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On a crystalline variational problem, part II:���
–regularity and structure of minimizers

on facets
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Abstract

For a nonsmooth positively one homogeneous convex function �����	��
� ��������� ,
it is possible to introduce the class ����������� of smooth boundaries with respect to� , to define their � -mean curvature � � , and to prove that, for  "!#� � ���$�%� , there
holds � � !'&)(*��+� ,� [9]. Based on these results, we continue the analysis on the
structure of +� and on the regularity properties of � � . We prove that a facet - of+� is Lipschitz (up to negligible sets) and that � � has bounded variation on - .
Further properties of the jump set of � � are inspected: in particular, in three space
dimensions, we relate the sublevel sets of � � on - with the geometry of the Wulff
shape . � �0/213��465�7 .

1. Introduction

Let �8�9�:�8
 � ��������� be a nonsmooth one homogeneous convex func-
tion. In this paper we continue the analysis initiated in [9] on the properties of
the class ���;�<�:��� of Lipschitz � -regular sets (i.e. the “smooth” boundaries in the
finite dimensional Banach space ���$�$�=�;� ) and of their � -mean curvature ��� . For "!��*���<�:�%� and >?!�&A@��<+� ,� we can consider a solution B9C$D E of the following
variational problem:FHGJI 1LK���B��)��BM!?NO�<+� QPR� � �=7S� K?�<B��)�T/VU�WYXZ�<[ G]\ �S^ _�Ba`b>c� @Adfe �g� (1)

where NO�<+� HPh�$�%� is the class of � -normal vector fields on +; with intrinsic tan-
gential divergence [ GJ\ �S^ _ in & @ ��+; 9� , and dfe � denotes the (density of the) � -
perimeter, see [9] for all details. The function > has, in the evolution problem, the
rôle of the forcing term. Setting d C$D E �0/�[ GJ\ �S^ _ B C$D E , the � -mean curvature � � of+� is defined as � � �T/ d C$D E when >H/V� . The basic result � � !#&A(?��+; 9� proved
in [9] is the starting point of the present paper, which is focused on finer regularity
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properties of � � (or, more generally, of d C$D E ) on suitable facets of +; . The impor-
tance of explicitely computing � � (whenever this is possible) relies on the fact that� � is exptected to be the initial velocity of +� in the evolution problem having +; 
as initial datum.

Denote by . � �T/i1j�k4l5�7 the Wulff shape. In Definition 32 we define
what we mean by a facet - of +� corresponding to a facet of +;. � (we write-m!�n:o�p � �<+� ,� ). If - is such a facet, it turns out that d C$D E `H> has locally bounded
variation on the interior of - (Theorem 33). To improve this regularity result, we
need to investigate the regularity properties of the facets of n:oqp � �<+� ,� . In general,
it is clear that facets of a Lipschitz boundary may be very irregular. However Lip-
schitz � -regular sets have a Lipschitz � -normal vector field constrained to vary
in a suitable family of convex compact cones. Using this information, in Theo-
rem 44 we prove a first structure result on Lipschitz � -regular sets which reads
as follows. If  r!s���;�<�:�%� and -t!�n:oqp=�;�<+� ,� , then - has finite perimeter in�:�vuxw . Moreover, there exists a compact subset y	z|{}+�- out of which +�- can be
written locally as the graph of a Lipschitz function and, if ~�/�� , y z is finite. In
general, y z is non empty, see Figure 2, and we can exhibit an example in ~O/��
dimensions where y z has two dimensional positive Hausdorff measure. In any
case, the regularity properties of - coupled with the result that d C$D E !O&A(��<+� ��
(for >�!#&A(?��+� ,� ) are enough to prove that d C$D E `b> has bounded variation on -
(see Theorem 53). With this result at hand, we are allowed to consider the jump
set of d C$D E `�> on the interior of - . Section 6 is concerned with finer regularity
properties of d C$D E `�> and of its sublevel sets, denoted by � z� . In Theorem 64 we
prove that each � z� solves a kind of anisotropic isoperimetric problem in the hy-
perplane containing the facet. This anisotropy, denoted with �� , has unit ball which
is essentially the facet of . � parallel to - . As a by-product of Theorem 64 and the
results of [11], [12], [4] we obtain some interesting informations on the structure
of � z� . We quote in particular the following result (Corollary 65) : in ~�/s� space
dimensions and if >�/�� , every connected component of � z� is contained, up to a
translation and a homotety, in the boundary of the corresponding facet of the Wulff
shape.

In a forthcoming paper [8] we study necessary and sufficient conditions for a
facet to subdivide in the subsequent evolution, and we make rigorous the second
example discussed in [7].

2. Setting and notation

In this paper, we will follow the notation and the definitions of [9]. We recall
that the duality mappings � and ��� are defined by

�,������/V��������� u �������q� � � ���S�L��/V� � ���S�L��� u � � �<�S���q� �c�h�S��!?� � �
where � u is the subdifferential, and that

. �� �T/�1L�S��!#� � �f� � ���S�L�)4�5�7S� . � �0/21Y��!�� � �S��������465�7S�
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where �x� is the dual of � . We say that � is crystalline if . � is a convex polytope.
By a facet of +�. � (or of +;.2�� ) we always mean a closed ��~�`653� -dimensional
facet.

Given a nonempty Lipschitz set  �{��$� , we let d X � be the oriented � -distance

function from +; negative inside  , and, on +� , we set � X� �T/ �Y��j��� � ��� /�  d X� ,
where � X is the outward normal to +; with euclidean unit length.

If  is Lipschitz we define¡�¢�£ �;�<+� QPh� � ��/�1LB���+� �
t� � ��BO�<¤;�v!?� � �¥� X� �<¤;�h�q¦ ¢S£�§ �vuxw `�¨�© ª�©L¤�!�+� H7f�« G]¬ � ^ � ��+� QPh� � ��/ « G]¬ �<+� QPR� � �® ¡�¢�£ �;�<+� QPR� � ��©
Definition 21 Let  �¯}�$� be a Lipschitz set with compact boundary. We say that is Lipschitz � -regular if there exists a vector field ~ � ! « G]¬ � ^ � ��+; �Ph�:�%� . We
denote by �*��������� the class of all Lipschitz � -regular sets.

We sometimes shall write �< Q�h~��c��!��*�;��� � � , and we shall say that �< Q�h~��c�
is Lipschitz � -regular.

We set

N°�<+� Q�h� � �)�T/,1LB±! ¡�¢S£ �;�<+� QPR� � �)�S[ G]\ �S^ _�BM!�& @ ��+; 9�=7S�²N°�<+� Q�h� � �)�T/,1LB±! ¡�¢S£ � �<+� QPR� � �)�S[ G]\ �S^ _ BM!�& ( �<+� ,��7S�
where the definition of [ G]\ �S^ _ is given in [9], and will not be repeated here. We
just make the following observation.

Remark 22 Let �< ³�´~ � ��!°� � �<�:�%� and let - be a facet of +� . For any vector
field B±! ¡�¢S£ � ��+; ³Ph�:�%� there holdsµ [ G]\ �S^ _�B��´¶)·�/�U D E=¸¹�Jz � ¶�[ G]\ _�B dfe � º;¶�! « G]¬ �<+� ,�q��» ¬ pL�<¶)�){ GJI p3�<-¼��©

(2)

Indeed, using Lemma 4.4 of [9], we haveµ [ G]\ �S^ _ B��´¶)·$` µ [ GJ\ �S^ _ ~ � �h¶)·	/ µ [ G]\ �S^ _ ��Ba`b~ � ���h¶)·/�` U WLX   _ ¶O½���Bk`b~ � � dSe � /�` U WYX   _ ¶O½�B dfe � ` U WLX ¶'[ GJ\ _ ~ � dfe � ©
Then (2) follows using the fact that �x�S��� X � is constant on G]I pL�<-¼� , that » ¬ pL�<¶)��¾G]I p3�<-¼� and performing a euclidean integration by parts.

Therefore, on G]I pL��-¼� (which is contained in a affine hyperplane of �	� ) the
operator [ G]\ �S^ _ B coincides with [ GJ\ _ B , which denotes the usual weak divergence
of B¿! ¡�¢S£ � ��+; ³Ph�:�%� on GJI p3�<-¼� . We shall accordingly use the notation [ GJ\ _ B
in place of [ G]\ �S^ _ B .

We let dfe � be the measure supported on +� with density �®���¥� X � .
The following results have been proved in [9].
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Theorem 23 Let  À!*� � �<�$��� and assume that >*!�&)(?��+� ,� . Thend C$D EH!�& ( �<+� ,�q© (3)

Moreover

U WLX ��[ GJ\ �S^ _ B C$D E `�>��%[ GJ\ �S^ _ ��B C$D E `'Bb� dfe � 4}� º�B±!#NO�<+� QPR� � ��© (4)

Finally, if for any ÁA!#� we defineÂ � �0/Ã1 d C$D E `b>³Ä|Á=7f� � � �0/21 d C$D E `b>�Å°Á=7f�
then

UcÆxÇ d C$D E dfe � 4 UvÆxÇ [ G]\ �S^ _ B dfe � º;ÁA!��)�Aº�B±!�N°�<+� QPh� � �q� (5)

and

UgÈ;Ç d C$D E dfe �³É�UgÈgÇ [ G]\ �S^ _ B dSe � º;ÁA!��)�Aº�B±!?NO�<+� QPR� � ��© (6)

Definition 24 We say that - is a facet of +; if - is the closure of a connected
component of the relative interior of +� 6?�%Ê�+� for some ¤�!'+� such that the
tangent hyperplane �®ÊS+� to +� at ¤ exists.

