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Abstract

We study various properties of closed relativistic strings. In particular, we characterize
their closure under uniform convergence, extending a previous result by Y. Brenier on
graph-like unbounded strings, and we discuss some related examples. Then we study
the collapsing profile of convex planar strings which start with zero initial velocity, and
we obtain a result analogous to the well-known theorem of Gage and Hamilton for the
curvature flow of plane curves. We conclude the paper with the discussion of an example
of weak Lipschitz evolution starting from the square in the plane.
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1 Introduction

Whereas string-theory in flat Minkowski space, as viewed by physicists, is thought to be
completely understood on the classical non-interacting level, some of its aspects are still open
problems from the mathematical point of view. The subject of this paper is the analysis of
closed strings, which correspond to time-like minimal surfaces, in the (1+n)-dimensional flat
Minkowski space. We recall (see for instance [23, Chapter 6]) that the Minkowski area S(X)
of a time-like map X : [0, T ] × [0, L] → R

1+n of class C1 is given by

S(X) =

∫

[0,T ]×[0,L]

√
〈Xt,Xx〉2m − 〈Xt,Xt〉m〈Xx,Xx〉m dtdx, (1.1)

where 〈·, ·〉m denotes the Minkowskian scalar product in R
1+n associated with the metric

tensor diag(−1,+1, . . . ,+1). In the sequel we always assume X to be of the form

X(t, x) := (t, γ(t, x)), (t, x) ∈ [0, T ] × [0, L], (1.2)

and that γ(t, ·) is closed. It is well known (see for instance [22, 23]) that in a particular
parametrization (and assuming that all quantities are sufficiently smooth) critical points of
S can be described by
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γtt = γxx,

〈γt, γx〉 = 0,

|γt|2 + |γx|2 = 1,

(1.3)

see also Section 2 for the details. Critical points of S have been considered by Born and
Infeld [7] (in the case of graphs), and analyzed later on by many authors. A large number
of explicit solutions to (1.3), possibly with singularities in the image of the parametrization
(such as cusps, for instance, where the above regularity condition fails) is known, see for
instance [3, Chapter 4], [22],[15].
The nonlinear constraint in (1.3) is not closed under uniform convergence. Indeed, many
examples in the physical literature [8, 22, 20, 21] show that the limit of a convergent sequence
of relativistic strings is not, in general, a relativistic string, thus leading to the concept of
wiggly string. A natural question is then to characterize the closure of relativistic strings.
This issue is discussed in the physical literature (for instance in [22]) and, for the case of strings
which are entire graphs, an answer was provided by Y. Brenier [6]. We obtain an analogous
result for the case of closed strings (see Theorem 3.1). Roughly speaking, the nonlinear
constraint is convexified (compare (2.23) and (3.2)), and limit solutions have in general only
Lipschitz regularity. Then, motivated by an example described by Neu in [20] and by Theorem
3.1, in Section 4 we discuss various examples. In particular, and as already observed in [20]
when n = 2 (see also [15]), we show how additional small oscillations superimposed on the
initial datum can prevent the limit solution to collapse to a point (see Examples 4.2 and 4.3).
Mathematical questions related to (1.3) also include the qualitative properties of solutions
for special initial data, and their asymptotic shape near a singularity time, for instance
near a collapse. This latter problem is, in turn, intimately related to the existence of weak
global solutions, to be defined also after the onset of a singularity. In this paper we begin a
preliminary discussion on this subject. More precisely, in Section 5 we address the study of
the convexity preserving properties of the solutions of (1.3), when n = 2, and their asymptotic
profile near a collapsing time. In Proposition 5.4 we show that a relativistic string which is
smooth and convex and has zero initial velocity, remains convex for subsequent times, and
shrinks to a point while its shape approaches a round circle. This result is analogous to the
one proven by Gage and Hamilton in [11] for curvature flow of plane curves, and the one
proven in [17] for the hyperbolic curvature flow (non relativistic case). However, differently
from the parabolic case (see [11, 13]), here the collapsing singularity is nongeneric, the generic
singularity being the formation of a cusp, as discussed in [3, 9]. Adopting as a definition of
weak solution the one given by D’Alembert formula for the linear wave system in (1.3), it
follows that after the collapse the solution restarts, and the motion is continued in a periodic
way. This is in accordance with the conservative character of the wave system in (1.3).
D’Alembert formula can still provide a possible definition of weak solutions for Lipschitz
immersions. In Example 5.6 we study the solution corresponding to a homotetically shrinking
square. In this case it turns out that the conservation law (2.16) below is valid only in special
interval of times. The same example shows that, in contrast with the case of smooth strings,
for Lipschitz strings the collapsing profile is not necessarily circular.
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2 Notation and preliminary observations

For n ≥ 2 we denote by R
1+n the (1+n)-dimensional Minkowski space, which is endowed with

the metric tensor diag(−1,+1, . . . ,+1). We indicate by 〈·, ·〉 and | · | the euclidean scalar
product and norm in R

n, respectively. Given T > 0 and L > 0, the Minkowski area S(X) of
a time-like map X : [0, T ] × [0, L] → R

1+n of class C1 is defined in (1.1), where X = X(t, x),
Xt := ∂tX and Xx := ∂xX. Note that (1.1) is well defined if X is only Lipschitz continuous.

2.1 Assumptions on γ

As already said in the Introduction, we will assume that X has the form (1.2), where γ ∈
C1([0, T ] × [0, L]; Rn) satisfies the L-periodicity conditions

γ(·, 0) = γ(·, L), γx(·, 0) = γx(·, L). (2.1)

When necessary, the map γ will be periodically extended with respect to x on the whole of
[0, T ] × R; we still denote by γ ∈ C1([0, T ] × R) such an extension.

Definition 2.1. We say that γ is regular if γx(t, x) 6= 0 for any (t, x) ∈ [0, T ] × [0, L].

