Fine properties of the subdifferential for a class of one-homogeneous functionals

A. Chambolle ${ }^{*} \quad$ M. Goldman ${ }^{\dagger} \quad$ M. Novaga ${ }^{\ddagger}$

Abstract

We collect here some known results on the subdifferential of one-homogeneous functionals, which are anisotropic and nonhomogeneous variants of the total variation, and establish a new relationship between Lebesgue points of the calibrating field and regular points of the level lines of the corresponding calibrated function.

1 Introduction

In this note we recall some classical results on the structure of the subdifferential of first order one-homogeneous functionals, and we give new regularity results which extend and precise previous work by G. Anzellotti $[5,6,7]$.
Given an open set $\Omega \subset \mathbb{R}^{d}$ with Lipschitz boundary, and a function $u \in C^{1}(\Omega) \cap B V(\Omega)$, we consider the functional

$$
J(u):=\int_{\Omega} F(x, D u)
$$

where $F: \Omega \times \mathbb{R}^{d} \rightarrow[0,+\infty)$ is continuous in x and $F(x, \cdot)$ is a smooth and uniformly convex norm on \mathbb{R}^{d}, for all $x \in \Omega$.
Since $B V(\Omega) \subset L^{d /(d-1)}(\Omega)$, it is natural to consider J as a convex, l.s.c. function on the whole of $L^{d /(d-1)}(\Omega)$, with value $+\infty$ when $u \notin B V(\Omega)$ (see [2]). In this framework, for any $u \in L^{d /(d-1)}(\Omega)$ we can define the subgradient of a u in the duality $\left(L^{d /(d-1)}, L^{d}\right)$ as

$$
\partial J(u)=\left\{g \in L^{d}(\Omega): J(v) \geq J(u)+\int_{\Omega} g(x)(v(x)-u(x)) d x \forall v \in L^{d /(d-1)}(\Omega)\right\}
$$

[^0]The goal of this paper is to investigate the particular structure of the functions u and $g \in$ $\partial J(u)$, when the subgradient is nonempty. Since J can be defined by duality as

$$
J(u)=\sup \left\{-\int_{\Omega} u(x) \operatorname{div} z(x) d x: z \in C_{c}^{\infty}\left(\Omega ; \mathbb{R}^{d}\right), F^{*}(x, z(x))=0 \forall x \in \Omega\right\}
$$

where $F^{*}(x, \cdot)$ is the Legendre-Fenchel transform of $F(x, \cdot)$ (it is equivalent to require that $F^{\circ}(x, z(x)) \leq 1, F^{\circ}(x, \cdot)$ being the convex polar of F defined in (4)), it is easy to see that such a g has necessarily the form $g=-\operatorname{div} z$, for some field $z \in L^{\infty}\left(\Omega ; \mathbb{R}^{d}\right)$ with $F^{*}(x, z(x))=0$ a.e. in Ω.

Since by a formal integration by parts one gets $z \cdot D u=F(x, D u),|D u|$-a.e., natural questions are: in what sense can this relation be true? can one assign a precise value to z on the support of the measure $D u$?
The first question has been answered by Anzelotti in the series of papers [5, 6, 7]. However, for the particular vector fields we are interested in, we can be more precise and obtain pointwise properties of z on the level sets of the function u. Indeed, we shall show that z has a pointwise meaning on all level sets of u, up to \mathscr{H}^{d-1}-negligible sets (which is much more than $|D u|$-a.e., as illustrated by the function $u=\sum_{n=1}^{+\infty} 2^{-n} \chi_{\left(0, x_{n}\right)}$, defined in the interval $(0,1)$, with $\left(x_{n}\right)$ a dense sequence in that interval).
We will therefore focus on the properties of the vector fields $z \in L^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$ such that $F^{*}(x, z(x))=0$ a.e. in Ω and $g=-\operatorname{div} z \in L^{d}(\Omega)$, and such that there exists a function u such that for any $\phi \in C_{c}^{\infty}(\Omega)$,

$$
-\int_{\Omega} \operatorname{div} z(x) u(x) \phi(x) d x=\int_{\Omega} u(x) z(x) \cdot \nabla \phi(x) d x+\int_{\Omega} \phi(x) F(x, D u)
$$

In particular, one checks easily that u minimizes the functional

$$
\begin{equation*}
\int_{\Omega} F(x, D u)-\int_{\Omega} g(x) u(x) d x \tag{1}
\end{equation*}
$$

among perturbations with compact support in Ω. Conversely, given $g \in L^{d}(\Omega)$ with $\|g\|_{L^{d}}$ sufficiently small, there exist functions u which minimize (1) under various types of boundary conditions, and corresponding fields z.
This kind of functionals appears in many contexts including image processing and plasticity $[4,17]$. Notice also that, by the Coarea Formula [2], it holds

$$
\int_{\Omega} F(x, D u)-\int_{\Omega} g u d x=\int_{\mathbb{R}}\left(\int_{\partial^{*}\{u>s\}} F(x, \nu)-\int_{\{u>s\}} g d x\right) d s
$$

where ν is the unit normal to $\{u>s\}$, and one can show (see for instance [10]) that the characteristic function of any level set of the form $\{u>s\}$ or $\{u \geq s\}$ is a minimizer of the geometric functional

$$
\begin{equation*}
\int_{\partial^{*} E} F(x, \nu)-\int_{E} g(x) d x \tag{2}
\end{equation*}
$$

The canonical example of such functionals is given by the total variation, corresponding to $F(x, D u)=|D u|$. In this case, (2) boils down to

$$
\begin{equation*}
P(E)-\int_{E} g(x) d x \tag{3}
\end{equation*}
$$

In [8], it is shown that every set with finite perimeter in Ω is a minimizer of (3) for some $g \in L^{1}(\Omega)$. However, if $g \in L^{p}(\Omega)$ with $p>d$, and E is a minimizer of (2), then ∂E is locally $C^{1, \alpha}$ for some $\alpha>0$, out of a closed singular set of zero \mathscr{H}^{d-3}-measure [1]. When $g \in L^{d}(\Omega)$, the boundary ∂E is only of class C^{α} out of the singular set (see [3]). Since the Euler-Lagrange equation of (2) relates z to the normal to E, understanding the regularity of z is closely related to understanding the regularity of ∂E.
Our main result is that the Lebesgue points of z correspond to regular points of $\partial\{u>s\}$ or $\partial\{u \geq s\}$ (Theorem 3.7), and that the converse is true in dimension $d \leq 3$ (Theorem 3.8).