If - is a facet of +� , we denote by +�- (resp. G]I pL��-¼�´� the relative boundary (resp.
the relative interior) of - . It is clear that, on G]I p3�<-¼� , the measure dSe � coincides
with

§ �vuxw , up to the positive constant �x���¥� X � .
We say that  is convex at - if +; , locally around - , meets the hyperplaneN z containing - only in - . We say that +; is concave at - if ���*ËÌ is convex

at - . Whenever necessary, we identify N z with the hyperplane parallel to N z
and passing through the origin, and - with its orthogonal projection on this latter
hyperplane.

We often do not indicate the dependence on  of the unit normals � X and � X� ,
i.e. we set �*�0/V� X , ���Q�T/6� X� .

Let Í É 5 (throughout the paper, Í has the rôle of ~'`65 ). Given a (scalar
or vector valued) Radon measure Î on an open subset � of �	Ï , we denote by Ð Î	Ð
the total variation of Î . If Ñ#!'�J5�������Ò , the symbol &�Ó Ô������ denotes the class of all
functions Õ such that Ð Õ$Ð Ó is integrable with respect to the measure Î if Ñ'Å���� ,
and Õ is essentially bounded with respect to Î if Ñ*/V��� . If � is a positive Radon
measure, and if Î is absolutely continuous with respect to � , the density of Î with
respect to � will be indicated by Ö ÔÖ � , and is usually called the Radon-Nikodym
derivative of Î with respect to � .

BV functions. The space ×�Ø³����� is defined as the set of all functions Ù"!&)w������ whose distributional gradient �QÙ is a Radon measure with bounded total
variation on � , i.e. Ð �QÙ$ÐÚ�´����/ÜÛ È Ð �³Ù:Ð	ÅÝ��� . It is well known that ×9Ø³�´���
is contained in &tÞÞ:ßfàá â�ã �´��� and that, if � is bounded and has Lipschitz boundary,
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then ×�Ø³����� is contained in & ÞÞ:ßfà ����� . Also, If � is bounded and Lipschitz andÙ°!�×�Ø³����� , then Ù admits a trace (still denoted by Ù ) on +�� , which belongs to& w �<+���� .
We denote by ÙxäÌ��¤�� the essential upper and lower limits of Ù at ¤°!6� , and

we let åSæ��0/21YÙ�u�Å°Ù�ç)7 be the jump set of Ù (see [3]).
The space ×�Ø á â�ã ����� is the class of all functions which are of bounded variation

on each open set
Â ¾�� .

We say that a set ×è¯Ã� is of finite perimeter in � , and we write e �<×³�Y����Å��� , if 5Yéê!°×9Ø*����� . We say that × is of locally finite perimeter in � if 53éê!×9Ø á â�ã �<×9� . Each set ×8¯"� of finite perimeter will be always identified with its
representative consisting of points of density one. If × is of finite perimeter in � ,+ � × denotes the reduced boundary of × . + � × is rectifiable and can be endowed
with a generalized exterior euclidean unit normal � �é so that

�#5 é ��ë��	/2`�Uvì�í Wjî é � �é d § ÏZu®w
for any Borel set ëm¯6� .

We recall the following result, proved in [6].

Theorem 25 Let �ê¯}�:Ï be a bounded open set. LetÙ�!?×9Ø³�´��� (7)

and ï !?& ( �´�9PR� Ï �q��[ G]\ ï !�& Ï �´���q© (8)

Then the linear functional

� ï �R�QÙ��)�Sð�
ñ` U�È Ù;ð#[ G]\ ï d ¤³` UgÈ Ù ï ½Y �ð d ¤�� ð°!�ò wó �����
defines a Radon measure (still denoted by � ï �h�QÙx� ) and satisfiesÐÚ� ï �h�³Ù��YÐÚ��×9�Ì42ô ï ô�õgö � È�÷ ø Þ � Ð �³Ù:ÐJ�<×��
for any Borel set ×ù¯6� .

We denote by ú�� ï �h�³Ù��)!#&)( û ü æ û]����� the density of � ï �R�QÙ�� with respect to Ð �QÙ$Ð ,
that is

� ï �h�QÙx�q��×9��/�U é ú�� ï �h�³Ù�� d Ð �QÙ$Ð ¦ ¢�£ ¨ Ivý¼þ ¢�£ ª�ÿS»hªqp$×À¯��9© (9)

Note in particular that, if » ¬ pL� ï �)¾V� , then

� ï �h�³Ù����<×9��/�` U é ÙQ[ G]\ ï d ¤ ¦ ¢�£ ¨ Ifý¼þ ¢S£ ªYÿS»hªqp$×��}» ¬ pL� ï ��© (10)

Unless further regularity properties are assumed on Ù or on
ï

, in general the func-
tion ú�� ï �R�QÙx� has not a pointwise expression almost everywhere with respect to
the measure Ð ���=Ù$Ð (where ���=Ù denotes the singular part of the measure �³Ù with
respect to the Lebesgue measure).
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Remark 26 Let Ù w �´Ù @ satisfy (7) and let
ï

satisfy (8). If Ù w /sÙ @ on an open setÂ ¾�� , then � ï �h�QÙ w ���<×��	/�� ï �h�³Ù @ ���<×�� º þ ¢�£ ª�ÿv»´ª�p�×ù¯ Â ©
Finally, we will often use the tilde to enphasize objects (such as normal vectors

or positively one homogeneous convex functions) in a �<~³`�5L� -dimensional space.

3. ×9Ø á â�ã -regularity of minimizers on facets

We are interested in studying the behaviour of d C$D EH`°> on certain facets of+� . In order to do that, we need some preliminaries.
Let - be a facet of +; . Clearly, the vector � X� ��¤�� is independent of ¤�! G]I pj�<-¼� .

Definition 31 Let  �!�� � �<�:�%� and let - be a facet of +� . We define���;�<-¼�Ì�T/V� X� ��¤���� ¤#! GJI p3�<-¼����� z� �T/�� � ��� � ��-¼�´�q©�� z� is a closed convex set contained in +�.�� . Moreover, if - is parallel to a

facet
�

of +�. � and has the same exterior unit normal, then
�� z� / � . Indeed,� � � � �A/6� � ��-¼� implies

�� z� /�� �j��� � � � �´� . Since ���j��� � � � �´�	/ � , it follows

that
�� z� / � .

Definition 32 Let  �!������<�:�%� . We define

n:o�pq�;�<+� ,�)�T/ � -m��- G »:¨ ¦<¨Soqªqp ¢ ¦:+� �¨ I [ � � z� G »�¨Z¦<¨�o�ªqp ¢ ¦�+�.|���,©
The class n:oqp=�;��+; 9� is non empty only if +;.�� has at least one facet: this

assumption (obviously satisfied in the crystalline case) will be therefore tacitly
assumed in the sequel.

The following result is a first regularity property of minimizers of K on facets
corresponding to facets of the Wulff shape.

It is useful to recall that, by Remark 22, the � -tangential divergence coin-
cides with the euclidean tangential divergence on facets of +� , for vector fields
in NO��+; ³Ph�:�%� .
Theorem 33 Let  À!*�*�;�<�$��� and let -ê!?n:o�pq�;�<+� ,� . Thend C$D E `b>�!?×9Ø á â�ã � GJI pj�<-¼�h��© (11)

Proof. Let for simplicity of notation Ø"�0/ d C$D E `b> . Fix an open set
Â

relatively
compact in GJI pj�<-¼� . We have to prove that Ø�!#×9Ø�� Â � , i.e.

»
	 ¬�� U Æ Ø¼[ GJ\ _� dSe �����!*ò wó � Â Ph� � �q�LÐ ®Ðv4V5S��9½L���;�<-¼��/6���OÅs���s© (12)
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Choose �³Ä|� and a point ��! G]I p�� �� z��� such that

×��v�����® �� z� ¯ GJI p � �� z� � © (13)

Fix ���! « GJ¬ � ^ � �<+� QPR�:�%� with the following properties:�  ��� � GJI ¨ I ª G! #"%$ ¢ 	 £ " ¢f¢ [ ¢ ¦ Â o ¢ I p=¨ G]I ªY[ GJI¼G]I p3��-¼��� � /s~%� GJI +� 6Ë G]I p3��-¼��© (14)

Let �!?ë¼wó � Â Ph�:�%� , Ð xÐc4V5 , 9½Y� � �<-¼�	/�� , and set*�T/&��Z`'�(�©
Then Ã! « G]¬ �<+� QPR� � � , and by (13), (14), Ð ®ÐZ4r5 and the fact that » ¬ pL�)�� is
compact in

Â
, it follows that #! « G]¬ � ^ � �<+� QPR�:�%� . In particular #!�NO�<+� QPR�:�%� .

¿From (4) it follows that

U WLX Ø¼[ GJ\ �S^ _�B,C$D E dSe �*4VU WLX Ø¼[ G]\ _  dfe �
/ U WLX Ø¼[ G]\ _ �� dfe � `*� UvÆ Ø�[ G]\ _  dfe � ©

Therefore

U Æ Ø¼[ G]\ _� dfe �Q4+� uxw U WYX Ø,[ G]\ �S^ _��� � `'B,C$D E�� dfe � (15)

4|ë�� uxw ô�Ø³ô�õ-, � WLX � ôq[ G]\ �S^ _��� � `'B,C$D E���ôqõ., � WLX � �
where ëÝ�0/ F ¨�/ û � û 0 w ��������� . Passing to the supremum over  in (15) we deduce
(12), and (11) follows.