Let γ ∈ C1([0, T ] × [0, L]; Rn) be regular; if there exist a bounded closed interval I ⊂ R

and a map r ∈ C1([0, T ] × I; [0, L]) such that r(t, ·) is strictly monotone, then the map
(t, σ) ∈ [0, T ] × I → γ(t, r(t, σ)) is said a reparametrization of γ.
The normal velocity vector is given by γ⊥t , where ⊥ denotes the orthogonal projection onto
the normal space, so that

γ⊥t = γt − 〈γt,
γx

|γx|
〉 γx

|γx|
. (2.2)

Definition 2.2. Let γ ∈ C1([0, T ] × [0, L]; Rn). We say that γ is strictly admissible if

|γ⊥t |2 < 1 in [0, T ] × [0, L]. (2.3)

2.2 The lagrangian L
Under assumptions (1.2) and (2.3) we have

√
〈Xt,Xx〉2m − 〈Xt,Xt〉m〈Xx,Xx〉m =

√
〈γt, γx〉2 + |γx|2(1 − |γt|2),

and

S(X) =

∫

[0,T ]×[0,L]
L(γt, γx) dtdx. (2.4)

Here the function L : dom(L) = {(ξ, η) ∈ R
n × R

n : 〈ξ, η〉2 ≥ |η|2(|ξ|2 − 1)} → [0,+∞) is
defined as

L(ξ, η) :=
√

〈ξ, η〉2 + |η|2(1 − |ξ|2), (ξ, η) ∈ dom(L).

Observe that (ξ, η) ∈ dom(L) implies (ξ, αη) ∈ dom(L) for any α ∈ R, and

L(ξ, αη) = |α|L(ξ, η), α ∈ R, (ξ, η) ∈ dom(L). (2.5)
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Hence if γ̃ is a reparametrization of the regular curve γ then the righe hand side of (2.4)
remains unchanged.
Note also that

(ξ, η) ∈ dom(L), 〈ξ, η〉 = 0, |ξ|2 + |η|2 = 1 ⇒ L(ξ, η) = |η|2. (2.6)

Definition 2.3. Let I ⊂ R be a bounded closed interval, and let γ ∈ C1([0, T ] × I; Rn) be a
regular map. We say that γ is parametrized in orthogonal way if

〈γt, γx〉 = 0 in [0, T ] × I. (2.7)

Remark 2.4. Any regular map γ ∈ C1([0, T ]× [0, L]; Rn) can be parametrized in orthogonal
way (see for instance [1, Theorem 8]) in [0, T ] × [0, L]. Indeed, it is enough to consider the
map (t, x) ∈ [0, T ]× [0, L] → γ(t, r(t, x)), where r ∈ C1([0, T ]× [0, L]; [0, L]) satisfies the linear

transport equation rt = − 〈γt,γx〉
|γx|2 rx. It follows that the parametrization becomes unique once

we fix r(0, ·).

Notation: in what follows we use the symbol E with the following meaning. Let γ ∈ C1([0, T ]×
[0, L]) be a regular strictly admissible map. First we reparametrize γ(0, ·) on the interval [0, E]
in such a way that |γx(0, ·)|2 = 1−|γt(0, ·)|2. Next, recalling Remark 2.4, we further uniquely
reparametrize the map γ in an orthogonal way in the parameters space [0, T ] × [0, E]. We
therefore achieve, at the same time, the two conditions

|γt(0, x)|2 + |γx(0, x)|2 = 1, x ∈ [0, E], (2.8)

〈γt(t, x), γx(t, x)〉 = 0, (t, x) ∈ [0, T ] × [0, E]. (2.9)

2.3 First variation of S
We recall that X ∈ C1([0, T ] × [0, L]; R1+n) is called a critical point of S if

d

dλ
S(X + λΦ)|λ=0 = 0, Φ ∈ C1

(
[0, T ] × [0, L]; R1+n

)
.

The first variation of S is a classical computation (see for instance [23, Section 6.5]).
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Lemma 2.5. Let X ∈ C1([0, T ]× [0, L]; R1+n) be a critical point of S of the form (1.2), with
γ satisfying the periodicity condition (2.1), regular and strictly admissible. Then
∫

[0,T ]×[0,L]

1

L(γt, γx)

(
|γx|2ψt − 〈γt, γx〉ψx

)
dtdx = 0, ψ ∈ C∞([0, T ] × [0, L]), (2.10)

∫

[0,T ]×[0,L]

1

L(γt, γx)

[
〈γt, γx〉

(
〈γx, φt〉 + 〈γt, φx〉

)

− (|γt|2 − 1)〈γx, φx〉 − |γx|2〈γt, φt〉
]
dtdx = 0,

φ ∈ C∞([0, T ] × [0, L]; Rn),

(2.11)

γ⊥t = 0 on {0} × [0, L] and on {T} × [0, L]. (2.12)

If γ ∈ C2([0, T ] × [0, L]; Rn) then

−
( |γx|2
L(γt, γx)

)

t

+

( 〈γt, γx〉
L(γt, γx)

)

x

= 0, (2.13)

|γx|2γtt +
(
|γt|2 − 1

)
γxx − 2〈γt, γx〉γxt

L(γt, γx)
+

[( |γt|2 − 1

L(γt, γx)

)

x

−
( 〈γt, γx〉
L(γt, γx)

)

t

]
γx = 0 (2.14)

in [0, T ] × [0, L].

Proof. Let φ ∈ C∞([0, T ] × [0, L]; Rn). For λ ∈ R and |λ| small enough we have that γ + λφ
is regular and strictly admissible. Then, being X critical for S, and taking ψ ∈ C∞([0, T ] ×
[0, L]), we have

0 =
d

dλ
S (X + λ(ψ, φ))|λ=0

=

∫

[0,T ]×[0,L]

d

dλ

(
〈(1 + λψt, γt + λφt), (λψx, γx + λφx)〉2m

− 〈(1 + λψt, γt + λφt), (1 + λψt, γt + λφt)〉m 〈(λψx, γx + λφx), (λψx, γx + λφx)〉m

)1/2

|λ=0

dtdx

=

∫

[0,T ]×[0,L]

(
〈γt, γx〉(〈γx, φt〉 + 〈γt, φx〉 − ψx) − 〈γx, φx〉(|γt|2 − 1) − |γx|2(〈γt, φt〉 − ψt)

)

L(γt, γx)
dtdx,

and (2.10) and (2.11) immediately follow.
Since (1.2) implies that X(0, x) belongs to the hyperplane {(x0, x1, . . . , xn) ∈ R

1+n : x0 = 0}
for any x ∈ [0, L], once integrating by parts with respect to t, the boundary contributions
from (2.11) give

1

L(γt, γx)

(
−γx〈γt, γx〉 + γt|γx|2

)
= 0 on {0} × [0, L]. (2.15)

Recalling the γ is regular and using the expression of v in (2.2), it follows that (2.15) is
equivalent to (2.12). A similar condition can be obtained on {T} × [0, L].