2 Preliminaries

2.1 BV functions

We briefly recall the definition of function of bounded variation and set of finite perimeter. For a complete presentation we refer to [2].

Definition 2.1. Let Ω be an open set of \mathbb{R}^{d}, we say that a function $u \in L^{1}(\Omega)$ is a function of bounded variation if

$$
\int_{\Omega}|D u|:=\sup _{\substack{z \in \mathcal{C}_{c}^{1}(\Omega) \\|z|_{\infty} \leq 1}} \int_{\Omega} u \operatorname{div} z d x<+\infty
$$

We denote by $B V(\Omega)$ the set of functions of bounded variation in Ω (when $\Omega=\mathbb{R}^{d}$ we simply write $B V$ instead of $B V\left(\mathbb{R}^{d}\right)$).
We say that a set $E \subset \mathbb{R}^{d}$ is of finite perimeter if its characteristic function χ_{E} is of bounded variation and denote its perimeter in an open set Ω by $P(E, \Omega):=\int_{\Omega}\left|D \chi_{E}\right|$, and write simply $P(E)$ when $\Omega=\mathbb{R}^{d}$.

Definition 2.2. Let E be a set of finite perimeter and let $t \in[0 ; 1]$. We define

$$
E^{(t)}:=\left\{x \in \mathbb{R}^{d}: \lim _{r \downarrow 0} \frac{\left|E \cap B_{r}(x)\right|}{\left|B_{r}(x)\right|}=t\right\} .
$$

We denote by $\partial E:=\left(E^{(0)} \cup E^{(1)}\right)^{c}$ the measure theoretical boundary of E. We define the reduced boundary of E by:

$$
\partial^{*} E:=\left\{x \in S p t\left(\left|D \chi_{E}\right|\right): \nu^{E}(x):=\lim _{r \downarrow 0} \frac{D \chi_{E}\left(B_{r}(x)\right)}{\left|D \chi_{E}\right|\left(B_{r}(x)\right)} \text { exists and }\left|\nu^{E}(x)\right|=1\right\} \subset E^{\left(\frac{1}{2}\right)}
$$

The vector $\nu^{E}(x)$ is the measure theoretical inward normal to the set E.
Proposition 2.3. If E is a set of finite perimeter then $D \chi_{E}=\nu^{E} \mathscr{H}^{d-1}\left\llcorner\partial^{*} E, P(E)=\right.$ $\mathscr{H}^{d-1}\left(\partial^{*} E\right)$ and $\mathscr{H}^{d-1}\left(\partial E \backslash \partial^{*} E\right)=0$.

Definition 2.4. We say that x is an approximate jump point of $u \in B V(\Omega)$ if there exist $\xi \in \mathbb{S}^{d-1}$ and distinct $a, b \in \mathbb{R}$ such that
$\lim _{\rho \rightarrow 0} \frac{1}{\left|B_{\rho}^{+}(x, \xi)\right|} \int_{B_{\rho}^{+}(x, \xi)}|u(y)-a| d y=0 \quad$ and $\quad \lim _{\rho \rightarrow 0} \frac{1}{\left|B_{\rho}^{-}(x, \xi)\right|} \int_{B_{\rho}^{-}(x, \xi)}|u(y)-b| d y=0$, where $B_{\rho}^{ \pm}(x, \xi):=\left\{y \in B_{\rho}(x): \pm(y-x) \cdot \xi>0\right\}$. Up to a permutation of a and b and a change of sign of ξ, this characterize the triplet (a, b, ξ) which is then denoted by $\left(u^{+}, u^{-}, \nu_{u}\right)$. The set of approximate jump points is denoted by J_{u}.

The following proposition can be found in [2, Proposition 3.92].
Proposition 2.5. Let $u \in B V(\Omega)$. Then, defining

$$
\Theta_{u}:=\left\{x \in \Omega / \liminf _{\rho \rightarrow 0} \rho^{1-d}|D u|\left(B_{\rho}(x)\right)>0\right\}
$$

there holds $J_{u} \subset \Theta_{u}$ and $\mathscr{H}^{d-1}\left(\Theta_{u} \backslash J_{u}\right)=0$.

2.2 Anisotropies

Let $F(x, p): \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex one-homogeneous function in the second variable such that there exists c_{0} with

$$
c_{0}|p| \leq F(x, p) \leq \frac{1}{c_{0}}|p| \quad \forall(x, p) \in \mathbb{R}^{d} \times \mathbb{R}^{d}
$$

We say that F is uniformly elliptic if for some $\delta>0$, the function $p \mapsto F(p)-\delta|p|$ is still a convex function. We define the polar function of F by

$$
\begin{equation*}
F^{\circ}(x, z):=\sup _{\{F(x, p) \leq 1\}} z \cdot p \tag{4}
\end{equation*}
$$

so that $\left(F^{\circ}\right)^{\circ}=F$. It is easy to check that (* denoting the Legendre-Fenchel convex conjugate) $\left[F(x, \cdot)^{2} / 2\right]^{*}=F^{\circ}(x, \cdot)^{2} / 2$, in particular (if differentiable), $F(x, \cdot) \nabla_{p} F(x, \cdot)$ and $F^{\circ}(x, \cdot) \nabla_{z} F^{\circ}(x, \cdot)$ are inverse monotone operators. If we denote by F^{*} the convex conjugate of F with respect to the second variable, then $F^{*}(x, z)=0$ if and only if $F^{\circ}(x, z) \leq 1$.
If $F(x, \cdot)$ is differentiable then, for every $p \in \mathbb{R}^{d}$,

$$
F(x, p)=p \cdot \nabla_{p} F(x, p) \quad(\text { Euler's identity } \text {) }
$$

and

$$
z \in\left\{F^{\circ}(x, \cdot) \leq 1\right\} \text { with } p \cdot z=F(x, p) \Longleftrightarrow z=\nabla_{p} F(x, p)
$$

If F is elliptic and of class $\mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{0\}\right)$, then F° is also elliptic and $\mathcal{C}^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{0\}\right)$. We will then say that F is a smooth elliptic anisotropy. Observe that, in this case, the function $F^{2} / 2$ is also uniformly δ^{2}-convex (this follows from the inequalities $D^{2} F(x, p) \geq$ $\delta /|p|\left(I-p \otimes p /|p|^{2}\right)$ and $\left.F(x, p) \geq \delta|p|\right)$. In particular, for every $x, y, z \in \mathbb{R}^{d}$, there holds

$$
\begin{equation*}
F^{2}(x, y)-F^{2}(x, z) \geq 2\left(F(x, z) \nabla_{p} F(x, z)\right) \cdot(y-z)+\delta^{2}|y-z|^{2}, \tag{5}
\end{equation*}
$$

and a similar inequality holds for F°. We refer to [16] for general results on convex norms and convex bodies.