We now want to give a pointwise version of inequality (6) on facets of +� 
corresponding to facets of +;.�� .
Definition 34 Let -m!�n:o�p��g��+� ,� . For any Á)!?� we defineÂ z� �0/�1L¤#! G]I pL��-¼�Ì� d C$D E��<¤;��`�>x��¤��)Ä|Á=7f� (16)� z� �0/�1L¤#! G]I pL��-¼�Ì� d C$D E��<¤;��`�>x��¤��)Å|Á=7f©
Observe that from Theorem 33 and the coarea formula, � z� and

Â z� have locally
finite perimeter in G]I pL�<-¼� for almost every ÁH!6� . We denote by 1� �È32Ç /41� �� �T/` ü w65 2Çû ü w 5 2Ç û the exterior (generalized) unit normal to G]I pL��-¼�®�+ � � z� .

The following proposition gives a pointwise version of the inequality (6) on
facets -ê!?n:o�p � ��+� ,� , and a pointwise expression of úg�<B C$D E �h�#5 È72Ç � .
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Proposition 35 For almost every Á)!?� and for
§ �vu�@ -almost every ¤#! GJI p3�<-¼��+ � Â z� we have

` ú���B¼C$D Ec�h��5 Æ32Ç ����¤;�)/ FHG]I �98 ½-1� �� �<¤;�Ì� 8 ! �� z� �,� (17)

and for almost every Á�!O� and for
§ �vu�@ -almost every ¤}! GJI pL��-¼�:�+ � � z� we

have ` ú���B C$D E �h��5 È72Ç �q�<¤;�)/ F ¨�/ � 8 ½.1�g�� �<¤;�Ì� 8 ! �� z� � © (18)

Proof. Set �Ý�0/ GJI p3�<-¼� . Fix Á�!�� such that 5 È72Ç has locally finite perimeter in� . Set Ù#�T/25 È72Ç and åSæ��0/6+ � � z� . By (6) we have

U È Ù�[ GJ\ _ ��B C$D E ` B�� d § �vu®w É � ºxB�! ²N|�<+� QPR� � ����» ¬ p3�<B C$D E `ZB��A¾ GJI pL��-¼��©
Applying (9) and (10) with Ía/s~�`}5 , ×ê/�� and

ï /�B C$D E `�B , we get

U;:=< ú���B C$D E `'B#�R�QÙx� d § �vu;@ 4|��© (19)

Choose a subset > of » ¬ p3�<B C$D E `�B��®bå æ such that
§ �vu;@S�?>��Ì/�� and for any¤�!��<» ¬ pL��B C$D E `'��®�å æ �%Ë@> there holds

ú���B C$D E �R�QÙ�����¤���/ ÿ G]F�6AB�6C 5D �cu;@ � �vu�@ U é�E �JÊ � í;:F< ú��<B C$D E �R�QÙx� d § �vu�@ (20)

and 1�g�� �<¤;�	/ ÿ GJF�6AB� C 5D �vu�@ � �vu;@ U é E��]Ê � í;: < 1���� d § �vu�@ � (21)

where D �vu�@ denotes the Lebesgue measure of the unit ball in �	�vu;@ . Equality (20)
follows from the fact that úg�<B,C$D E��R�QÙx�,!�&A(GIH ß , ��åSæc� and � z� has locally finite
perimeter, while equality (21) follows from the definition of 1� �� .

Fix ¤#!��<» ¬ pL��B¼C$D E�`�B��x�åSæc�®Ë7> and J�Ä�� such that ×�K���¤;��{6� . Choose8 ! � � z� such that 8 ½-1� �� ��¤��	/ F ¨�/ �ML ½-1� �� �<¤;�Ì� L ! �� z� �,©
For any �sÄÝ� with �H�N�v@�ÅOJ , we choose a function  � ��+� t
 ��� ,  � !²NO��+; ³Ph�:�%� , such that

��v������/ � 8 ºP�Q!#× � ��¤����B¼C$D E��)�c��¦ ¢�£�§ �vuxwA`�¨�© ª�©Q�'R!#× � ç � ,���¤���©
¿From (19) and the fact that B C$D E /S�� outside of × � ç � , �<¤;� , we have

� É ÿ GJF�6AB� C 5D �vu�@ � �vu;@ U é�E �]Ê � í;:=< ú���B C$D E `'��f�R�QÙ�� d § �vu;@�iÿ G]F�6AB� C 5D �vu;@ � �vu�@ UUT é E C E , �JÊ �WV é EY�JÊ �)X í;: < ú��<B C$D E `*��f�h�QÙx� d § �vu�@ ©
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Observing that the last limit at the right hand side vanishes, and that %� is constant
on ×��v�<¤;� , so that ú���#�v�h�QÙx�q�)����/�` 8 ½M1� �� ����� for

§ �cuxw -almost every �*!?×B�f�<¤;� ,
using (20) and (19) we get

ú��<B C$D E �R�QÙx�q��¤��Ì4�` 8 ½-1� �� ��¤��	/2` F ¨�/ �PL ½-1� �� ��¤��Ì� L ! �� z� �,©
Let us prove the opposite inequality. Consider vector fields B9YA! ²N��<+� QPh�:��� such
that BZY û 5 ! « G]¬ �´�9PR�$�%� , B[Y]\ B C$D E weakly- ^ in &)(?�´�9PR�:�%� and [ GJ\ _ B[Y]\[ G]\ _�B,C$D E weakly in &A�vu®wj����� , as _)
t� . Then, one can check that

ú���B Y �R�QÙx�`\Mú��<B,C$D Ec�h�QÙx� G]I a ªL¨�bvÿ ý `c^ GJI & (GIH ß ,
d :=< �´���q© (22)

Since moreover ` ú��<B Y �h�QÙx��/�B Y ½-1� �� , we have that

` úg�<B[Y��h�QÙx�q�<¤;�Ì4 F ¨�/Be L ½-1�g�� �<¤;�Ì� L ! �� z�gf �
for
§ �vu�@ –almost every ¤�!Oå æ . Passing to the limit as _Z
ñ� and using (22), we

obtain ` ú���B C$D E �h�QÙx�q�<¤;�Ì4 F ¨�/ e L ½.1� �� ��¤;� � L ! � � z��f �
and the proposition is proved.

4. Regularity of facets of +� 
The following three lemmas will be used to prove Theorem 44 which, in turn,

is necessary to prove Theorem 53. Notice that � � !����j����� if and only if ��!?�,��� � �
for any �c�h� � !��:� . We also recall that the map � is upper semicontinuous, in the
sense that if �ih��h�9!?�:� and �ih,
M� as j�
 ��� , thenk

Ï lh�m Ï �,�<�nhf�)¯|�,�<����© (23)

Lemma 41 Let �� Q�´~��v�Ì!��*����� � � and let -ê!?n:o�pq�;�<+� ,� . Then

¤�!?+;-poM~%�;��¤��Ì!#+ � � z� © (24)

Proof. Let ¤}!°+�- . Since - is a facet of +� , +� is Lipschitz, and since a Lip-
schitz function with almost everywhere vanishing gradient is constant, it follows
that, in a small neighbourhood of ¤ , there are points where � X� exists and the

set � � �¥� X� � does not intersect G]I pL� �� z� � . Assume by contradiction that ~ � �<¤;�*!G]I p3� �� z� � . As ~ � is continuous, there exists �³Ä�� such that ~ � �����)! GJI p3� �� z� � for

any �³!#×��S�<¤;�q)+� . Let ��!?×��f��¤��q)+; be such that ���j��� X� � ���´�� G]I p3� � � z� ��/rq .
Recalling that ~ � � ���)!?� �j��� X� � �c�´� , we reach a contradiction.
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Lemma 42 Let �� Q�´~ � �Ì!�� � ���:�%� and let ¤�!?+; . Thenÿ G]F�6AB� C »
	 ¬sQt é�E �JÊ � í WLX ^=u t�v � ��w � s ��� [ G »´p�� 8 �´�9��~%���<¤;�h�´�A/���© (25)

Moreover, if � is crystalline, there exists � � Ä�� such that� X� �)�c�)!?�,�<~%���<¤;�h� ¦ ¢S£%§ �vuxw `�¨�© ª�©i��!?× �yx ��¤��%�+� H© (26)

Proof. Let ���(hS� ¯6+� be a sequence of points converging to ¤ . Since ~ � is con-
tinuous, we have ~ � �)�#hf��
t~ � ��¤;� ; therefore, using (23), we have»�	 ¬u t�v � ��w � s6z ��� [ G »´p�� 8 �´�9��~%���<¤;�h�´�A
r� ¨�»{j³
 ����� (27)

and (25) follows.
Assume that � is crystalline. Since ~ � is continuous, we can choose �%�#Ä��

such that ~ � takes ×�� x ��¤���#+� into the union of all the adiacent facets of +�. �
at ~ � �<¤;� (if ~ � �<¤;� is interior to a facet of +�. � , then this union reduces to that
facet only). By the properties of the map � , we have �9��~ � ��¤��´�[���,�<~ � �)���´� for
any ��!�×�� x ��¤��A�+� . Moreover, from the inclusion ~ � !2� �j�¥� X� � it follows� X� !?�,��~%�f� . Hence

�,�<~ � �<¤;�´���|�,�<~ � �)���´�}|#� X� �)��� ¦ ¢S£%§ �cuxw `�¨�© ª�©i��!?×�� x ��¤;�%*+� Q©
Notice that (25) impliesÿ G]F�6AB� C »�	 ¬sQt é EY�JÊ � í W3îhX [ G »´p T �

X� �)�����´�9��~ � ��¤;�h� X /s��©
Given a set

Â
, by o ¢ Â we mean the closed convex envelope of

Â
.