5



Assume now that γ ∈ C2([0, T ]× [0, L]; Rn). Then (2.13) follows from (2.10) by taking ψ with
compact support in (0, T )× [0, L], and integrating by parts. Taking φ with compact support
in (0, T ) × (0, L), integrating by parts in (2.11) and using (2.13), it follows

−
( 〈γt, γx〉
L(γt, γx)

)

t

γx − 2
〈γt, γx〉
L(γt, γx)

γxt +

( |γt|2 − 1

L(γt, γx)

)

x

γx +
|γt|2 − 1

L(γt, γx)
γxx +

|γx|2
L(γt, γx)

γtt = 0,

which is (2.14).

Note that by the positive one-homogeneity of L(ξ, ·) in (2.5) it follows that (2.10), (2.11),
(2.13) and (2.14) are invariant under reparametrizations of γ with respect to x.

Remark 2.6. Under the assumptions of Lemma 2.5, integrating (2.13) on [0, L] one obtains
the conservation law

d

dt

∫

[0,L]

|γx|2
L(γt, γx)

dx = 0, t ∈ (0, T ). (2.16)

This conservation law can be equivalently written on the image γ(t, [0, L]) as follows:

d

dt

∫

γ(t,[0,L])

θ(t, x)√
1 − |v(t, ·)|2

dH1 = 0, (2.17)

where, given t ∈ [0, T ], θ(t, x) is the cardinality of the set γ−1(t, γ(t, x)) (in particular,
θ(t, x) = 1 if γ(t, ·) is an embedding), v := γ⊥t , and H1 is the one-dimensional Hausdorff
measure in R

n. Indeed
∫

[0,L]

|γx|2
L(γt, γx)

dx =

∫

[0,L]

|γx|√
〈γt,

γx

|γx|〉2 + 1 − |γt|2
dx =

∫

[0,L]

|γx|√
1 − |γ⊥t |2

dx

=

∫

γ(t,[0,L])

θ(t, x)√
1 − |v(t, ·)|2

dH1 = 0,

where the last equality follows from the area formula [2].
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Corollary 2.7. Assume that γ ∈ C1([0, T ] × [0, L]; Rn) is regular, strictly admissible, and
satisfies (2.11). Define

ρ(x) :=
|γx(0, x)|√

1 − |γt(0, x)|2
, x ∈ [0, L].

If γ is parametrized in an orthogonal way then

(i) the conservation law (2.16) strengthen into the pointwise conservation law

|γx(t, x)|√
1 − |γt(t, x)|2

= ρ(x), (t, x) ∈ [0, T ] × [0, L]; (2.18)

(ii) the condition (2.11) becomes

∫

[0,T ]×[0,L]
〈γt, φt〉 dtdx =

∫

[0,T ]×[0,L]
〈γx

ρ
,

(
φ

ρ

)

x

〉 dtdx;

(iii) if we reparametrize γ(0, ·) on the interval [0, E] so that ρ is constantly equal to 1, that
is if (2.8) holds, then

|γt|2 + |γx|2 = 1 in [0, T ] × [0, E], (2.19)

and γ becomes a C1 distributional solution of the wave linear system

γtt = γxx in [0, T ] × [0, E]. (2.20)

Proof. Using the orthogonality condition (2.7), equation (2.10) reduces to

∫

[0,T ]×[0,L]

|γx|√
1 − |γt|2

ψt dtdx = 0, ψ ∈ C∞([0, T ] × [0, L]),

which implies (2.18).
From (2.11) and the fact that the parametrization of γ is orthogonal, it follows

∫

[0,T ]×[0,L]

(
〈γx(1 − |γt|2)

L(γt, γx)
, φx〉 − 〈 γt|γx|2

L(γt, γx)
, φt〉

)
dtdx = 0. (2.21)

Orthogonality of the parametrization also implies that L(γt, γx) = |γx|
√

1 − |γt|2, so that
(2.21) becomes

∫

[0,T ]×[0,L]

(
〈γx

√
1 − |γt|2
|γx|

, φx〉 − 〈 γt|γx|√
1 − |γt|2)

, φt〉
)
dtdx = 0,

which gives (ii).
Eventually, assertion (iii) follows directly from (i) and (ii).

Remark 2.8. We point out that Corollary 2.7 (iii) shows that if the constraint |γt|2+|γx|2 = 1
is valid at the initial time t = 0, then it remains valid at subsequent times.
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A number of solutions of (2.7), (2.19), (2.20) are known, see for instance [22, Section 6.2.4],
[3, Chapter 4], [12], the simplest one being probably the following [20]. Let n = 2, R > 0 and
a(s) = b(s) := R(cos s

R , sin
s
R) for any s ∈ R. The solution to (2.20) becomes

γ(t, x) = R
(
cos

x

R
, sin

x

R

)
cos

t

R
, (t, x) ∈ (−Rπ/2, Rπ/2) × [0, E],

with E = 2πR. Note that at the singular times t = ±E/4, the condition γx(t, ·) 6= 0 is not
satisfied, and γ(t, [0, E]) reduces to a point.

2.4 Representation of the solutions and a concept of weak solution

Let X ∈ C1([0, T ] × [0, E]; R1+n) (resp. X ∈ C2([0, T ] × [0, E]; R1+n)) be a critical point
of S of the form (1.2), where γ ∈ C1([0, T ] × [0, L]; Rn) (resp. γ ∈ C2([0, T ] × [0, L]; Rn)) is
strictly admissible and regular. We have seen that there exists an orthogonal parametrization
of γ satisfying (2.8), hence by Corollary 2.7 (iii) we have that γ becomes a distributional
(resp. classical) solution to (2.20). Hence there exist E-periodic maps a, b ∈ C1(R; Rn) (resp.
C2(R; Rn)) such that

γ(t, x) =
1

2
[a(x+ t) + b(x− t)] , (t, x) ∈ [0, T ] × [0, E], (2.22)

|a′| = |b′| = 1 in R. (2.23)

Note that γt(0, ·) = 0 if and only if there exists w ∈ R
n such that a = b+ w.