2.3 Pairings between measures and bounded functions

Following [5] we define a generalized trace $[z, D u]$ for functions u with bounded variation and bounded vector fields z with divergence in L^{d}.

Definition 2.6. Let Ω be an open set with Lipschitz boundary, $u \in B V(\Omega)$ and $z \in$ $L^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$ with $\operatorname{div} z \in L^{d}(\Omega)$. We define the distribution $[z, D u]$ by

$$
\langle[z, D u], \psi\rangle=-\int_{\Omega} u \psi \operatorname{div} z-\int_{\Omega} u z \cdot \nabla \psi \quad \forall \psi \in \mathcal{C}_{c}^{\infty}(\Omega)
$$

Proposition 2.7. The distribution $[z, D u]$ is a bounded Radon measure on Ω and if ν is the inward unit normal to Ω, there exists a function $[z, \nu] \in L^{\infty}(\partial \Omega)$ such that the generalized Green's formula holds,

$$
\int_{\Omega}[z, D u]=-\int_{\Omega} u \operatorname{div} z-\int_{\partial \Omega}[z, \nu] u d \mathscr{H} \mathscr{H}^{d-1}
$$

The function $[z, \nu]$ is the generalized (inward) normal trace of z on $\partial \Omega$.
Given $z \in L^{\infty}\left(\Omega, \mathbb{R}^{d}\right)$, with $\operatorname{div} z \in L^{d}(\Omega)$, we can also define the generalized trace of z on ∂E, where E is a set of locally finite perimeter. Indeed, for every bounded open set Ω with Lipschitz boundary, we can define as above the measure $\left[z, D \chi_{E}\right]$ on Ω. Since this measure is absolutely continuous with respect to $\left|D \chi_{E}\right|=\mathscr{H}^{d-1}\left\llcorner\partial^{*} E\right.$ we have

$$
\left[z, D \chi_{E}\right]=\psi_{z}(x) \mathscr{H}^{d-1}\left\llcorner\partial^{*} E\right.
$$

with $\psi_{z} \in L^{\infty}\left(\partial^{*} E\right)$ independent of Ω. We denote by $\left[z, \nu^{E}\right]:=\psi_{z}$ the generalized (inward) normal trace of z on ∂E. If E is a bounded set of finite perimeter, by taking Ω strictly containing E, we have the generalized Gauss-Green Formula

$$
\int_{E} \operatorname{div} z=-\int_{\partial^{*} E}\left[z, \nu^{E}\right] d \mathscr{H}^{d-1}
$$

Anzellotti proved the following alternative definition of $\left[z, \nu^{E}\right][6,7]$

Proposition 2.8. Let $(x, \alpha) \in \mathbb{R}^{d} \times \mathbb{R}^{d} \backslash\{0\}$. For any $r>0, \rho>0$ we let

$$
C_{r, \rho}(x, \alpha):=\left\{\xi \in \mathbb{R}^{d}:|(\xi-x) \cdot \alpha|<r,|(\xi-x)-[(\xi-x) \cdot \alpha] \alpha|<\rho\right\} .
$$

There holds

$$
[z, \alpha](x)=\lim _{\rho \rightarrow 0} \lim _{r \rightarrow 0} \frac{1}{2 r \omega_{d-1} \rho^{d-1}} \int_{C_{r, \rho}(x, \alpha)} z \cdot \alpha
$$

where ω_{d-1} is the volume of the unit ball in \mathbb{R}^{d-1}.

3 The subdifferential of anisotropic total variations

3.1 Characterization of the subdifferential

The following characterization of the subdifferential of J is classical and readily follows for example from the representation formula $[9,(4.19)]$.

Proposition 3.1. Let F be a smooth elliptic anisotropy and $g \in L^{d}(\Omega)$ then u is a local minimizer of (1) if and only if there exists $z \in L^{\infty}(\Omega)$ with $\operatorname{div} z=g, F^{*}(x, z(x))=0$ a.e. and

$$
[z, D u]=F(x, D u) .
$$

Moreover, for every $t \in \mathbb{R}$, for the set $E=\{u>t\}$ there holds $\left[z, \nu^{E}\right]=F\left(x, \nu^{E}\right) \mathscr{H}^{d-1}$-a.e. on ∂E. We will say that such a vector field is a calibration of the set E for the minimum problem (2).
Remark 3.2. In [5], it is proven that if $z_{\rho}(x):=\frac{1}{\left|B_{\rho}(x)\right|} \int_{B_{\rho}(x)} z(y) d y$, then $z_{\rho} \cdot \nu^{E}$ weakly* converges to $\left[z, \nu^{E}\right]$ in $L_{l o c}^{\infty}\left(\mathscr{H}^{d-1}\left\llcorner\partial^{*} E\right)\right.$. Using (5) it is then possible to prove that if z calibrates E then z_{ρ} converges to $\nabla_{p} F\left(x, \nu^{E}\right)$ in $L^{2}\left(\mathscr{H}^{d-1}\left\llcorner\partial^{*} E\right)\right.$ yielding that up to a subsequence, $z_{\phi(\rho)}$ converges \mathscr{H}^{d-1}-a.e. to $\nabla_{p} F\left(x, \nu^{E}\right)$. Unfortunately this is still a very weak statement since it is a priori impossible to recover from this the convergence of the full sequence z_{ρ}.

The main question we want to investigate now is whether we can give a classical meaning to $\left[z, \nu^{E}\right]$ (that is understand if $\left[z, \nu^{E}\right]=z \cdot \nu^{E}$). We observe that a priori the value of z is not well defined on ∂E which has zero Lebesgue measure (since z has Lebesgue points only a.e.). We let $S:=\operatorname{supp}(D u) \subset \Omega$ be the smallest closed set in Ω such that $|D u|(\Omega \backslash S)=0$. The next result is classical.