Lemma 43 Let
�

be a facet of +�.�� , let �?!�+ � , ��Ä2� and define the convex
compact set ~ � as ~����T/ o ¢ l� t é EY�?� � í Wi� w �,������©
Then there exists �(��Ä�� such that the two following properties hold:

(i) ���;� � � is an extreme point of ~ � for any �Q!�Ò ����� � � ;
(ii) there exist a constant � Ä�� and a vector 1~��/6� such that1~?½Y���g� � �	/s��� 1~�½L�Q/�1~*½f����`����;� � �h� É ��Ð ��`����;� � ��ÐÚ� (28)

for any �*!�~�� and for any �³!³Ò �����(�f� .
Proof. Assume first that � is crystalline. In this case ~�� is identically equal to�,�<��� for �ÝÄl� small enough (it suffices to apply (26) with  �T/i.�� and�}�0/ ~%�;��¤;� ) and is a convex polytope with dimension between 5 and �<~'`Ã53� ,
having ���;� � � as vertex. Therefore (i) is immediate. Let 1 � w ��©Y©�©q� �'� 7 be the
facets of +�.|� adiacent to

�
at � , and denote by �.�� the exterior normal to

� � ,
with �������;�� ��/a5 , for � /a5��Y©�©Y©q�y� . Choose any euclidean unit vector 1~ with the
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following properties: 1~ lies in the hyperplane of
�

and points strictly inside the
outward normal convex cone to + � at � , i.e.1~?½Y���g� � �	/6����1~*½f�W��`'���)4�� º��9! � ��1~*½S���*`'��� É `�� w Ð ��`'��ÐT� (29)

for any ��!'× K �<���%?+ � and for some constants J*Ä�� and � w !*Ò ����5S� (indepen-

dent of � ). Since �-�� ` �F�w�� � w ��� �û � w ��� � û , ���g� � � is the orthogonal projection of �.�� in the
hyperplane of

�
, a direct computation gives

1~�½Y� �� Ér� 5 `�� @ wI�����
� �� ` �;�� ½Y� � � � �Ð � � � � ��Ð @ ���;� � � �����

� (30)

and � 5 `*� @ w Ä}� . Moreover there exists ��Ä}� such that

� 5 `*� @ wI�����
� �� ` �;�� ½3� � � � �Ð � � � � ��Ð @ ���;� � � �����

É ��Ð � �� `����;� � ��ÐÚ� �:/25S��©�©Y©q�y�x© (31)

Using (30), (31) and the fact that o ¢ ef���g� � ���=��w� ��©�©Y©��=� �� f /��,������/N~ � for �³Ä|�
small enough, property (ii) follows.

Let now � be generic. Choose a ��~�`Ã5L� -dimensional polytope 1N such that1N ¯ � and + 1N"#+ � /�1Y�v7 (in particular � is a vertex of 1N ). Let us consider
a ~ -dimensional polytope N such that N ¯8. � and 1N is a facet of +�N . Let1LN w ��©�©Y©q�hN���7 be the facets of +�N adiacent to 1N at � and let �-�� be the exterior
normals to N � with � � �¥� �� ��/25 . Let also

&��0/ o ¢ � �� � ����� ���*! o ¢ ev� w� ��©Y©�©q�=� �� f ��©
Then &���~�� for any �êÄt� small enough. This follows from the following
observation: if Õ w and Õ @ are two convex functions with the property that Õ w `°Õ @
has a strict local minimum at some point

8 � , then the outward normal convex cone
to the graph of Õ w at

8 � contains the outward normal convex cone to the graph ofÕ @ at
8 � . Moreover � � � � � is an extreme point for & . Reasoning as in the previous

case, we can find a vector 1~ and a constant �#Ä"� such that (28) holds. Indeed,
any non zero vector 1~�!s���;� � ��� , pointing strictly outside of 1N (hence of

�
),

satisfies (28) for some ��Ä�� .
The following result is a regularity property of Lipschitz � -regular sets, and is

necessary to give a meaning to the normal traces of the vector fields in
²N��<+� QPh�:���

on boundaries of facets corresponding to facets of . � .
Theorem 44 Let  �!�� � �<�$�%� and let -ê!#n:o�p � �<+� ,� . Then - has finite perime-
ter in �:�vu®w . Moreover there exists a compact set y z { +�- such that for any¤�!°+�-VË�y z , +�- is a Lipschitz graph locally around ¤ . Finally, if ~�/�� , theny z is finite.

Figure 2 show an example of Lipschitz � -regular set  , in ~#/6� space dimen-
sions, having a facet -k!|n�oqp � �<+� ,� such that y z {�+;- is not empty. We shall
show also that, in ~ É � space dimensions, it may happen that

§ �vu�@��¥y z �ÌÄ|� .
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Proof. Let ¤�!b+�- . By Lemma 43 applied with
� �0/ �� z� and �*�0/2~ � �<¤;� , we

can choose �(�*Ä�� , ~�� with ��!?Ò ���
�(�S� , 1~ and �QÄ2� satisfying (i)-(ii). Our aim
is to write the set +�- , locally around ¤ , as a graph of a ×9Ø function with respect
to 1~7��#NHz , and to use the inequality in (ii) of Lemma 43 to prove that, in three
space dimensions, +�- is locally Lipschitz, up to a finite number of points.

Denote by �b�f�:��
�1~7� the orthogonal projection onto 1~ � . Notice that, since1~?½L���;��-¼�)/V� , it may happen that ���<× � ��¤��%?+� ,� is not an open neighbourhood
of ����¤�� .

Choose a hyperplane e {�� � such that × � �<¤;���+� is the graph of a Lipschitz
map js�)�±¯ e 
 � , with � an open set. Note that � X� !¡~�� , § �vu®w -almost
everywhere on ×��v��¤��®�+� . We split the proof into three intermediate steps.

Step 1. There exists a global Lipschitz graph ¢ over e such that

(i) × � �<¤;�%£¢�/�× � �<¤;���+� ,
(ii) �-¤� �����,!¥~ � for any ��!&¢ , where �.¤� is the normal vector field to ¢ (nor-

malized to have ��� /Ã5 ) which coincides with � X� on ×��v��¤��®�+� ;
(iii) the map � û ¤ is surjective onto 1~7� .

Define ¦ �0/21YÙ#! « G]¬ � e �Ì���%§y¨�©yª=« �]æ �� !£~��S�´Ù É j ¢ I �97S©
It is immediate to check that

¦
is non empty. LetjP¬��T/ G]I ¦)1YÙ#��Ù�! ¦ 7S©

Then j ¬ ! ¦ . Moreover j ¬ /j on � . This follows from the fact that, being j
Lipschitz, for any

8 !�� there exists a piecewise linear function >%u,! ¦ such that> u � 8 ��/¡j�� 8 � .
To obtain property (iii) we need to further modify j ¬ outside of � as follows:

define j;��� 8 �)�T/�� L ½ 8 `�ë��3®£j ¬ � 8 ��¯'� L ½ 8 �|ë�� º 8 ! e �
where °�®*±Q�T/ F ¨�/��W°g�²±q� , °�¯³±��T/ FHGJI �)°;�y±q� for °;�y±�!|� , and

L
is chosen in

such a way that the normal vector to the graph of the map
8 
 L ½ 8 belongs to

the relative interior of ~g� , and ë�Ä�� is such that j � /Nj on � .
Finally, we define ¢Ý�T/  £ ¨ ¬-" ��j � � . One can check that ¢ satisfies properties

(i)-(iii). This concludes the proof of step 1.
By (ii) of Lemma 43, it follows that ¢ can be written as a graph over �~{� ,

possibly with vertical parts. Since ¢ has locally finite area, there exists a functionÕ��Z1~7��
r�N1~ , with Õ�!#×9Ø á â�ã �F1~7��� , such that ¢ is the boundary of the subgraph
of Õ . Let Õxä�� 8 � be the essential upper and lower limits of Õ at

8 !¡1~@� and å(´ be
the jump set of Õ (see Figure 1). Notice that -��× � ��¤;� is contained in the vertical
part of the graph of Õ , i.e. -��×B�f�<¤;��¯�1 8 �*ÁQ1~b� 8 !�����-¼���hÁ)!�� Õ�uA��¤����RÕ�ç �<¤;�¹Ò�7 .

Let Õ�YA�T/6Õ�^µ�;Y , where �;Y is the standard sequence of mollifiers in 1~@� .
Step 2. We have

Ð  HÕ�Yq� 8 ��½F¶xÐc4 Ð ¶xÐ� º 8 !·1~ � �%ºP¶Q!#N z +1~ � �%º¸_ Ä}��© (32)



On a crystalline variational problem, part II 13

f+
n~
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x

F

φ E
Figure 1. The function ¹-º which defines (locally) a facet »

Define � Y� �0/m�%¼�½n¾ §y¨�©
ªn« �¿´
À �� at the points � 8 �RÕ�Y�� 8 �h� for
8 !�×��f�����<¤;�´�$·1~7� . By a

direct computation we have

 HÕ�Yq� 8 ��/ ��� Y� � 8 �=Õ Y � 8 �´�$½-1~%�Q1~?`�� Y� � 8 �RÕ Y � 8 �h�� Y� � 8 �=Õ�Y�� 8 �´�$½;1~ º 8 !?×��f������¤��´��+1~ � © (33)

Moreover, as �.¤� !�~ � by step 1, we have � Y� !*~ � . Using (ii) of Lemma 43 we
then obtain Ð � Y� � 8 �=Õ�Y�� 8 �h��½-1~�Ð u®w 4 5� Ð � Y� � 8 �=Õ�Y�� 8 �h��`�� � ��-¼��Ð uxw © (34)

Let now ¶³!#NHz?�1~ � ; using (33), (34) and ¶,½;1~�/�� , we get

Ð  HÕ�Y�� 8 �=Õ�Y�� 8 �h�:½F¶xÐc4 5� Ð � Y� � 8 �RÕ�Y�� 8 �h�:½F¶xÐÐ � Y� � 8 �=Õ Y � 8 �h��`�������-¼��Ð © (35)

Since ¶2!�NHz we have Ð � Y� � 8 �RÕ Y � 8 �h��½%¶xÐ�4ñÐ � Y� � 8 �RÕ Y � 8 �´�Z`6���;�<-¼��Ð]Ð ¶�Ð , which
coupled with (35), concludes the proof of step 2.