Remark 2.9. Since a and b are defined on the whole of R, the right hand side of (2.22)
can be considered as the definition of the map γ on the left hand side also for (t, x) ∈
(R \ [0, T ]) × [0, E]. Namely, the right hand side of (2.22) provides a global in time C1 (resp.
C2) weak solution, denoted by γ to (2.7), (2.19) and (2.20) defined for (t, x) ∈ R × [0, E]. In
general it may happen that γx(t, x) = 0 for some (t, x) ∈ (R \ [0, T ]) × [0, E], since (2.23)
does not prevent that a′(x + t) = −b′(x − t). Hence singularities in the image γ(t, [0, E])
(such as cusps, for instance) are in general expected, and may possibly persist in time (see
Remark 5.3 below). We point out that such a weak solution could not coincide with the weak
solution proposed in [4] when singularities are present. Another notion of weak solution to
the lorentzian minimal surface equation in the case of graphs has been proposed in [6].

We conclude this section by observing that the time-slices γ(t, ·) of a surface which is critical
for S satisfy the geometric equation

a = (1 − |v|2) κ. (2.24)

Here, if γ ∈ C2([0, T ] × [0, L]; Rn) is regular, v = γ⊥t denotes the normal velocity vector, κ
denotes the curvature vector and a the normal acceleration vector, respectively given1 by

κ =
γ⊥xx

|γx|2
, a =

(
vt − 〈γt,

γx

|γx|
〉 vx

|γx|

)⊥
= γ⊥tt + 〈γt,

γx

|γx|
〉
(
γxx

|γx|2
− 2

γxt

|γx|

)⊥
. (2.25)

1When γ is an embedding, if we set Γ(t) := γ(t, [0, L]), then a = (∇ηtt)
⊥ on Γ(t), where η(t, z) :=

dist(z, Γ(t))2/2 for (t, z) ∈ [0, T ] × R
n. In the case n = 2 it holds v = −dt∇d and a = −dtt∇d, where d is the

signed distance from Γ(t).
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To show (2.24), observe that

(γ⊥t ) ⊥
t =γ⊥tt − 〈γt,

γx

|γx|
〉
(
γx

|γx|

) ⊥

t

= γ⊥tt − 〈γt,
γx

|γx|
〉 γ

⊥
tx

|γx|
,

(γ⊥t ) ⊥
x =γ⊥tx − 〈γt,

γx

|γx|
〉
(
γx

|γx|

) ⊥

x

= γ⊥tx − 〈γt,
γx

|γx|
〉 γ

⊥
xx

|γx|
,

so that

a = γ⊥tt − 2〈γt,
γx

|γx|
〉 γ

⊥
tx

|γx|
− 〈γt,

γx

|γx|
〉2 γ⊥xx

|γx|2
, (2.26)

and therefore if γ is parametrized in an orthogonal way, then a = (γ⊥t )⊥t . Now, projecting
both sides of (2.14) onto the normal space to γ(t, ·) gives

γ⊥tt +
|γt|2 − 1

|γx|2
γ⊥xx − 2

〈γt, γx〉
|γx|2

γ⊥xt = 0. (2.27)

Inserting (2.26) into (2.27) gives

a =
1 − |γt|2 − 〈γt,

γx

|γx|〉
2

|γx|2
γ⊥xx =

(
1 − |γ⊥t |2

) γ⊥xx

|γx|2
= (1 − |v|2)κ.

3 Closure of solutions

The closure result is motivated by an example in [20] ( see also the discussion in [22, Section
6.5.2], and references therein ). This result is similar to the one in [6], where maps which are
graphs defined in the whole of R × R are considered.

Theorem 3.1. Let {Ek} be a sequence of positive numbers converging to E ∈ [0,+∞) as
k → +∞. Let {γk} ⊂ C1([0, T ]×R; Rn) be a sequence of Ek-periodic regular strictly admissible
orthogonally parametrized maps

|γkt(0, x)|2 + |γkx(0, x)|2 = 1, x ∈ R, (3.1)

and solving the wave system (2.20). The following assertions hold.

(i) if {γk} converges to a map γ ∈ Lip([0, T ]×R; Rn) uniformly in [0, T ]×R as k → +∞,
then there exist E-periodic maps a, b ∈ Lip(R; Rn) with

|a′| ≤ 1, |b′| ≤ 1 a.e. in R (3.2)

such that γ has the representation (2.22) in [0, T ] × R.

(ii) If γ ∈ Lip([0, T ]× [0, E]; Rn) can be represented as in (2.22) where a, b ∈ Lip(R; Rn) are
E-periodic maps satisfying (3.2), then there exists a sequence {γk} ⊂ C2([0, T ]×R; Rn)
of E-periodic maps solving (2.20), (2.7), (2.8) in [0, T ]×R such that {γk} converges to
γ uniformly in [0, T ] × [0, E].

9



Figure 1: (a): the construction of āk defined in (3.4) for a piecewise linear map a, in the (image of)
the interval [Li, Li+1]; the slopes are ci+1 ± di+1. (b): the smoothing of the corners in order to have
āk ∈ C2, keeping the length constraint satisfied.

Proof. Let us prove (i). Let ak, bk, with |a′k| = |b′k| = 1, be such that (2.22) holds with
E, γ, a, b replaced by Ek, γk, ak, bk, respectively. Then assertion (i) follows by recalling that,
if L > supk Ek, the set {u ∈W 1,∞(R; Rn) : u is L periodic, |u′| ≤ 1 a.e.} is the weak∗ closure
of {u ∈ W 1,∞(R; Rn) : u is L periodic, |u′| = 1 a.e.}, and in particular it is closed under the
uniform convergence on the compact subsets.