Lemma 3.3 (Density estimate). There exists $\rho_{0}>0$ (depending on g) and a constant $\gamma>0$ (which depends only on d), such that for any $B_{\rho}(x) \subset \Omega$ with $\rho \leq \rho_{0}$, and any level set E of u (that is, $E \in\{\{u>s\},\{u \geq s\},\{u<s\},\{u \leq s\}, s \in \mathbb{R}\}$), if $\left|B_{\rho}(x) \cap E\right|<\gamma\left|B_{\rho}(x)\right|$ then $\left|B_{\rho / 2}(x) \cap E\right|=0$. As a consequence, E^{0} and E^{1} are open, ∂E is the topological boundary of E^{1}, and (possibly changing slightly γ) if $x \in \partial E$, then $\mathscr{H}^{d-1}\left(\partial E \cap B_{\rho}(x)\right) \geq \gamma \rho^{d-1}$.

For a proof we refer to [13, 12]. This is not true anymore if $g \notin L^{d}(\Omega)[12]$. If $\partial \Omega$ is Lipschitz, it is true up to the boundary.

Corollary 3.4. It follows that $u \in L_{\text {loc }}^{\infty}(\Omega)$ and $u \in C\left(\Omega \backslash \Theta_{u}\right)$.
Proof. For any ball $B_{\rho}(x) \subset \Omega$ and $\inf _{B_{\rho / 2}(x)} u<a<b<\sup _{B_{\rho / 2}(x)} u$, one has

$$
+\infty>|D u|\left(B_{\rho}(x)\right) \geq \int_{a}^{b} P\left(\{u>s\}, B_{\rho}(x)\right) d s \geq(b-a) \gamma\left(\frac{\rho}{2}\right)^{d-1}
$$

so that $\operatorname{osc}_{B_{\rho / 2}(x)}(u)$ must be bounded and thus $u \in L_{l o c}^{\infty}(\Omega)$. Moreover, if $x \in \Omega \backslash \Theta_{u}$ we find that $\lim _{\rho \rightarrow 0} \operatorname{osc}_{B_{\rho}(x)}(u)=0$ so that u is continuous at the point x.

It also follows from Lemma 3.3 that all points in the support of $D u$ must be on the boundary of a level set of u :

Proposition 3.5. For any $x \in S$, there exists $s \in \mathbb{R}$ such that either $x \in \partial\{u>s\}$ or $x \in \partial\{u \geq s\}$.

Proof. First, if $x \notin S$ then $|D u|\left(B_{\rho}(x)\right)=0$ for some $\rho>0$ and clearly x cannot be on the boundary of a level set of u. On the other hand, if $x \in S$, then for any ball $B_{1 / n}(x)$ (n large) there is a level s_{n} (uniformly bounded) with $\partial\left\{u>s_{n}\right\} \cap B_{1 / n}(x) \neq \emptyset$ and by Hausdorff convergence, we deduce that either $x \in \partial\{u>s\}$ or $x \in \partial\{u \geq s\}$ where s is the limit of the sequence $\left(s_{n}\right)_{n}$ (which must actually converge).

The following stability property is classical (see e.g. [11]).
Proposition 3.6. Let E_{n} be local minimizers of (2), with a function $g=g_{n} \in L^{d}(\Omega)$, and converging in the L^{1}-topology to a set E. Assume that the sets E_{n} are calibrated by z_{n}, that $z_{n} \xrightarrow{*} z$ weakly-* in L^{∞} and $g_{n} \rightarrow g=-\operatorname{div} z \in L^{d}(\Omega)$, in $L^{1}(\Omega)$ as $n \rightarrow \infty$. Then z calibrates E, which is thus also a minimizer of (2).

In particular, one must notice that when $z_{n} \stackrel{*}{\rightharpoonup} z$ and $F^{\circ}\left(x, z_{n}\right) \leq 1$ a.e., then in the limit one still has $F^{\circ}(x, z) \leq 1$ a.e. (thanks to the convexity, and continuity w.r. the variable x).

3.2 The Lebesgue points of the calibration.

The next result shows that the regularity of the calibration z implies some regularity of the calibrated set.

Theorem 3.7. Let $\bar{x} \in \partial E$ be a Lebesgue point of z, with $E=\{u>t\}$ or $E=\{u \geq t\}$. Then, $\bar{x} \in \partial^{*} E$ and

$$
\begin{equation*}
z(\bar{x})=\nabla_{p} F\left(\bar{x}, \nu^{E}(\bar{x})\right) \tag{6}
\end{equation*}
$$

Proof. We follow [11, Th. 4.5] and let $z_{\rho}(y):=z(\bar{x}+\rho y)$. Since \bar{x} is a Lebesgue point of z, we have that $z_{\rho} \rightarrow \bar{z}$ in $L^{1}\left(B_{R}\right)$, hence also weakly-* in $L^{\infty}\left(B_{R}\right)$ for any $R>0$, where $\bar{z} \in \mathbb{R}^{d}$ is a constant vector.
We let $E_{\rho}:=(E-\bar{x}) / \rho$ and $g_{\rho}(y)=g(\bar{x}+\rho y)$ (so that $\operatorname{div} z_{\rho}=\rho g_{\rho}$). Observe that E_{ρ} minimizes

$$
\int_{\partial^{*} E_{\rho} \cap B_{R}} F\left(\bar{x}+\rho y, \nu^{E_{\rho}}(y)\right) d \mathscr{H}^{d-1}(y)+\rho \int_{E_{\rho} \cap B_{R}} g_{\rho}(y) d y,
$$

with respect to compactly supported perturbations of the set (in the fixed ball B_{R}). Also,

$$
\left\|\rho g_{\rho}\right\|_{L^{d}\left(B_{R}\right)}=\|g\|_{L^{d}\left(B_{\rho R}\right)} \xrightarrow{\rho \rightarrow 0} 0 .
$$