Step 3. Õxä are Lipschitz continuous on ×B�v�����<¤;�h�%����<-¼� . More precisely

Ð Õ ä � 8 w ��`OÕ ä � 8 @ ��Ðc4 5� Ð 8 w ` 8 @ Ð º 8 w � 8 @ !�×��v�����<¤;�´������<-¼��©
Let us consider the function Õxç . Fix

8 w � 8 @ !s×��v�)����¤;�h��³���<-¼� . In view of the
properties of ×9Ø functions, we can pick two sequences � 8 � � �Ï � , �	/�5S�yÁ , of points
in 1~7�?Ë å ´ , such that

8 � � �Ï 
 8 � , Õ:� 8 � � �Ï ��
rÕ�ç � 8 � � , for �$/Ã5S�yÁ , and
8 � w �Ï ` 8 � @ �Ï !���;�<-¼� � for any Í ; moreover, we can also assume that Õ Y � 8 � � �Ï �³
 Õ:� 8 � � �Ï � , for�:/25��²Á , as _A
t� .

Then, using the fact that
8 � w �Ï ` 8 � @ �Ï !?NHz and step 2, we haveÐ Õ ç � 8 w ��`�Õ ç � 8 @ ��Ðf/ñÿ GJFÏ A ( Ð Õ:� 8 � w �Ï �:`�Õ:� 8 � @ �Ï �YÐ�/ÿ GJFÏ A ( ÿ G]FYWAB� Ð Õ�Y�� 8 � w �Ï �:`�Õ�Y�� 8 � @ �Ï ��Ð4 ÿ GJFÏ A ( ÿ G]FY�AB� U w� Ð  HÕ Y �h��5�`'Á´� 8 � w �Ï �OÁ 8 � @ �Ï �:½S� 8 � w �Ï ` 8 � @ �Ï ��Ð d ÁA4 Ð 8 w ` 8 @ Ð� ©
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Figure 2. The Wulff shape Â'Ã and a facet » of a Lipschitz Ä -regular set having a singular
point

Since ×��f��¤����+�-m¯  £ ¨ ¬-" �¥Õ�u��-Å  £ ¨ ¬." ��Õ�ç�� and Õxä are Lipschitz, by com-
pactness it follows that - is of finite perimeter in ���vuxw .

We define y$z|�0/21n��!�+�-m�SÕ u �����)���´�	/6Õ ç ���������h�=7S© (36)

Notice that, for any ¤�!�+�-�Ë�y z , +�- is the graph of a Lipschitz function (namelyÕ�ç or Õ�u ) in a neighbourhood of ¤ .
Let now ~'/Ã� . Since - is connected we have that ����-�?×B�v�<¤;�´� is an inter-

val, and therefore Õ�u and Õ�ç can coincide in at most two points of -s�×Æ�f�<¤;� .
Therefore

§ � � y z �×��v��¤;�h�Ì4SÁ , and so y z consists of isolated points of +�- . By
compactness, it follows that y z is finite.

Notice that, given a facet -Ü!°n:o�p � �<+� ,� and defining the set y z as in (36),
we have y�z��+ � -Ã/Nqc©
Indeed, y z is (locally) the intersection of the two Lipschitz graphs  £ ¨ ¬-" �¥Õ®ç�� and £ ¨ ¬." ��Õ ç � , and therefore - is contained, in a neighbourhood of any ¤�!#y z , in a
cone ë9uÊ ÅQë�çÊ (with vertex at ¤ ), identified by the Lipschitz constants of Õ$u , Õ�ç .
This implies that the blow–up of +�- at ¤ cannot be a hyperplane of N�z , hence¤¥R!?+ � - .

Definition 45 Let -Ü!°n:o�p � ��+� ,� , y z , Õxä , � be as in Theorem 44, and let ¤|!+�-�Ë y�z . If ¤�/¡����¤����|Õ�ç �����<¤;�h� (resp. ¤*/¡����¤;���°Õ�uA�����<¤;�h� ) we say that +� 
is weakly convex (resp. weakly concave) at ¤ .

Notice that if ¤�!}+ � - /ù+ � -ÃË�y z , then +� is weakly convex at ¤ (resp.
weakly concave at ¤ ) if and only if 1� �z ��¤�� points outside  (resp. inside  ).

Corollary 46 If -i!"n�oqp � �<+� ,� and  is convex or concave at - , then - is
Lipschitz.

Proof. Assume that  is convex (resp. concave) at - . If ¤ù!ù+�- then +� is
weakly convex (resp. weakly concave) at ¤ , which implies Õ%çÌ��¤;�Ç�/�Õ�uA�<¤;� .
Therefore y z /Nq .
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We now give an example of a set  ù!?� � �<�{Èc� having a facet -À!�n:o�p � �<+� ��
such that

§ @�� y z �)Ä�� .
Take �������,�T/ F ¨�/g1cÐ � w Ð��ÃÐ � @ Ð3��Ð �=ÉvÐÚ�LÐ � È ÐT7 , where �*/Ý��� w �´� @ �´�=É��´� È ��!O�@È .

Then . � /¢ËÊ|�J`�5��Y5qÒ , where ¢t{�� É is given by ¢±/a1���/Ü�W� w �y� @ �y�6É3�9!� É �gÐ � w Ð��OÐ � @ Ð��°Ð � É Ðv4�5�7 . Take an open set
Â !'� ���Y5qÒ-Ê�� ����5qÒ with the following

properties:
Â

is connected, G]I pL� Â ��/ Â and
§ @�� Â �)Ä § @�� Â � . For any ¤#!#�:@ , letd Æ �<¤;�Ì�T/6[ G »´pL�<¤%�R�$@�Ë Â � be the euclidean distance function from ��@%Ë Â . Then d Æ

is 1-Lipschitz, d Æ É � and d Æ ��¤���Ä�� if and only if ¤b! Â . Embed now
Â {��$@

into �@È by identifying �:@ with
µWÌ w � Ì @ ·){}�@È . Define

-m�0/ e ¤*/��<¤ w �´¤ @ �´¤PÉ��h¤ È �Ì!�� È � ¤ È /6�Z¨ I [,��4}¤MÉ�4 d Æ �h��¤ w �h¤ @ �h� f ©
One can check that +�- is locally a Lipschitz graph out of a singular set y z �T/1Y¤#!?-m�9��¤ w �h¤ @ �h���R�S�)! Â Ë Â 7 , where the closure of

Â
is taken in the subspaceµ)Ì w � Ì @ ·¼{Ã� È . Hence

§ @ �¥y z � É § @ � Â �	` § @ � Â ��Ä�� . Let us now construct a
Lipschitz � -regular set �< Q�h~ � � with the property that -ê!?n:o�p � ��+� ,� . Let  �{}�@È
be defined as  À�T/¡Í?��v. � �
where ��Ä|� is a real number sufficiently large and Í is defined asÍ��T/ e ¤�!?� È ��¤ È Å}�)¨ I [�¤ É 4}� f Å e ¤�!?� È ��¤ È É �)¨ I [�¤ É 4 d Æ �´��¤ w �h¤ @ �´� f ©
Notice first that -Ý¯6+� , - is connected, and - is a facet of +; , with � � �<-¼��/` Ì È . Moreover, -k!On:o�p � ��+; 9� , since

�� z� /m� ����` Ì È ��/a��¢*��`�53� is a facet of+�. � . It remains to construct a vector field ~ � ! « G]¬ � ^ � ��+; ³Ph�@È�� . First we choose~ � constantly equal to
Ì É�` Ì È !���¢*�Y5L� in a neighbourhood of - in +� ; using the

fact that, out of - ,  is a dilation of . � , we can extend ~ � on the whole of +� in
such a way that ~ � ! « G]¬ � ^ � �<+� QPh�@Èc� . The example is complete.

If - is a facet not corresponding to any facet of +;. � , less regularity than the
one guaranteed by Theorem 44 is expected. In this respect, the worse situation
is when - is such that ������������-¼�´� is a vertex of +�.}� (if any): in this case no
regularity property of +�- is expected.

Thanks to Theorem 44, we can give the following definition.

Definition 47 Let -ê!?n:o�p � ��+; 9� . For any ¤�!�+ � - it is well–defined an exterior
euclidean unit normal to + � - , lying in N z , which we will denote by 1� �z �<¤;� . If~|/m� , 1� �z is defined

§ w -almost everywhere on +�- and coincides with the usual
normal vector 1� z .