Let us prove (ii). Given a, b ∈ Lip(R; Rn) E-periodic maps satisfying |a′| ≤ 1 and |b′| ≤ 1
almost everywhere, it is enough to find two E-periodic sequences {ak}, {bk} ⊂ C2(R; Rn),
with |a′k| = |b′k| = 1, uniformly converging to a, b, respectively, as k → ∞. It is also sufficient
to prove this assertion for a, b belonging to the dense (for the uniform convergence) class of
piecewise linear immersions satisfying (3.2), since one then concludes for general a, b using a
diagonal argument. We will show the assertion for the map a, the construction for b being
similar. Let a be an E-periodic piecewise linear immersion satisfying (3.2), so that we can
identify the points {0} and {E}, and assume that there exist m+ 2 points 0 =: L0 < L1 <
· · · < Lm+1 := E in the interval [0, E] such that

a(x) = a(Li) + (x− Li)ci+1, x ∈ [Li, Li+1], i = 0, . . . ,m,

with ci+1 ∈ R
n, |ci+1| ≤ 1 for i = 0, . . . ,m. Choose di+1 ∈ R

n so that

〈di+1, ci+1〉 = 0, |di+1|2 = 1 − |ci+1|2, i = 0, . . . ,m. (3.3)

Fix k ∈ N even. For i = 0, . . . ,m we take a partition of [Li, Li+1] into k subintervals of
equal length: precisely, i.e., j = 0, . . . , k set Lj

i := Li + j
k (Li+1 − Li) (we write L0

i = Li and
Lk

i = Li+1). Define

āk(x) := a(x) + (−1)j(x− Lj
i )di+1, Lj

i ≤ x ≤ Lj+1
i , (3.4)

see Figure 1 (a). Since k is even, āk ∈ Lip([0, E]; Rn). Moreover from (3.3) it follows
|ā′k(x)| = 1 for any x ∈ [0, E] out of a finite set depending on k. Eventually, by construction
|āk(x) − a(x)| ≤ L

k for any x ∈ [0, E], so that āk → a uniformly in [0, E] as k → +∞.
Once a similar construction for b (thus leading to the definition of {b̄k}) is made, let us
consider the sequence {γk} of maps defined as γ̄k(t, x) := 1

2

[
āk(x+ t) + b̄k(x− t)

]
for any

(t, x) ∈ [0, T ]× [0, E]. These maps belong to Lip([0, T ]× [0, E]; Rn), and must be regularized
in order to avoid the presence of corners.

Given k ∈ N, k ≥ 1, let ℓk ∈
(

0, min
i=0,...,m

Li+1 − Li

3k

)
and fix η ∈ (0, ℓk/3). We apply Lemma

3.2 below with ℓ = ℓk in the intervals [Lj
i−ℓk, L

j
i +ℓk], identifying R

2 with āk(L
j
i )+span{ci+1+
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di+1, ci+1 − di+1} if j 6= 0, and with āk(Li) + span{ci+1 + di+1 + ci − di, ci+1 + di+1 − ci + di}
if j = 0 (see Figure 1 (b)). In both cases set s := x− Lj

i and γijk(s) := āk(s + Lj
i ) = āk(x).

Let γ̃ijk be the approximations of γijk obtained by Lemma 3.2. Then, the map

ak(x) :=

{
γ̃ijk(x− Lj

i ) if Lj
i − ℓk ≤ x ≤ Lj

i + ℓk

āk(x) otherwise in [0, E],

extended by E-periodicity, is of class C2(R), |a′k| = 1 and ‖ak − āk‖L∞([0,E]) ≤ L/k.

Lemma 3.2. Let ℓ > 0, (τ1, τ2) ∈ R
2 be a unit vector such that τ1, τ2 > 0, and let γ(s) :=

(sτ1, |s|τ2) for −ℓ ≤ s ≤ ℓ. For any η ∈ (0, ℓ/3) there exists γ̃ ∈ C2([−ℓ, ℓ]; R2) such that
|γ̃′| = 1 in [−ℓ, ℓ], γ̃(s) = γ(s) for |s| ≥ ℓ

2 and ‖γ − γ̃‖L∞([−ℓ,ℓ]) ≤ η.

Proof. Consider without loss of generality ℓ < 1, fix η ∈ (0, ℓ
3 ) and let 0 < α, β ≤ η/2 be two

parameters to be fixed later. Define the map γα,β ∈ C2([−ℓ, ℓ]; R2) as

γα,β(y) :=





(τ1y,− τ2
8α3 y

4 + 3τ2
4α y

2 + 3τ2α
8 ) if |ty| ≤ α

y(τ1, τ2) + β(y − ℓ
3)3( ℓ

2 − y)3(−τ2, τ1) if ℓ
3 ≤ y ≤ ℓ

2

(τ1y, τ2|y|) otherwise in [−ℓ, ℓ],

see Figure 1 (b). The definition in [−α,α] corresponds to the smoothened corners, while the
definition in [ℓ/3, ℓ/2] corresponds to the small “bump” out of the corners.
For α and β sufficiently small |γα,β(y) − γ(y)| ≤ η/2. Moreover

∫ α

−α
|γ′α,β | dy < 2α,

∫ ℓ/2

ℓ/3
|γ′α,β | dy >

ℓ

6
,

and ∫ ℓ/2

ℓ/3
|γ′α,β | dy → ℓ

6
as β → 0+.

Hence there exist α and β such that

∫ α

−α
|γ′α,β | dy +

∫ ℓ/2

ℓ/3
|γ′α,β | dy = 2α+

ℓ

6

and in particular ∫ ℓ/2

−ℓ/2
|γ′α,β|dy =

ℓ

2
− α+

ℓ

3
− α+ 2α+

ℓ

6
= ℓ . (3.5)

Let s = s(y) be the arc-length parameter for the curve γα,β, and observe that |s−y(s)| ≤ 2α.
Set γ̃(s) := γα,β(y(s)). By (3.5) we deduce that γ̃(s) = γ(s) for |s| ≥ ℓ/2. Moreover,

|γ̃(s) − γ(s)| = |γα,β(y(s)) − γ(s)| ≤ |γα,β(y(s)) − γ(y(s))| + |γ(y(s)) − γ(s)|
≤ η

2
+ |y(s) − s| ≤ η

2
+ 2α ≤ η .
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Remark 3.3. Let γ ∈ C2([0, T ] × [0, L]; Rn) be a regular strictly admissible orthogonally
parametrized map. Then (2.26) implies that

a = γ⊥tt . (3.6)

If γ in addition satisfies the wave system (2.20), so that the representation formula (2.22)
holds, but assuming only |a′| = |b′| ≤ 1 instead of (2.23), then being γ⊥tt = γ⊥xx, we have the
identity

a = (1 − |v|2)κ− (1 − |v|2)κ+ α
(
γ⊥xx − γ⊥tt

)
+ γ⊥tt , α ∈ R.

