# **Ideal Simplicial Volume**

MARCO MORASCHINI, Department of Mathematics - University of Pisa Joint work with Roberto Frigerio



## **Relative simplicial volume & Examples**

**Definition.** Given a chain  $c = \sum_{j=0}^{k} a_j \cdot \sigma_j \in C_*(M, \partial M; \mathbb{R})$ , we define the  $\ell^1$ -norm of c as  $|c|_1 := \sum_{j=0}^{k} |a_j|$ . Given a connected, compact and oriented manifold with boundary M, we define the **relative simplicial volume (RSV)** of M, ||M||, to be  $||M|| = \inf\{|c|_1 \mid c \in C_n(M, \partial M; \mathbb{R}) \text{ such that } [c] = [M, \partial M]\} \in \mathbb{R}_{\geq 0}$ , where  $[M, \partial M] \in H_n(M, \partial M; \mathbb{R})$  is the relative fundamental class of M.

**Theorem** ([1]). If M is either a handlebody of genus  $g \ge 2$  or it is the product of a surface with an interval, then its relative simplicial volume ||M|| is proportional to  $||\partial M||$ .

**Theorem** ([4]). If M is the natural compactification of a complete finite-volume hyperbolic n-manifold, then  $||M|| = Vol(M)/v_n$ .

## MARKED SPACES & IDEAL TRIANGULATIONS

**Definition.** A marked space is a topological pair (X, B) such that B is a closed and discrete subset of X in which each point  $b \in B$  has a closed neighbourhood in X homeomorphic to a topological cone.

**Definition.** Given a manifold with boundary M, we define the **marked space associated to** M,  $(X, B)_M$ , as follows: X is the topological quotient obtained from M by collapsing separately each connected component of  $\partial M$ , while B is the finite subset of X corresponding to the connected components of  $\partial M$ .

**Definition.** An ideal triangulation of M is the realization of  $(X, B)_M$  as a  $\Delta$ -complex whose set of

### EXAMPLE



#### MARKED HOMOLOGY

**Definition.** Given a marked space (X, B), a singular simplex  $\sigma: \Delta^n \to X$  is said to be **admissible** if  $\sigma^{-1}(B)$  is a (possibly empty) subcomplex of  $\Delta^n$ . The set of admissible simplices in X defines a subcomplex  $\widehat{C}^{\mathcal{M}}_*(X, B; \mathbb{R})$  of the singular complex  $C_*(X; \mathbb{R})$  which contains  $C_*(B; \mathbb{R})$ . We define the **marked chain complex** of (X, B) to be  $C^{\mathcal{M}}_*(X, B; \mathbb{R}) = \widehat{C}^{\mathcal{M}}_*(X, B; \mathbb{R})/C_*(B; \mathbb{R})$ . The **marked homology** of (X, B),  $H^{\mathcal{M}}(X, B; \mathbb{R})$ , is the homology of the marked chain complex  $(C^{\mathcal{M}}_*(X, B; \mathbb{R}), \partial_*)$ .

**Theorem 1** ([2]). *There exists an isomorphism*  $\Psi_n : H_n(M, \partial M; \mathbb{R}) \xrightarrow{\cong} H_n^{\mathcal{M}}(X, B; \mathbb{R}).$ 

#### **IDEAL SIMPLICIAL VOLUME**

**Definition.** Let M be a connected, compact, oriented n-manifold with boundary. We define the **ideal simplicial volume (ISV)** of M,  $||M||_{\mathcal{I}}$  to be  $||M||_{\mathcal{I}} = \inf\{|c|_1 | c \in C_n^{\mathcal{M}}(M, \partial M; \mathbb{R}) \text{ such that } [c] = [M, \partial M]^{\mathcal{M}} \} \in \mathbb{R}_{\geq 0}$ , where  $[M, \partial M]^{\mathcal{M}} \in H_n^{\mathcal{M}}(M, \partial M; \mathbb{R})$  is the marked fundamental class of M, that is  $[M, \partial M]^{\mathcal{M}} = \Psi_n([M, \partial M])$ .

#### FUNDAMENTAL PROPERTIES

**Theorem 2** ([2]). The minimal number of simplices in an ideal triangulation of a compact manifold M, c(M), provides an upper bound of the ideal simplicial volume:

 $||M||_{\mathcal{I}} \le c(M).$ 

**Theorem 3** ([2]). Let  $f: (M, \partial M) \rightarrow (N, \partial N)$  be a map of pairs between compact connected oriented manifolds of the same dimension. Then, the following holds:

 $||M||_{\mathcal{I}} \ge |deg(f)|||N||_{\mathcal{I}}.$ 

In particular, the ideal simplicial volume is a **homotopy invariant** of manifolds with boundary (where homotopies are understood to be homotopies of pairs).

## ISV VERSUS RSV

**Theorem 4** ([2]). There exists a positive constant  $K_n$  only depending on the dimension n of M such that the following holds:

 $\|M\|_{\mathcal{I}} \le \|M\| \le K_n \|M\|_{\mathcal{I}}.$ 

In particular,  $||M||_{\mathcal{I}} = 0$  if and only if ||M|| = 0.

**Theorem 5** ([2]). Let *M* be an *n*-dimensional compact manifold such that each of its boundary components has **amenable** fundamental group. Then,

 $\|M\|_{\mathcal{I}} = \|M\|.$ 

In particular, when M is the compactification of a complete finite-volume

#### A HYPERBOLIC TRUNCATED TETRAHEDRON



#### BIBLIOGRAPHY

- [1] M. Bucher, R. Frigerio and C. Pagliantini, *The simplicial volume of 3-manifolds with boundary*, Journal of Topology 8, 2015.
- [2] R. Frigerio and M. Moraschini, *Ideal simplicial volume of manifolds with boundary*, arXiv:1802.05223.pdf.
- [3] R. Frigerio and M. Moraschini, *On volumes of hyperideal tetrahedra with contrained edge legths*, arXiv:1801.05326.pdf.
- [4] W. P. Thurston, *The geometry and topology of 3-manifolds*, Lecture notes, 1978.

*hyperbolic n*-manifold, then  $||M||_{\mathcal{I}} = \frac{Vol(M)}{v_n}$ .

#### **NEW COMPUTATIONS**

**Theorem 6** ([3]). Let  $\ell \leq \cosh^{-1}((3 + \sqrt{3})/4)$ . Then, regular hyperbolic truncated tetrahedra of edge length  $\ell$  maximize the volume among hyperbolic truncated tetrahedra whose edge lengths are all not smaller than  $\ell$ .

The previous technical result is a fundamental step in the computation of the ISV of an infinite family of hyperbolic 3-manifolds with geodesic boundary, for which the exact value of the RSV is not known:

**Theorem 7** ([2]). For any hyperbolic 3-manifolds M with connected geodesic boundary of genus  $g \ge 2$ , we have

 $\|M\|_{\mathcal{I}} \ge \mathsf{g}.$ 

Moreover, the equality holds if and only if M admits an ideal triangulation with **g** ideal simplices.