)

for m ∈ S2 and u ∈ R3. This defines δH
δm modulo scalar multiples of m.

Then

ω(m) (XH(m), w ×m) = dH(m)(w ×m)

=
δH

δm
(m) · (w ×m)

= m ·
(
δH

δm
(m) · (u×m)

)
.

Hence

XH(m) =
δH

δm
(m)

modulo multiples of m.

Exercise 5. Recall that the pullback of the canonical symplectic structure of T ∗G to G×g∗

by left trivialization is

ω(g, µ)
(

(Lg
∗ξ, µ, ν) , (Lg

∗η, µ, τ)
)

= τ · ξ − ν · η + µ · [ξ, η],

where ξ, η ∈ g and µ, ν, τ ∈ g∗. Given smooth H on G × g∗, let δH
δg : G × g∗ → g∗ and

δH
δµ : G× g∗ → g be given by

dH(g, µ)(TeLgξ, µ, ν) =
δH

δg
(g, µ) · ξ + ν · δH

δµ
(g, µ)

for g ∈ G, ξ ∈ g and µ, ν ∈ g∗.
Let Xg

H : G× g∗ → g and Xµ
H : G× g∗ → g∗ denote the trivialized components of the

Hamiltonian, that is
XH(g, µ) =

(
Lg
∗Xg

H(g, µ), µ,Xµ
H(g, µ)

)
.

Show that

Xg
H(g, µ) =

δH

δµ
(g, µ) and Xµ

H(g, µ) = −δH
δg

(g, µ) + ad∗δH
δµ

(g,µ)
µ.
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