Choosing α = 2(1 − |v|2)/(1 − |v|2 + |γx|2) we get, using κ|γx|2 = γ⊥xx and (3.6),

−a + (1 − |v|2)κ =
1 − φ2

1 + φ2

(
a + (1 − |v|2)κ

)
, (3.7)

where φ := |γx|√
1−|γt|2

. In analogy with the discussion in [20, Section 5], the left-hand side of

(3.7) is the mean curvature of the surface, while the right-hand side can be interpreted as
a sort of sectional curvature of the surface in the null direction, multiplied by the positive

factor 1−φ(t,x)2

1+φ(t,x)2
.

4 Some examples

In view of Theorem 3.1, we are interested in understanding the structure of the uniform limits
of C2 critical points of the functional S of the form (1.2). The following example shows that
such limits cannot satisfy, in general, any kind of partial differential equation.

Example 4.1. Let A ∈ C2(R; Rn) be an L-periodic map satisfying |A′| = 1. Let also ε ∈ (0, 1)
be such that L/ε ∈ N, and define Bε : R → R as

Bε(s) := εA
(s
ε

)
, s ∈ R.

Let E = 2L. Define

γε(t, x) :=
1

2

[
2A

(
x+ t

2

)
+Bε(x− t)

]
, (t, x) ∈ R × [0, E].

Then γε ∈ C2(R × [0, 2L]; Rn), it satisfies 〈γεt, γεx〉 = 0, |γεt|2 + |γεx|2 = 1 and it is a
global in time solution of (2.20). The maps γε(t, x) converge, as ε → 0+, to A((x + t)/2)
uniformly on the compact subsets of R × [0, E], and A((x + t)/2) is a reparametrization of
A(x/2), x ∈ [0, E]. In particular, if γ0 ∈ C2([0, L]; Rn) is a closed regular curve, the curve
γ(t, x) := γ0(x) (the image of which is the “cylinder” R × γ0([0, L])) is a local uniform limit
of a sequence corresponding to C2-critical points of the functional S.

The next example should be compared with the example given by Neu in [20], and with the
one in [6, Section 1].
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Example 4.2. Let n = 2 and a(s) := (cos s, sin s) for any s ∈ R. We want to approximate
uniformly the pair (a(s), a(s)) with pairs which have approximately the form (a(s), a(s) +
ε
2a(s/ε)). Since we want to keep the constraints in (2.23), and in addition we want to control
the periods, we need to make suitable reparametrizations. The conclusion of the example
will be that there exists α > 1 (see (4.6) below) such that the map

γ(t, x) =
1

2

[
αa

(
x+ t

α

)
+ a

(
x− t

α

)]
(4.1)

can be obtained as local uniform limit of (the second components, see (1.2)) a sequence of
C2 critical points of S. In particular, the presence of α > 1 prevents γ(t, x) to vanish, since
(4.1) implies

|γ(t, x)|2 =
1

4

(
1 + α2 + 2α cos(2t/α)

)
≥ (1 − α)2

4
> 0.

We begin by introducing the function sε : R → R, having a 2π-periodic derivative, as follows:
for any x ∈ R we set

sε(x) :=

∫ x

0

√[
sinσ +

1

2
sin(σ/ε)

]2

+

[
cos σ +

1

2
cos(σ/ε)

]2

dσ =

∫ x

0

√
5

4
+ cos

(σ
ε
− σ

)
dσ.

Note that s′ε ≥ 1
2 everywhere. Denote by xε : R → R the inverse of sε. Then we define

bε(s) := a(xε(s)) +
ε

2
a

(
xε(s)

ε

)
, s ∈ R, (4.2)

and note that bε is ℓε := sε(2π)-periodic, and

|b′ε(s)| = |x′ε(s)|
∣∣∣∣a

′(xε(s)) +
1

2
a′(xε(s)/ε)

∣∣∣∣ = 1, s ∈ R. (4.3)

The period ℓε is larger than the period of a, due to the presence of the additional oscillations.
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Let also

aε(s) :=
ℓε
2π
a

(
2πs

ℓε

)
, s ∈ R.

The map aε has the same period as bε and satisfies

|a′ε| = 1. (4.4)

Define

γε(t, x) :=
1

2
[aε(x+ t) + bε(x− t)] , (t, x) ∈ R × [0, ℓε].

Then, thanks to (4.3), (4.4) we have

〈γεt, γεx〉 = 0, |γεt|2 + |γεx|2 = 1

and the wave system (2.20). Now we claim that there exists α > 1 such that for any s ∈ R

lim
ε→0

aε(s) = αa
( s
α

)
, lim

ε→0
bε(s) = a

( s
α

)
.

To prove the claim, let φ(p) :=

√
5

4
+ p for any p ∈ R, and observe that

lim
ε→0

sε(x) =
x

2π

∫ 2π

0
φ(cos σ) dσ. (4.5)

Indeed, sε(x) =
∫ x
0 φ(cos(σ/ε− σ)) dσ, and the change of variable y = σ/ε− σ gives

sε(x) =
x

x(1
ε − 1)

∫ x( 1

ε
−1)

0
φ(cos y) dy.

Hence sε(x) equals x times the mean value of the 2π-periodic function φ(cos y) in the interval
[0, x(1

ε − 1)], which converges to the mean value of φ(cos y) on [0, 2π], and this proves (4.5).
Define

α :=
1

2π
lim
ε→0

sε(2π) =
1

2π

∫ 2π

0

√
5

4
+ σ dσ > 1, (4.6)

so that limε→0 sε(x) = αx, hence limε→0 xε(s) = s/α, and the claim follows.
Then

lim
ε→0

γε(t, x) =
1

2

[
αa

(
x+ t

α

)
+ a

(
x− t

α

)]
=: γ(t, x)

uniformly for (t, x) in the compact subsets of R × R.
The limit curve γ is such that X(t, x) := (t, γ(t, x)) is not a critical point of S; it is interesting
to observe, as remarked in [20], that the additional oscillations “desingularize” the limit, in
the sense that the image of the map γ has not anymore any singular point.

The last example is similar to Example 4.2, but in n = 3 dimensions; here the situation is
simpler, since the analog of the arc-length reparametrization in (4.2) is automatically satisfied.
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Example 4.3. Assume n = 3. Consider cylindrical coordinates in R
3 and set, for s ∈ R,

er := (cos s, sin s, 0), es := (− sin s, cos s, 0) , ez := (0, 0, 1).