We also define the function � z !#&A(���+ � -¼� as�qz ��¤��Ì�T/�~%�;��¤��$½-1���z ��¤;� º�¤�!#+®��-Ì© (37)

The next result shows that the funtion � z is independent of the choice of ~ � !« G]¬ � ^ � �<+� QPh�:��� , but depends only on - and on the geometry of . � .
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Lemma 48 Let �< Q�h~ � �Q!�� � ���:�%� , -t!�n:o�p � ��+� ,� and �! « G]¬ � ^ � �<+� QPh�:�%� .Then, for any ¤#!#+ � - we have

x��¤;�$½.1� �z �<¤;�	/N� z ��¤���/ � F ¨�/g1RÑQ½-1� �z �<¤;�Ì�AÑ#! �� z� 7 G ¦:+� G » a `%o ¢ Iv\ ª=/�¨�p�¤��F�G]I 1RÑQ½-1� �z �<¤;�Ì�AÑ#! �� z� 7 G ¦:+� G » a `%o ¢ I oY¨ \ ª�¨�p�¤�©
(38)

In particular, � z is independent of ~ � ! « G]¬ � ^ � �<+� QPh�:�%� .
Proof. Fix ¤}!O+ � -è/ê+ � -VË�y$z . Assume first that +� is weakly convex at ¤ .
Notice that there exist a nonzero vector � in the orthogonal projection of �9��~:�;�<¤;�´�
on - and Î#Ä|� such that 1���z ��¤��	/rÎ �x© (39)

Since x��¤;��! � � z� , we havex��¤;�$½nÏ�/ F ¨�/Ó t#Ð� 2w ÑQ½iÏ º¸Ï,!*�9��x��¤��´��© (40)

Write �Q/6�¼�OÎ%���;�<-¼� for some ��!��,��x�<¤;�´� and Î�!�� . ¿From (40) we get��<¤;��½ �Q/ F ¨�/Ó t(Ð� 2w ÑQ½Y�¼��Îg��<¤;��½Y���;�<-¼�	/ F ¨�/Ó t#Ð� 2w ÑQ½3���OÎ�/ F ¨�/Ó t(Ð� 2w ÑQ½ �x� (41)

where the last equality is a consequence of the equality Ñ�½ �f���<-¼�	/25 , which holds
for any Ñ#! �� z� . Then (38) follows from (39).

Assume now that +� is weakly concave at ¤ . The proof is the same as in the
weakly convex case, by observing now that Î#Å}� , and thereforex�<¤;�$½.1� �z ��¤��	/NÎ F ¨�/Ó t#Ð� 2w ÑQ½ �H/ FHGJIÓ t#Ð� 2w ÑQ½QÎ �³/ F�G]IÓ t(Ð� 2w ÑQ½-1� �z ��¤;�q©

We conclude this section by observing that, under suitable assumptions, a facet- of +� is Lipschitz 1� s -regular, where 1� s is the metric on N z induced by
� � z� .

More precisely, let -k!�n:o�p��g��+� ,� , fix �'! GJI pj� �� z� � and let
�� z�S^ s �T/ � � z� `c� .

The �<~�`s5L� -dimensional convex body
�� z�S^ s contain the origin of N z in its inte-

rior. Let 1� s be the convex positively one homogeneous function on N z such that1 1� s 4a5�7�/ �� z�S^ s . Define also » ývF � 1� s � as the convex positively one homoge-

neous function on N z such that 13» ývF � 1� s � 465�7�/2` � � z�S^ s . Notice that the classes
of Lipschitz 1� s -regular sets and Lipschitz » ývF � 1� s � -regular sets do not depend on
the choice of � .

Proposition 49 Let �< Q�h~%�v�Z!?�*�;�<� � � and let -À!�n:o�pq�;�<+� ,� . If  is convex at- then �<-Ì�h~%�9`'��� is Lipschitz 1� s -regular for any �*! G]I pL� �� z� � . If  is concave

at - , then �<-Ì���H`'~ � � is Lipschitz » ývF � 1� s � -regular for any ��! GJI pL� � � z� � .
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Proof. Assume that  is convex at - and let ��! GJI pL� � � z� � . ¿From Corollary 46
it follows that +;- is Lipschitz; moreover ~ � `+�b! « GJ¬ ��+�-HPhN z � . Therefore we
have only to prove that~ � �<¤;��`'�*! 1� � �F1� z �<¤;�h� ¦ ¢S£%§ �vu;@ `�¨�© ª�©L¤�!?+�-Ì� (42)

where 1���'�0/ w@ �#uA�´� 1�;�s ��@3� . For any ¤ê!2+ � - (and therefore for
§ �vu�@ -almost

every ¤#!#+�- ) +� is weakly convex at - , therefore by Lemma 48 there holds

��~ � ��¤��:`*�c�$½-1� �z ��¤��	/ F ¨�/ � ÑQ½.1� �z ��¤��Ì�	Ñ#! �� z�S^ s � �
and relation (42) follows.

Assume now that  is concave at - . We have to prove that�9`b~%�;��¤��Ì! 1Í � �=1� z ��¤��´� ¦ ¢�£�§ �vu�@ `�¨�© ª�©L¤#!?+�-Ì� (43)

where 1Í����T/ w@ �?u)�´�´��Ñ ývF � 1� s �´�h�Y�´@Y� . For any ¤#!#+ � - we have that +� is weakly
convex at ¤ , therefore

�)�9`'~ � ��¤;�h�$½-1���z ��¤��)/N�,` FHGJI � `?ÑQ½-1���z �<¤;����Ñ#!�` � � z� �/ F ¨�/ � ÑQ½-1� �z �<¤;�Ì��ÑQ`'�*!'` �� z� ���
and the assertion follows.

5. ×9Ø -regularity of minimizers on facets

The aim of this section is to prove Theorem 53. We begin with the following
useful result proved in [6].

Theorem 51 Let �t{"�$Ï be a bounded open set with Lipschitz boundary. LetÙ�� ï satisfy (7) and (8) respectively. Then there is a function � ï ½q� È Ò�!�&)(?�<+����
such that ô�� ï ½Y� È Ò�ôqõgö � W È � 4�ô ï ôqõgö � È�÷ ø Þ � , and

U È ÙH[ GJ\ ï d ¤H� U È ú�� ï �h�QÙx� d Ð �QÙ:ÐS/ U W È � ï ½L� È Ò Ù d § Ï u®w © (44)

Proposition 52 Let B,C$D E be a solution of (1), -!�n:o�p��;��+; 9� , and let � z� be
defined as in (16). Then there exists a constant ëmÄ|� such thate T � z� � G]I pL��-¼� X 4së ¦ ¢�£ ¨�© ªS©YÁ)!��)© (45)

Proof. Fix �|! G]I p�� �� z�]� and �|ÄÀ� such that ×��S�)���Q{ GJI pL� � � z� � . Fix ÁH!s�
such that Proposition 35 holds; hence for

§ �vu�@ -almost every ¤#! G]I pL��-¼���å æ we
haveúg�<B¼C$D E�`*�;�R�QÙx�q��¤��	/Ã` F ¨�/ � � 8 `*���:½-1� �� �<¤;�Ì� 8 ! �� z� � 4V`�� w �³Å}���
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for a suitable constant � w Äê� depending only on � and
�� z� , where we have setÙ��T/Ã5 È32Ç , åSæQ�T/6+ � � z� . Therefore� w �³4}ú�����`'B C$D E �h�QÙx�q�<¤;� ¦ ¢�£�§ �vu;@ `'¨�© ªS©Y¤�! G]I p3�<-¼�®�å æ ©

Choose a Lipschitz open set
Â ¾ GJI pL��-¼� . We have

e ��� z� � Â �Ì4 5� w � UcÆ®í;: < úg����`'B,C$D Ec�R�QÙx� d § �vu;@ /9� 5� w �{Ò ©
Applying Remark 26 on the open set

Â
with the choice Í�/8~�`25 , Ù w / Ù ,Ù @ /Ã5 Æ®ígÈ72Ç , ×ê/ Â and

ï /¡�,`�B C$D E , we obtain

Ò /��)�,`�B C$D E �h�QÙx�q� Â �	/�����`'B C$D E �h�#5 Æ®ígÈ32Ç ��� Â �/ U Æ®í W î � Æ®ígÈ72Ç � ú��)�,`�B C$D E �h�#5 Æ®ígÈ72Ç � d § �vu�@ ©
Applying (44) with Ík/�~?`|5 , ��/ Â , Ù*/�5 Æ®ígÈ32Ç ,

ï /¡�,`�B¼C$D E , we get

Ò / U W Æ �]����`'B C$D E ��½ � � Æ Òx5 È 2Ç ívÆ d § �vu;@ ` U Æ®ígÈ72Ç [ G]\ _ �)�,`�B C$D E � d § �cuxw4·� @ § �vu�@ �<+ Â �%� § �vuxw �<-¼� T ôq[ GJ\ _ B C$D E ôqõgö �ÚD E=¸��Jz ��� ���FÉ X �
where � @ and � É depend only on .}� .

Therefore

e ��� z� � Â �Ì4 5� w � � � @ § �cu;@ ��+ Â �%� § �vu®w �<-¼� T ô�[ G]\ _SB¼C$D E�ôqõ;ö �JD E=¸´�Jz ��� �+� É X � ©(46)
By Theorem 44 we have that - has finite perimeter in ���vuxw . Therefore, for any_³ÄÀ� , we can find a Lipschitz open set

Â Y�¾ GJI p3�<-¼� such that
§ �vu®wj� G]I pL��-¼��ËÂ Yh�HÅ�_ and Ð e � Â Y�� G]I pL��-¼�´�Ì` e �<-Ì�R���cuxwS��Ð	Å�_ . Replacing

Â
with

Â Y in (46)
and letting _A
r�Sç , we obtain (45).

Theorem 53 Let  �!*�*��������� and let -m!�n:o�pq�;��+; 9� . Assume also >A! &)(?�<+� ,� .
Then d C$D E `b>³!#×9Ø�� G]I p3�<-¼�h��© (47)

Proof. Set Øl�0/ d C$D E `�> . ¿From (3) we have Ø¿!m&)(?�<+� ,� . By the coarea
formula and Proposition 52 we then have

U D E=¸¹�Jz � Ð ��Ø�Ðv/2U ç�(u�( e T � z� � G]I p3�<-¼� X d Á
/2U¡ÓÕÔÖÓØ× ö�ÙÛÚ �%Üu ÓÕÔÖÓ × ö�ÙÛÚ �%Ü e

T � z� � G]I pL��-¼� X d ÁÌ4&Á�ëQô�Ø�ôqõgö � WLX � ©
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6. Further regularity properties of minimizers

Throughout this section �< ³�´~��c�,!��*�;�<�:�%� and - !°n:o�p��g��+� 9� . We always
consider ÁA!#� such that � z� �/rq . We often identify � z� with its projection on the
hyperplane parallel to NQz and passing through the origin of ��� .