By Lemma 3.3, the sets E_{ρ} (and the boundaries ∂E_{ρ}) satisfy uniform density bounds, and hence are compact with respect to both local L^{1} and Hausdorff convergence.
Hence, up to extracting a subsequence, we can assume that $E_{\rho} \rightarrow \bar{E}$, with $0 \in \partial \bar{E}$. Proposition 3.6 shows that \bar{z} is a calibration for the energy $\int_{\partial \bar{E} \cap B_{R}} F\left(\bar{x}, \nu^{\bar{E}}(y)\right) d \mathscr{H}^{d-1}(y)$, and that \bar{E} is a minimizer calibrated by \bar{z}.
It follows that $\left[\bar{z}, \nu^{\bar{E}}\right]=F\left(\bar{x}, \nu^{\bar{E}}(y)\right)$ for \mathscr{H}^{d-1}-a.e. y in $\partial \bar{E}$, but since \bar{z} is a constant, we deduce that $\bar{E}=\{y \cdot \bar{\nu} \geq 0\}$ with $\bar{\nu} / F(\bar{x}, \bar{\nu})=\nabla_{p} F^{\circ}(\bar{x}, \bar{z})^{1}$. In particular the limit \bar{E} is unique, hence we obtain the global convergence of $E_{\rho} \rightarrow \bar{E}$, without passing to a subsequence. We want to deduce that $\bar{x} \in \partial^{*} E$, with $\nu^{E}(\bar{x})=F\left(\bar{x}, \nu^{E}(\bar{x})\right) \nabla_{p} F^{\circ}(\bar{x}, \bar{z})$, which is equivalent to (6). The last identity is obvious from the arguments above, so that we only need to show that

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \frac{D \chi_{E_{\rho}}\left(B_{1}\right)}{\left|D \chi_{E_{\rho}}\right|\left(B_{1}\right)}=\bar{\nu} . \tag{7}
\end{equation*}
$$

Assume we can show that

$$
\begin{equation*}
\lim _{\rho \rightarrow 0}\left|D \chi_{E_{\rho}}\right|\left(B_{R}\right)=\left|D \chi_{\bar{E}}\right|\left(B_{R}\right) \quad\left(=\omega_{d-1} R^{d-1}\right) \tag{8}
\end{equation*}
$$

for any $R>0$, then for any $\psi \in C_{c}^{\infty}\left(B_{R} ; \mathbb{R}^{d}\right)$ we would get

$$
\begin{aligned}
& \frac{1}{\left|D \chi_{E_{\rho}}\right|\left(B_{R}\right)} \int_{B_{R}} \psi \cdot D \chi_{E_{\rho}}=-\frac{1}{\left|D \chi_{E_{\rho}}\right|\left(B_{R}\right)} \int_{B_{R} \cap E_{\rho}} \operatorname{div} \psi(x) d x \\
& \longrightarrow-\frac{1}{\left|D \chi_{\bar{E}}\right|\left(B_{R}\right)} \int_{B_{R} \cap \bar{E}} \operatorname{div} \psi(x) d x=\frac{1}{\left|D \chi_{\bar{E}}\right|\left(B_{R}\right)} \int_{B_{R}} \psi \cdot D \chi_{\bar{E}}
\end{aligned}
$$

and deduce that the measure $D \chi_{E_{\rho}} /\left(\left|D \chi_{E_{\rho}}\right|\left(B_{R}\right)\right)$ weakly-* converges to $D \chi_{\bar{E}} /\left(\left|D \chi_{\bar{E}}\right|\left(B_{R}\right)\right)$. Using again (8)), we then obtain that

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \frac{D \chi_{E_{\rho}}\left(B_{R}\right)}{D \chi_{E_{\rho}} \mid\left(B_{R}\right)}=\bar{\nu} \tag{9}
\end{equation*}
$$

[^1]for almost every $R>0$. Since $D \chi_{E_{\rho}}\left(B_{\mu R}\right) /\left(\left|D \chi_{E_{\rho}}\right|\left(B_{\mu R}\right)\right)=D \chi_{E_{\rho / \mu}}\left(B_{R}\right) /\left(\left|D \chi_{E_{\rho / \mu}}\right|\left(B_{R}\right)\right)$ for any $\mu>0,(9)$ holds in fact for any $R>0$ and (7) follows, so that $\bar{x} \in \partial^{*} E$.
It remains to show (8). First, we observe that, by minimality of E_{ρ} and \bar{E} plus the Hausdorff convergence of ∂E_{ρ} in balls, we can easily show the convergence of the energies
\[

$$
\begin{aligned}
\lim _{\rho \rightarrow 0} \int_{\partial E_{\rho} \cap B_{R}} F\left(\bar{x}+\rho y, \nu^{E_{\rho}}(y)\right) d \mathscr{H}^{d-1}(y)+\rho \int_{E_{\rho} \cap B_{R}} & g_{\rho}(y) d y \\
& =\int_{\partial \bar{E} \cap B_{R}} F\left(\bar{x}, \nu^{\bar{E}}(y)\right) d \mathscr{H}^{d-1}(y)
\end{aligned}
$$
\]

and, by the continuity of F,

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \int_{\partial E_{\rho} \cap B_{R}} F\left(\bar{x}, \nu^{E_{\rho}}(y)\right) d \mathscr{H}^{d-1}(y)=\int_{\partial \bar{E} \cap B_{R}} F\left(\bar{x}, \nu^{\bar{E}}(y)\right) d \mathscr{H}^{d-1}(y) . \tag{10}
\end{equation*}
$$

Then, (7) follows from Reshetnyak's continuity theorem where, instead of using the Euclidean norm as reference norm, we use the uniformly convex norm $F(\bar{x}, \cdot)$ and the convergence of the measures $F\left(\bar{x}, D \chi_{E_{\rho}}\right)$ to $F\left(\bar{x}, D \chi_{\bar{E}}\right)$ (see $\left.[15,11]\right)$.

In dimension 2 and 3 we can also show the reverse implication, proving that regular points of the boundary corresponds to Lebesgue points of the calibration. The idea is to show that the parameters r, ρ in Proposition 2.8 can be taken of the same order.