Let α, β ∈ (−1, 1) be such that α2 + β2 = 1, n ∈ N, and define the 2π-periodic maps
a, bn : R → R

3 as

a(s) :=es,

bn(s) :=αes + β

(
es sin(ns)

n

n2 − 1
− er cos(ns)

1

n2 − 1
+ ez cos(ns)

1

n

)
.

A direct computation gives

b′n(s) = −αer − βer sin(ns)
n

n2 − 1
− βes cos(ns)

1

n2 − 1

+ βes cos(ns)
1

n2 − 1
+ βer sin(ns)

n

n2 − 1
− βez sin(ns)

= −αer + βes cos(ns) − βez sin(ns).

so that
|b′n(s)|2 = α2 + β2 = 1, |a′(s)|2 = 1, s ∈ R.

Moreover
lim

n→+∞
bn(s) = αes = αa(s) =: b(s)

uniformly in R.
Define

γn(t, x) :=
1

2
[a(x+ t) + bn(x− t)] , (t, x) ∈ R × R.

Then γn satisfy 〈γnt, γnx〉 = 0, |γnt|2 + |γnx|2 = 1, and (2.20). Moreover

lim
n→+∞

γn(t, x) =
1

2
[a(x+ t) + αa(x− t)] =: γ(t, x)

uniformly in on the compact subsets of R × R. Also in this example γ(t, x) cannot vanish,
since

|γ(t, x)|2 =
1

4

[
1 + α2 + 2α cos(2t)

]
=

1

4

[
(1 + α)2 cos2 t+ (1 − α)2 sin2 t

]
≥ (1 − α)2

4
> 0.

Observe that letting a(s) = (− sin(s + 2φ), cos(s + 2φ), 0) for φ ∈ (0, π), we have for the
resulting γ

|γ(t, x)|2 =
1

4

[
(1 + α)2 cos2(t+ φ) + (1 − α)2 sin2(t+ φ)

]
,

and again |γ(t, x)| ≥ (1 − α)/2.

It would be interesting to understand whether there are connections between the examples
considered in this section and the results of [10].
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5 Evolution of C2 uniformly convex curves with γt(0, ·) = 0

Let t > 0 and let γ ∈ C2([0, t)× [0, E]; Rn) be a solution of (2.7), (2.19) and (2.20). In partic-
ular, there exist E-periodic maps a, b ∈ C2(R; Rn) such that γ(t, x) = 1

2 [a(x+ t) + b(x− t)]
for any (t, x) ∈ [0, t)× [0, E]. Therefore, recalling the discussion in Remark 2.9, γ can be ex-
tended to a global solution γ ∈ C2(R× [0, E]; Rn). Adopting this definition of global solution,
we show in this section that initial convex curves may shrink to a point, and then continue
the motion in a periodic way.

Definition 5.1. Let t > 0 and p ∈ R
n. We say that t is a collapsing time, and that γ has a

collapsing singularity at t with p as collapsing point, if γ(t, x) = p for any x ∈ [0, E].

At the collapsing time we have

0 = γx(t, x) =
1

2

[
a′(x+ t) + b′(x− t)

]
, x ∈ [0, E]. (5.1)

Let us now assume n = 2, γt(0, ·) = 0, so that we can choose a = b ∈ C2(R; R2), with a the
arc-length parametrization, on [0, E], of a closed uniformly convex curve of class C2. Since
the initial curve is uniformly convex, for any x ∈ [0, E] there exists a unique t(x) ∈ (0, E/2)
such that

γx(t(x), x) =
1

2

[
a′(x+ t(x)) + a′(x− t(x))

]
= 0, (5.2)

and the function t belongs to C1([0, E]; (0, E/2)). Moreover, if we set

tmin := min
x∈[0,E]

t(x) tmax := max
x∈[0,E]

t(x),

we have that γ(t, ·) is a regular parametrization for all t ∈ [0, tmin) ∪ (tmax, E/2]. We can
think of tmin (resp. tmax) as the first (resp. last) singularity time in the periodicity interval
[0, E], where by singularity here we mean that the regularity condition of Definition 2.1 fails.

Proposition 5.2. Let γ ∈ C2([0, tmin) × [0, E]; R2) be a solution of (2.14) given by (2.22).
Assume that γ(0, ·) ∈ C2([0, E]) is regular and embedded, that γ(0, [0, E]) encloses a com-
pact centrally symmetric uniformly convex body K(0), and that γt(0, ·) = 0. Then γ has a
collapsing singularity at time tmin = E/4 with the origin as collapsing point.

Proof. The assertion follows by observing that K(0) is centrally symmetric, and the function
t defined in (5.2) is constant and equals E/4 = tmin.

Remark 5.3. Generically, one can assume that

- the last equality in (5.1) does not hold;

- the set {x ∈ [0, E] : t(x) = t} is finite for all t ∈ [tmin, tmax], and consists of a single
point xmin (resp. xmax) for t = tmin (resp. t = tmax).

From the condition t′(xmin) = t′(xmax) = 0 we get

a′′(xmin + tmin) = −a′′(xmin − tmin) and a′′(xmax + tmax) = −a′′(xmax − tmax),

which implies that the images γ(tmin, [0, E]) and γ(tmax, [0, E]) are of class C1. In this generic
setting, the formation of singularities has been discussed in [9] (see also [22], [3]), where it is
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shown that tmin is the first singular time, the singularity has the asymptotic behavior y ∼ x
4

3

in graph coordinates, and two cusps y ∼ x
2

3 appear from the point xmin at time tmin, persist
for some positive time, and eventually disappear.

We now show that the convexity of the curve is preserved before the onset of singularities,
that is on the time interval [0, tmin).

Proposition 5.4. Let γ ∈ C2([0, tmin) × [0, E]; R2) be a solution of (2.14) given by (2.22).
Assume that γ(0, ·) ∈ C2([0, E]) is embedded and counter-clockwise regularly parametrized,
that γ(0, [0, E]) encloses a compact uniformly convex body K(0), and that γt(0, ·) = 0. Then
γ(t, ·) is the regular parametrization of a closed uniformly convex embedded curve of class
C2([0, E]) for all t ∈ [0, tmin). Moreover, letting K(t) the compact convex set enclosed by
γ(t, ·), we have

t1, t2 ∈ [0, tmin), t1 ≤ t2 ⇒ K(t1) ⊆ K(t2). (5.3)

Proof. For any t ∈ [0, tmin) let

ν(t, x) = R
γx(t, x)

|γx(t, x)| , (t, x) ∈ [0, tmin) × [0, E],

where R : R
2 \ {0} → R

2 \ {0} is the counter-clockwise rotation of π/2. To prove that γ(t, ·)
is a uniformly convex curve, it is enough to show that

〈γxx(t, ·), ν(t, ·)〉 > 0, t ∈ [0, tmin) × [0, E].