In order to obtain further regularity properties of the function d C$D E�`�> on - ,
we show that its sublevel sets solve a prescribed anisotropic mean curvature type
problem (see Theorem 64).

Fix ��! GJI pL� �� z� � . The following definition yields an �<~O`25L� -dimensional
notion of � -perimeter for subsets of GJI p3�<-¼� .
Definition 61 Let

Â
be an open subset of N z . For any Borel set ×è¯ GJI pL��-¼� , we

set�e ���<×�� Â � �0/*»
	 ¬Z� U é [ GJ\ _� d § �cuxw ���!*ò wó � Â Ph� � �q��x��¤��Ì! � � z�S^ s º�¤#! Â ��©
The above definition does not depend on the choice of �³! G]I pL�<-¼� . Notice that�e �g��×³� Â � É � for any × and

Â
; moreover

�e �;� G]I p3��-¼���RN�z���Å���� by Theorem
44. When

Â / GJI p3�<-¼� , we simply write
�e ���<×�� instead of

�e �;�<×�� G]I p3��-¼�´� .
Remark 62 One can check (see [2], Proposition 3.2) that we get an equivalent
definition of

�e �;�<×³� Â � if we let  vary in the set of all vector fields in & (?�<NHz Ph�:�%� ,
with compact support in

Â
, having bounded divergence in

Â
and satisfying the

constraint ��<¤;��! � � z�S^ s for
§ �vu®w -almost every ¤�! Â .

Lemma 63 Let
Â ¾ G]I p3�<-¼� be a Lipschitz open set. Then, for almost every ÁA!#�

we have�e � ��� z� � Â ��/ UvÆ®ígÈ72Ç d C$D E d § �vu®w ` U W Æ � B C$D E ½ �� Æ Ò 5 È72Ç d § �vu�@ © (48)

Proof. Let Á�!�� be such that Proposition 35 holds. Using Theorem 51 and (18),
we have

UvÆ®ígÈ72Ç d C$D E d § �cuxw
/2`�U Æ®í W î È72Ç ú��<B,C$D Ec�h�#5 È32Ç � d § �vu�@ �|U�W Æ � B¼C$D E�½ � � Æ Ò 5 È72Ç d § �vu�@
/ UcÆ®í W î È72Ç F ¨�/Ó t(Ð� 2w 1hÑH½M1���� �<¤;��7 d § �vu�@ � U W Æ � B C$D E ½ ��

Æ Ò 5 È72Ç d § �vu�@ ©
Using Remark 62 and a commutation argument between supremum and integral
(see for instance Lemma 4.3 in [10]) we have

U Æ®í W î È32Ç F ¨�/Ó t#Ð� 2w 1RÑH½.1� �� ��¤��=7 d § �vu;@ / �e � �´� z� � Â �q�
and (48) follows.
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By Ý we indicate the symmetric difference between sets.

Theorem 64 For almost every Á*!2� the set � z� is a solution of the following
variational problem:G]I ¦ � �e �;�<×��:`OU é ��>��OÁ´� d § �vu®w ��× þ ¢S£ ªYÿf»hªqpO¯ GJI p3�<-¼���:×ZÝb� z� ¾ G]I pj�<-¼�i��©

(49)

Proof. Fix Á�!�� such that Proposition 35 holds. Let ×k{ GJI p3�<-¼� be a Borel set
with ×�Ýb� z� ¾ GJI pj�<-¼� . We have to show that�e �;��� z� �:`OU È72Ç � >¼��Á´� d § �vuxw 4 �e �;��×9�:`OU é ��>��OÁ´� d § �vu®w © (50)

By inner approximation of G]I p3�<-¼� with Lipschitz open sets as in Proposition 52,
to show (50) it is enough to prove that for any Lipschitz set

Â ¾ GJI p3�<-¼� such that×ZÝb� z� ¾ Â , there holds�e � ��� z� � Â ��` UvÆ®ígÈ72Ç ��>���Á´� d § �vuxw 4 �e � ��×³� Â ��` UcÆ®í é � >���Á´� d § �cuxw © (51)

Fix such a set
Â

. By Lemma 63 we have�e ���´� z� � Â ��`OU Æ®ígÈ72Ç ��>���Á´� d § �vuxw
/ UvÆ®ígÈ72Ç T d C$D E `�>,`'Á X d § �vuxw ` U W Æ � B C$D E ½ � � Æ Ò¥5 È32Ç d § �vu;@ ©

Since d C$D E�`b>,`'ÁAÅ�� on � z� , we have

U Æ®ígÈ72Ç T d C$D E�`b>,`bÁ X d § �vuxw 4�U Æ®í é T d C$D E�`b>,`'Á X d § �vu®w �
and since ×ZÝb� z� ¾ Â we also have

U W Æ � B C$D E ½ � � Æ Ò 5 È72Ç d § �vu;@ / U W Æ � B C$D E ½ � � Æ Ò¥5Lé d § �vu�@ ©
Therefore�e �;��� z� � Â �:`OU Æ®ígÈ72Ç � >��OÁ´� d § �cuxw

4 U�Æ®í é T d C$D E `�>,`'Á X d § �vuxw ` U W Æ � B C$D E ½ � � Æ Ò¥5Lé d § �vu�@ ©
Using the definition of

�e � ��×³� Â � , Remark 62 and an approximation argument we
get �e � ��×³� Â � É�U�Æ®í é d C$D E d § �vu®w ` U W Æ � B C$D E ½ �� Æ Ò 5Yé d § �vu;@ ©
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It follows that�e � ��� z� � Â �:` U Æ®ígÈ72Ç � >¼��Á´� d § �vuxw 4 �e � ��×³� Â �:` U Æ®í é ��>��OÁ´� d § �vu®w �
and the proof of the theorem is concluded.

Note that, if we replace the weak inequality with the strict inequality in the
definition of � z� , the assertion of Theorem 64 still holds.

We now list some regularity results on d C$D E , which are consequences of The-
orem 64 and the results in [11], [12], [13], [4]. Point (iv) of the next corollary, in
the special case � crystalline and  polyhedral, has been independently obtained
by Yunger in [14].

Corollary 65 The following properties hold.

(i) For any Á¼!|� the set � z� has finite perimeter in GJI pL��-¼� , is a solution of the
variational problem (49), and

§ �vu;@ T +�� z� Ë)+ � � z� X /�� .
(ii) Assume >#/m� . Let Á�4Ã� . Then � z� �+ Â �/Þq for any open set

Â ¯ G]I pL��-¼�
such that � z�  Â �/rq .

(iii) Assume ~�/Ã� and let Á !b� . Then +�� z� is a Lipschitz graph in a neighbour-
hood of any ¤#!�� GJI p3�<-¼���+�� z� �SË ¢ , where ¢ is a closed subset of +�� z� such
that

§ wj�ß¢H��/�� . Moreover, if
�� z� is neither a triangle nor a quadrilateral, or

if there exists a constant �QÄ�� such that either > É � or >'4ù`�� § @ -almost
everywhere on GJI pj�<-¼� , then ¢�/Nq .

(iv) Assume ~�/V� and >Q/V� . Then, for any ÁB�/V� , every connected component ofG]I p3�<-¼�®*+�� z� is contained, up to a translation, in w � + �� z� .

(v) Assume ~�/6� and >³/V� . Assume also that
�� z� is strictly convex. Then � � is

continuous on GJI pj�<-¼� .
Proof. Let Á)!#� . Write � z� /ràZá t�â Ç � zá , where Ò � is the set of all real numbersÎ?Å}Á such that � zá is a solution of (49). By a compactness property for minimizers
for functionals of the form (49) (see [1, Section 3]) we obtain that � z� is also a
solution of (49). Assertion (i) then follows using again the arguments in [1].

Let us prove (ii). Suppose by contradiction q'�/ � z�  Â ¾ Â for some open
set
Â ¯ GJI p3�<-¼� and some Á�4M� . Let �ÆãQ�T/� z� Ë Â (note that �Bã could be

empty). Since
�e �;��� ã ��Å �e ���´� z� � and

§ �vu®wj�´� ã �*Å § �vu®wj�´� z� � , as Á�4è� we
have

�e �;��� ã ��`�Á § �vu®wj��� ã �)Å �e �;��� z� �j`�Á § �vuxw���� z� � , which contradicts Theorem
64.

Assertions (iii) and (iv) follow from Theorem 64 and the results in [11], [12],
[13]. It remains to prove (v). It is enough to check that if Á w ÅùÁ @ are such that� z� à �/äq , � z� , �/åq , then +�� z� à b+�� z� ,  G]I p3�<-¼�H/åq . Assume by contradiction
that there exists ¤V!�+�� z� à �+�� z� ,  G]I pL��-¼� . We can reduce to the case Á w �/Ý�
and Á @ �/ñ� ; indeed if for instance Á @ /ñ� , then any ÁÕÉV!°Ò Á w �h��� is such that+�� z� à *+�� z��æ  GJI p3�<-¼�I|?¤ . ¿From assertion (iv), we have that +�� z� � , for ��/�5��yÁ ,
are, around ¤ , contained in w� � + � � z� . Therefore, around ¤ , +�� z� � has 1� s -curvature

equal to Á � . This is a contradiction, since Á w Å6Á @ , � z� à ¯�� z� , , and
�� z� is strictly

convex.
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The generalization of (iii)-(iv) of Corollary 65 to arbitrary dimensions remains
an open problem, related to the general problem of regularity of area minimizers
in crystalline geometry. We remark that assertion (v) does not hold in general in
the crystalline case (see [7]).