Theorem 3.8. Assume the dimension is $d=2$ or $d=3$. Let x, s be as in Proposition 3.5, E be a minimizer of (2) and assume $x \in \partial^{*} E$. Then x is a Lebesgue point of z and

$$
z(x)=\nabla_{p} F\left(x, \nu^{E}\right) .
$$

Proof. We divide the proof into two steps.
Step 1. We first consider anisotropies F which are not depending on the x variable. Without loss of generality we assume $x=0$. By assumption, there exists the limit

$$
\begin{equation*}
\bar{\nu}=\lim _{\rho \rightarrow 0} \frac{D \chi_{E}\left(B_{\rho}(0)\right)}{\left|D \chi_{E}\right|\left(B_{\rho}(0)\right) \mid} \tag{11}
\end{equation*}
$$

and, without loss of generality, we assume that it coincides with the vector e_{d} corresponding to the last coordinate of $y \in \mathbb{R}^{d}$.
Also, if we let $E_{\rho}=E / \rho$, the sets $E_{\rho}, E_{\rho}^{c}, \partial E_{\rho}$ converge in $B_{1}(0)$, in the Hausdorff sense (thanks to the uniform density estimates), respectively to $\left\{y_{d} \geq 0\right\},\left\{y_{d}=0\right\},\left\{y_{d} \leq 0\right\}$. We also let $z_{\rho}(y)=z(\rho y)$ and $g_{\rho}(y)=g(\rho y)$, in particular $-\operatorname{div} z_{\rho}=\rho g_{\rho}$. We let

$$
\begin{equation*}
\omega(\rho)=\sup _{x \in \Omega}\|g\|_{L^{d}\left(B_{\rho}(x) \cap \Omega\right)} \tag{12}
\end{equation*}
$$

which is continuously increasing and goes to 0 as $\rho \rightarrow 0$, since $|g|^{d}$ is equi-integrable.
We introduce the following notation: a point in \mathbb{R}^{d} is denoted by $y=\left(y^{\prime}, y_{d}\right)$, with $y^{\prime} \in \mathbb{R}^{d-1}$. We let $D_{s}:=\left\{\left|y^{\prime}\right| \leq s\right\}, \bar{z}:=\nabla F(\bar{\nu})$ and $D_{s}^{t}=\left\{D_{s}+\lambda \bar{z}:|\lambda| \leq t\right\}$ and denote with ∂D_{s} the relative boundary of D_{s} in $\left\{y_{d}=0\right\}$.
We choose $s \leq 1,0<t \leq s$, $\left(t\right.$ is chosen small enough so that $D_{s}^{t} \subset B_{1}(0)$, that is $\left.t<(1 /|\bar{z}|) \sqrt{1-s^{2}}\right)$. We integrate in D_{s}^{t} the divergence $\rho g_{\rho}=-\operatorname{div} z_{\rho}=\operatorname{div}\left(\bar{z}-z_{\rho}\right)$ against the function $\left(2 \chi_{E}-1\right) t-\frac{\bar{\nu} \cdot y}{F(\bar{\nu})}$, which vanishes for $y_{d}= \pm t F(\bar{\nu})$ if ρ is small enough (given $t>0$), so that $\partial E_{\rho} \cap B_{1}(0) \subset\left\{\left|y_{d}\right| \leq t F(\bar{\nu})\right\}$. For y on the lateral boundary of the cylinder D_{s}^{t}, let $\xi(y)$ be the internal normal to $\partial D_{s}+(-t, t) \bar{z}$ at the point y. Using the fact that z_{ρ} is a calibration for E_{ρ}, we easily get that for almost all s,

$$
\begin{align*}
& \int_{D_{s}^{t}} \rho g_{\rho}\left(\left(2 \chi_{E}-1\right) t-\frac{\bar{\nu} \cdot y}{F(\bar{\nu})}\right) d y \\
&= \int_{\partial D_{s}+(-t, t) \bar{z}}\left(\left(2 \chi_{E}-1\right) t-\frac{\bar{\nu} \cdot y}{F(\bar{\nu})}\right)\left[\left(\bar{z}-z_{\rho}\right), \xi(y)\right] d \mathscr{H}^{d-1} \\
& \quad-2 t \int_{\partial E_{\rho} \cap D_{s}^{t}}\left(\bar{z} \cdot \nu^{E_{\rho}}-F\left(\nu^{E_{\rho}}\right)\right) d \mathscr{H}^{d-1}+\int_{D_{s}^{t}}\left(1-\frac{z_{\rho} \cdot \bar{\nu}}{F(\bar{\nu})}\right) d y \tag{13}
\end{align*}
$$

Now since $F^{\circ}(\nabla F(\bar{\nu}))=1$, there holds $\bar{z} \cdot \nu^{E_{\rho}}-F\left(\nu^{E_{\rho}}\right) \leq 0$ and using that $\bar{z} \cdot \xi(y)=0$ on $\partial D_{s}+(-t, t) \bar{z}$, we get

$$
\begin{align*}
& \int_{D_{s}^{t}}\left(1-\frac{z_{\rho} \cdot \bar{\nu}}{F(\bar{\nu})}\right) d y \leq \int_{D_{s}^{t}} \rho g_{\rho}\left(\left(2 \chi_{E}-1\right) t-\frac{\bar{\nu} \cdot y}{F(\bar{\nu})}\right) d y \\
& \int_{\partial D_{s}+(-t, t) \bar{z}}\left(\left(2 \chi_{E}-1\right) t-\frac{\bar{\nu} \cdot y}{F(\bar{\nu})}\right) z_{\rho} \cdot \xi(y) d \mathscr{H}^{d-1} \tag{14}
\end{align*}
$$

We claim that for $|\xi| \leq 1$ with $\xi \cdot \bar{z}=0$, there holds

$$
\begin{equation*}
\left(\xi \cdot z_{\rho}\right)^{2} \leq C\left(F(\bar{\nu})-\bar{\nu} \cdot z_{\rho}\right) \tag{15}
\end{equation*}
$$

Since

$$
\left(\xi \cdot z_{\rho}\right)^{2} \leq\left|z_{\rho}\right|^{2}-\left[z_{\rho} \cdot(\bar{z} /|\bar{z}|)\right]^{2}
$$

it is enough to prove

$$
\left|z_{\rho}\right|^{2}-\left[z_{\rho} \cdot(\bar{z} /|\bar{z}|)\right]^{2} \leq C\left(F(\bar{\nu})-\bar{\nu} \cdot z_{\rho}\right)
$$