From γx(t, ·) 6= 0 for t ∈ [0, tmin) it follows that

a′(x+ t) + a′(x− t) 6= 0, (t, x) ∈ [0, tmin) × [0, E]. (5.4)

Hence

〈γxx(t, x), ν(t, x)〉 =
1

2
〈a′′(x+ t) + a′′(x− t),

Ra′(x+ t) +Ra′(x− t)

|a′(x+ t) + a′(x− t)| 〉.

Observe now that |a′| = 1 implies that a′′(x± t) ⊥ a′(x± t), so that a′′(x± t) and Ra′(x± t)
are parallel. Then (5.4) and the Schwarz inequality imply that

〈a′′(x+ t), Ra′(x+ t) +Ra′(x− t)〉 > 0

〈a′′(x− t), Ra′(x+ t) +Ra′(x− t)〉 > 0,

which gives
〈γxx(t, x), ν(t, x)〉 > 0.

It remains to prove (5.3). Equation (2.24) and the uniform convexity 〈κ, ν〉 > 0 imply

〈a, ν〉 = (1 − |v|2)〈κ, ν〉 > 0.

Recalling that γt(0, ·) = 0 and that 〈a, ν〉 = ∂t〈v, ν〉 > 0, we then get 〈v, ν〉 > 0 for any
t ∈ (0, tmin), and (5.3) follows.
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Figure 2: A (weak) evolution of the square with zero initial velocity.

A result analogous to Proposition 5.4 has been obtained in [17] for the equation a = κ.
Differently from our case, for their equation the authors of [17] show that all convex curves
shrink to a point in finite time.

Remark 5.5. Assume (as in Proposition 5.2) that the initial uniformly convex set is of class
C2, and that γ has a collapsing singularity at the time t = E/4, with p ∈ R

2 as collapsing
point. From the representation formula (2.22) with a = b, and from Taylor’s formula, we get

γ(t, x) =
1

2

[
a(x+ t) + a(x− t)

]
+

1

2

[
a′(x− t) − a′(x+ t)

]
(t− t) +O(|t− t|2)

= p+ a′(x− t) (t− t) +O(|t− t|2),

where in the last equality we use a′(x+ t) + a′(x− t) = 0 (see (5.2)). It follows that

|γ(t, x) − p| = |t− t| +O(|t− t|2). (5.5)

In particular, the asymptotic shape near the collapse is circular, and the blow-up shape of
the image of the corresponding map X (see (1.2)) at (t, p) is half a light cone.

The conclusion on the asymptotic shape of γ in Remark 5.5 seems not to be true if we drop
the C1,1 regularity assumption on the initial convex set, as shown in the following example.

Example 5.6. Assume n = 2, let L > 0 and let a = b : R → R
2 be 4L-periodic, and such that

a : [0, 4L] → R
2 be the counterclock-wise arc-length parametrization of the boundary of the

square Q0 = [−L/2, L/2]2 (sending for instance {0} into the point x1 = −L/2, x2 = −L/2).
Obviously a ∈ C1([0, 4L] \ {0, L, 2L, 3L}; R2), and a is Lipschitz continuous in [0, 4L].
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Then, letting γ(t, x) := 1
2 [a(x+ t) + a(x− t)] for any (t, x) ∈ R×R, we have that γ(t, ·) is a

Lipschitz parametrization of ∂Q(t), where Q(t) is defined as

Q(t) := Q0 ∩
{
(x1, x2) ∈ R

2 : |x1| + |x2| ≤ L− t
}
, t ∈ [0, L].

For times larger than L the solution is continued periodically, hence γ is Lipschitz in R×[0, E],
and therefore it is almost everywhere differentiable. Observe that

(i) the map X(t, x) := (t, γ(t, x)) is Lipschitz, and at those points of X(R × [0, 4L]) where
there exists the tangent plane such a plane is time-like.

(ii) For t ∈ [0, L/2) the set Q(t) is a shrinking octagon, with vertices p1(t), . . . , p8(t) (see
Fig. 2). For this interval of times the conservation law (2.17) is satisfied, since

∫

γ(t,[0,4L])

1√
1 − |γ⊥t |2

dH1 = 4
[
|p8(t) − p1(t)| +

√
2|p8(t) − p7(t)|

]
= 4L.

Moreover, for t ∈ [0, L/2) the map γ is strictly admissible, in the sense that |γ⊥|2 < 1
almost everywhere.

(iii) For t ∈ [L/2, L) the set Q(t) is a shrinking rotated square of side
√

2(L− t) (depicted
in bold in Fig. 2). It shrinks to the point (0, 0) at t = L (collapsing singularity). Its
normal velocity is constantly equal to 1√

2
. Therefore (2.17) cannot be satisfied, since

the time derivative of the length of γ(t, ·) is nonzero. However, the function

t ∈ [L/2, L) →
∫

γ(t,[0,4L])

1√
1 − |γ⊥t (t, ·)|2

dH1

is nonincreasing.

(iv) Given t ∈ (L/2, L), we have γx(t, x) = 0 when x belongs to the union I(t) of four
intervals of length 2t−L, and centered at the centers of the four sides of ∂Q0. Indeed,
γx(t, x) = 0 when a′(x+ t) = −a′(x− t), hence, for instance assuming x to be the center
of [−L/2, L/2]×{−L/2}, when x+ t and x− t belong to opposite vertical sides of ∂Q0.
Therefore, for t ∈ (L/2, L) and x ∈ I(t), we have that γ(t, ·) is not regular,

L(γt(t, x), γx(t, x)) = 0, |γt(t, x)|2 = 1,

and (2.3) is not satisfied.

Note that the blow-up of X at (L, 0) is not half a light cone as in Remark 5.5, but is the
half-cone {(t, x1, x2) : |t − t| + |x1| + |x2| = 1} with square section, inscribed in half the
light-cone.
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