We want now to prove assertion (ii) of Corollary 65 when Á�ÄÝ� in ~�/Ü�
dimensions. In order to do that, we need a comparison-type result (Proposition
66). We begin with a technical observation.

¿From (v) of Theorem 3.8 in [6], if ç and Í are two sets of finite perimeter in� , and if ë is a Borel set contained in + � ç�#+ � Í and such that
ü w
èû ü w è û / ü wyéû ü w é û§ Ï uxw -almost everywhere on ë , it follows that ú��<B#�R�#5Qê$�	/sú��<B#�R�#5ië;� § Ï uxw -

almost everywhere on ë , for any B satisfying (8). In particular, if ÍÝ¯äç andëÃ/�+ � ç|�+ � Íúg�<B#�R�#5 ê ��/�ú��<B��h�#5 ë � § Ï uxw `�¨�© ª�© ¢ I + � ç}�+ � Í:© (52)

Recall also that, if × has finite perimeter, then ×��+ � ×ê/rq .
Proposition 66 Let ��{ �:Ï be a bounded open set and let ~ { �$Ï be a
compact set. Let

B w �RB @ !?& ( �´�9Py~b��� [ G]\ B w �h[ G]\ B @ !#& ( �´���%*×�Ø³�´���q©
Define � �� �0/Ã1Y¤#!���� [ GJ\ B � ��¤��ÌÅ}Á=7 º�Á	!?�A�
and for almost every Á)!?� let �-�� �T/2` ü w 5 �Çû ü w 5 �Ç û . Suppose that for almost every Á)!?�
there holds

` ú��<B � �h��5 È �Ç �q�<¤;�A/ F ¨�/�1hÑQ½Y� �� �<¤;�Ì�AÑ#!ì~O7 ¦ ¢S£%§ ÏZu®w `�¨�© ª�©L¤�!��}�+ � � �� ©
(53)

Let × be such that either × has finite perimeter and × ¾r� , or × ¯r� has
Lipschitz boundary. In the latter case we set ú��<B � �R�#5 é � �0/�`¼� B � ½L� é Ò , �:/�5��²Á .
If ` úg�<B w �h��5Yé	� É ` ú��<B @ �R�#5Yé)� § Ï u®w `'¨�© ªS© ¢ I +®�q×�� (54)

then [ G]\ B w É [ G]\ B @ § Ï `�¨�© ª�© ¢ I ×³©
Proof. Set Ø � �T/6[ GJ\ B � , for �A!'1f5��yÁc7 . Assume by contradiction that there existsÎV!�� such that

§ Ï9�´� á �³Ä"� , where � á �T/M���¼wá Ë9��@á �$'× . Since Ø w �=Ø @ !×9Ø������ , we can also assume that � á has finite perimeter. Clearly 5 ÈPí / 5Yé�½5 È àí ½L5 È V È ,í . Notice that if ç and Í are two sets of finite perimeter we have, up to
sets of zero

§ Ï uxw -measure,

+®���)ç|£Í���/ê�<+®�=ç|£Í���Å'�)ç�*+x�nÍ��3Å T +®�j�)ç�£Í��x�+®�Fç}*+®�nÍ X � (55)

where the three sets at the right hand side between parentheses are mutually dis-
joint.
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We now split + � � á / �<×��+ � � á �ÖÅ��<+ � ×m�+ � � á � , and using (55) withç�/2��wá Ë ��@á and Í�/6× we write, always up to sets of zero
§ Ï u®w -measure,×H:+x��� á /��<+®��� wá :×HÌ���,Ëv� @á �´�
ÅÌ�<+®�S� @á :×�)� wá ��ÅÌ��×�:+®�S� wá :+®�j� @á :+®��� á ��©

Hence we have, using (52),

U�W î È¸í ú���B w �h�#5 ÈPí � d § ÏZu®w /2UcW î È àí í é í � È V È ,í � úg�<B w �h��5 È àí � d § Ï uxw` U W î È ,í í é ígÈ àí ú��<B w �R�#5 È ,í � d § Ï uxw�2U é í W î È àí í W î È ,í í W î È¸í ú���B w �h�#5 È àí � d § Ï uxw� U W î é í W î È í ú���B w �h�#5LéA� d § Ï u®w ©
By (53) and (54) we have

U W î È àí í é í � È V È ,í �ú��<B w �h��5 È àí � d § Ï uxw 4 U W î È àí í é í � È V È ,í �ú���B @ �h�#5 È àí � d § Ï uxw �`OU Wjî È ,í í é ígÈ àí ú��<B w �R�#5 È ,í � d § ÏZu®w 4V`�U Wjî È ,í í é ígÈ àí ú��<B @ �R�#5 È ,í � d § ÏZu®wU W î é í W î ÈPí ú��<B w �h��5YéA� d § Ï uxw 4 U W î é í W î ÈPí ú��<B @ �R�#5Yé	� d § Ï uxw ©
In addition, using (53) we also have

U é í W î È àí í W î È ,í í W î ÈPíú��<B w �R�#5 È àí � d § Ï u®w /6U é í W î È àí í W î È ,í í W î ÈPíú���B @ �h�#5 È ,í � d § Ï uxw ©
Then

`NÎ § Ï �´� á �)Å�` U È í Ø w d § Ï / U W î È í ú���B w �h�#5 ÈPí � d § ÏZu®w
4 U Wjî È àí í é í � È V È ,í �ú���B @ �h�#5 È àí � d § Ï uxw ` U Wjî È ,í í é ígÈ àíú���B @ �h�#5 È ,í � d § Ï uxw� U é í W î È àí í W î È ,í í W î ÈPí ú��<B @ �R�#5 È ,í � d § Ï uxw � U W î é í W î È¸íú���B @ �h�#5Lé	� d § Ï uxw/2U Wjî È í ú��<B @ �h��5 ÈPí � d § Ï uxw /�`�U�È í Ø @ d § Ï 4V`îÎ § Ï ��� á ���

which gives a contradiction.

The following result completes assertion (ii) of Corollary 65 in ~#/�� dimensions.

Corollary 67 Assume >#/�� and ~O/ê� . Let Á ÄÃ� . Then � z� #+ Â �/ïq for any
open set

Â ¯ G]I pL�<-¼� such that � z�  Â �/rq .
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Proof. Suppose by contradiction q��/ � z�  Â ¾ Â
for some open set

Â ¯G]I p3�<-¼� and some ÁZÄ6� . Let � Æ �0/m� z�  Â . Observe that the connected compo-
nents [5] of � Æ are simply connected (filling the holes decreases the functional in
(49) when ÁAÄ}� ); moreover, using (iv) of Corollary 65, it follows that � Æ consists
of a finite number of connected components with pairwise disjoint closure, each of
which coincides, up to a translation, with w � �� z� . Let ë be one of these connected
components and let �b! G]I pL�¥ë�� . Let ð�Äm5 be such that � ã �T/ñ�,�·ð$�¥ë2`c����¾G]I p3�<-¼�:Ë�� � z� ËÌë�� . For any

8 !�� ã define B ã � 8 ���0/êB¼C$D E����9� wò � 8 `c���h� . Two
cases are possible.

Case 1. There exists a Borel set &�¯Vë with
§ @���&A��Ä6� and [ GJ\ _ B ã Ä6� on& . As ðbÄV5 we have

[ G]\ _ B ã Ås� � § @ `'¨�© ªS© ¢ I &Z© (56)

By (18) applied to B ã we have ` ú��<B ã �h�#5 È�ó �H/ F ¨�/�1 8 ½ � � �È ó � 8 ! �� z� 7 É` ú���B C$D E �h�#5 È3ó � . Recalling also (18) and Theorem 53, we can apply Proposition
66 with ��/2� ã /�× , ~8/ �� z� , B w /�B ã , B @ /6B¼C$D E . It follows [ G]\ _�B ã É �g�§ @ -almost everywhere on � ã , which contradicts (56), since &�¯�� ã .

Case 2. � Æ ¯�1Y¤��v[ G]\ _ B C$D E ��¤���4s��7 . Writing � Æ / Â S��ô Ô(õ � � zÔ � and

reasoning as in Corollary 65 (i), we get that � Æ minimize
�e � among all compact

subsets of
Â

with finite perimeter. Therefore � Æ /¡q , which is a contradiction.
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1994.

3. L. Ambrosio, N. Fusco, and D. Pallara. Special Functions of Bounded Variation and
Free Discontinuity Problems. Oxford Univ. Press, 1999.

4. L. Ambrosio, M. Novaga, and E. Paolini. Regularity results for minimal crystals.
Preprint Scuola Normale Superiore di Pisa, n.6, 1999 (submitted).

5. Luigi Ambrosio, Vicent Caselles, Simon Masnou, and Jean-Michel Morel. Connected
components of sets of finite perimeter and applications to image processing. Journal
of EMS., 1999.

6. G. Anzellotti. Pairings between measures and bounded functions and compensated
compactness. Ann. Mat. Pura Appl., 135:293–318, 1983.

7. G. Bellettini, M. Novaga, and M. Paolini. Facet–breaking for three–dimensional crys-
tals evolving by mean curvature. Interfaces and Free Boundaries, pages 39–55, 1999.

8. G. Bellettini, M. Novaga, and M. Paolini. Characterization of facet–breaking for non-
smooth mean curvature flow in the convex case. Preprint Univ. Pisa, 2000.

9. G. Bellettini, M. Novaga, and M. Paolini. On a crystalline variational problem, part I:
first variation and global ö@÷ –regularity. Arch. Rational Mech. Anal., to appear.
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