Using that $\bar{\nu} / F(\bar{\nu})=\nabla F^{\circ}(\bar{z})$, from (5) applied to F° together with $F^{\circ}(\bar{z})=1 \geq F^{\circ}\left(z_{\rho}\right)$, we find

$$
\left(F(\bar{\nu})-\bar{\nu} \cdot z_{\rho}\right)=F(\bar{\nu})\left(1-z_{\rho} \cdot \nabla F^{\circ}(\bar{z})\right) \geq C\left|z_{\rho}-\bar{z}\right|^{2}
$$

which readily implies (15). We thus have

$$
\begin{align*}
\int_{\partial D_{s}+(-t, t) \bar{z}} & \left(\left(2 \chi_{E_{\rho}}-1\right) t-\frac{\bar{\nu} \cdot y}{F(\bar{\nu})}\right)\left(z_{\rho} \cdot \xi\right) d \mathscr{H}^{d-1} \\
& \leq 2 C \sqrt{F(\bar{\nu})} t \int_{\partial D_{s}+(-t, t) \bar{z}} \sqrt{1-\frac{z_{\rho} \cdot \bar{\nu}}{F(\bar{\nu})}} d \mathscr{H}^{d-1} \\
& \leq 2 C F(\bar{\nu}) t \sqrt{t}\left(\int_{\partial D_{s}+(-t, t) \bar{z}}\left(1-\frac{z_{\rho} \cdot \bar{\nu}}{F(\bar{\nu})}\right) d \mathscr{H}^{d-1}\right)^{\frac{1}{2}} \sqrt{\mathscr{H}^{d-2}\left(\partial D_{s}\right)} . \tag{16}
\end{align*}
$$

Now, we also have

$$
\begin{align*}
& \rho \int_{D_{s}^{t}}\left(\left(2 \chi_{E_{\rho}}-1\right) t-\frac{\bar{\nu} \cdot y}{F(\bar{\nu})}\right) g_{\rho}(y) d y \leq 2 t \rho^{1-d} \int_{D_{\rho s}^{\rho t}} g(x) d x \\
& \leq 2 t \rho^{1-d}\|g\|_{L^{d}\left(B_{\rho s}(0)\right)}\left|D_{\rho s}^{\rho t}\right|^{1-1 / d} \leq c t^{2-1 / d} s^{d-2+1 / d} \omega(\rho s) \tag{17}
\end{align*}
$$

where here, $c=2 \mathscr{H}^{d-1}\left(D_{1}\right)^{1-1 / d}$, and ω is defined in (12).
We choose $a<1$, close to 1 , and choose $t \in\left(0,(1 /|\bar{z}|) \sqrt{1-a^{2}}\right)$. If $\rho>0$ is small enough (so that $\partial E_{\rho} \cap B_{1}$ is in $\left.\left\{\left|y_{d}\right| \leq t F(\bar{\nu})\right\}\right)$, letting $f(s):=\int_{D_{s}^{t}}\left(1-\frac{z_{\rho} \cdot \bar{\nu}}{F(\bar{\nu})}\right) d y$, we deduce from (14), (16) and (17) that for a.e. s with $t \leq s \leq a$, one has (possibly increasing the constant c)

$$
\begin{equation*}
f(s)^{2} \leq c\left(s^{d-2} t^{3} f^{\prime}(s)+t^{4-2 / d} s^{2 d-4+2 / d} \omega(\rho s)^{2}\right) \tag{18}
\end{equation*}
$$

Unfortunately, this estimate does not give much information for $d>3$. It seems it allows to conclude only whenever $d \in\{2,3\}$. Since the case $d=2$ is simpler, we focus on $d=3$. Estimate (18) becomes

$$
\begin{equation*}
f(s)^{2} \leq c\left(s t^{3} f^{\prime}(s)+t^{10 / 3} s^{8 / 3} \omega(\rho s)^{2}\right) \tag{19}
\end{equation*}
$$

Given $M>0$, we fix a value $t>0$ such that $\log (a / t) \geq c M$. If ρ is chosen small enough, then $\partial E_{\rho} \cap B_{1}(0) \subset\left\{\left|y_{d}\right|<t F(\bar{\nu})\right\}$, and (19) holds. It yields (assuming $f(t)>0$, but if not, then the Proposition is proved)

$$
\begin{equation*}
-\frac{f^{\prime}(s)}{f(s)^{2}}+\frac{1}{c t^{3}} \frac{1}{s} \leq c t^{1 / 3} s^{5 / 3} \frac{\omega(\rho s)^{2}}{f(s)^{2}} \leq c t^{1 / 3} s^{5 / 3} \frac{\omega(a \rho)^{2}}{f(t)^{2}} \tag{20}
\end{equation*}
$$

where we have used the fact that $t \leq s \leq a$ and f, ω are nondecreasing. Integrating (20) from t to a, after multiplication by t^{3} we obtain

$$
\frac{t^{3}}{f(a)}-\frac{t^{3}}{f(t)}+\frac{\log (a / t)}{c} \leq \frac{3 c}{8} t^{10 / 3}\left(a^{8 / 3}-t^{8 / 3}\right) \frac{\omega(a \rho)^{2}}{f(t)^{2}} .
$$

Hence we get

$$
\begin{equation*}
\frac{t^{3}}{f(t)}+c a^{8 / 3} t^{-8 / 3} \omega(a \rho)^{2} \frac{t^{6}}{f(t)^{2}} \geq M \tag{21}
\end{equation*}
$$

Eventually, we observe that

$$
f(t)=\int_{D_{t}^{t}}\left(1-\frac{z(\rho y) \cdot \bar{\nu}}{F(\bar{\nu})}\right) d y=\frac{1}{\rho^{d}} \int_{D_{\rho t}^{\rho t}}\left(1-\frac{z(x) \cdot \bar{\nu}}{F(\bar{\nu})}\right) d x
$$

so that (21) can be rewritten

$$
\begin{equation*}
\left(\frac{\int_{D_{\rho t}^{\rho t}}\left(1-\frac{z(x) \cdot \bar{\nu}}{F(\bar{\nu})}\right) d x}{(\rho t)^{3}}\right)^{-1} \geq \frac{-1+\sqrt{1+4 M c a^{8 / 3} t^{-8 / 3} \omega(a \rho)^{2}}}{2 c a^{8 / 3} t^{-8 / 3} \omega(a \rho)^{2}} \tag{22}
\end{equation*}
$$

The value of t being fixed, we can choose the value of ρ small enough in order to have $4 M c a^{8 / 3} t^{-8 / 3} \omega(a \rho)^{2}<1$, and (using $\sqrt{1+X} \geq 1+X / 2-X^{2} / 8$ if $X \in(0,1)$), (22) yields

$$
\begin{equation*}
\left(\frac{\int_{D_{\rho t}^{\rho t}}\left(1-\frac{z(x) \cdot \bar{\nu}}{F(\bar{\nu})}\right) d x}{(\rho t)^{3}}\right)^{-1} \geq M-M^{2} c a^{8 / 3} t^{-8 / 3} \omega(a \rho)^{2} \geq \frac{3}{4} M \tag{23}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} \frac{\int_{D_{\varepsilon}^{\varepsilon}}\left(1-\frac{z(x) \cdot \bar{\nu}}{F(\bar{\nu})}\right) d x}{\varepsilon^{3}} \leq \frac{4}{3} M^{-1} \tag{24}
\end{equation*}
$$

and since M is arbitrary, 0 is indeed a Lebesgue point of z, with value $\bar{z}=\nabla F(\bar{\nu})$ (recall that $\left.1-\frac{z(x) \cdot \bar{\nu}}{F(\bar{\nu})} \geq(C / F(\bar{\nu}))|z(x)-\bar{z}|^{2}\right)$.
Step 2. When F depends also on the x variable, the proof follows along the same lines as in Step 1, taking into account the errors terms in (14) and (16). Keeping the same notations as in Step 1 and setting $\bar{z}:=\nabla_{p} F(0, \bar{\nu})$ we find that since $F^{\circ}(0, \bar{z}) \leq 1$, there holds $\bar{z} \cdot \nu^{E_{\rho}} \leq F\left(0, \nu^{E_{\rho}}\right)$ and thus

$$
\int_{\partial E_{\rho} \cap D_{s}^{t}} \bar{z} \cdot \nu^{E_{\rho}}-F\left(\rho x, \nu^{E_{\rho}}\right) d \mathscr{H}^{d-1} \leq \int_{\partial E_{\rho} \cap D_{s}^{t}}\left|F\left(0, \nu^{E_{\rho}}\right)-F\left(\rho x, \nu^{E_{\rho}}\right)\right| d \mathscr{H}^{d-1} \leq C \rho s^{d-1}
$$

where the last inequality follows from $t \leq s$ and the minimality of E_{ρ} inside D_{s}^{t}. Now since

$$
\left(F^{\circ}\right)^{2}\left(0, z_{\rho}\right)-\left(F^{\circ}\right)^{2}\left(\rho x, z_{\rho}\right) \geq\left(F^{\circ}\right)^{2}\left(0, z_{\rho}\right)-1 \geq 2 \frac{\bar{\nu}}{F(0, \bar{\nu})} \cdot\left(z_{\rho}-z\right)+\delta^{2}\left|z_{\rho}-z\right|^{2}
$$

we find that (15) transforms into,

$$
\left(\xi \cdot z_{\rho}\right)^{2} \leq C\left[\left(F(0, \bar{\nu})-\bar{\nu} \cdot z_{\rho}\right)+\left(\left(F^{\circ}\right)^{2}\left(0, z_{\rho}\right)-\left(F^{\circ}\right)^{2}\left(\rho x, z_{\rho}\right)\right)\right]
$$

for every $|\xi| \leq 1$ and $\xi \cdot \bar{z}=0$, from which we get

$$
\begin{aligned}
& \int_{\partial D_{s}+(-t, t) \bar{z}}\left(\left(2 \chi_{E_{\rho}}-1\right) t-\frac{\bar{\nu} \cdot y}{F(\bar{\nu})}\right)\left(z_{\rho} \cdot \xi\right) d \mathscr{H}^{d-1} \\
& \leq 2 C F(0, \bar{\nu}) t \sqrt{t}\left(\int_{\partial D_{s}+(-t, t) \bar{z}}\left(1-\frac{z_{\rho} \cdot \bar{\nu}}{F(0, \bar{\nu})}\right) d \mathscr{H}^{d-1}\right)^{\frac{1}{2}} \sqrt{\mathscr{H}^{d-2}\left(\partial D_{s}\right)} \\
& \quad+2 C t \int_{\partial D_{s}+(-t, t) \bar{z}}\left|\left(F^{\circ}\right)^{2}\left(0, z_{\rho}\right)-\left(F^{\circ}\right)^{2}\left(\rho x, z_{\rho}\right)\right|^{1 / 2} d \mathscr{H}^{d-1} \\
& \leq C F(0, \bar{\nu}) t \sqrt{t}\left(\int_{\partial D_{s}+(-t, t) \bar{z}}\left(1-\frac{z_{\rho} \cdot \bar{\nu}}{F(0, \bar{\nu})}\right) d \mathscr{H}^{d-1}\right)^{\frac{1}{2}} \sqrt{\mathscr{H}^{d-2}\left(\partial D_{s}\right)}+C t \rho^{1 / 2} s^{d-1} t .
\end{aligned}
$$

Using these estimates, we finally get that, setting as before $f(s):=\int_{D_{s}^{t}}\left(1-\frac{z_{\rho} \cdot \bar{\nu}}{F(0, \bar{\nu})}\right) d y$, there holds

$$
f(s)^{2} \leq c\left(s^{d-2} t^{3} f^{\prime}(s)+t^{4-2 / d} s^{2 d-4+2 / d} \omega(\rho s)^{2}+\rho t s^{d-1}+\rho^{1 / 2} t^{2} s^{d-1}\right)
$$

From this inequality, the proof can be concluded exactly as in Step 1.
Eventually, we can also give a locally uniform convergence result.
Proposition 3.9. For all $x \in \Omega$ we let

$$
z_{\rho}(x):=\frac{1}{\left|B_{\rho}(0)\right|} \int_{B_{\rho}(x) \cap \Omega} z(y) d y
$$

Then, $F^{\circ}\left(x, z_{\rho}(x)\right) \rightarrow 1$ locally uniformly on S.
Proof. Given $K \subset \Omega$ a compact set, we can check that for any $t>0$, there exists $\rho_{0}>0$ such that for any $x \in K \cap S$, if E^{x} is the level set of u through x, then for any $\rho \leq \rho_{0}$, the boundary of $\left(E^{x}-x\right) / \rho \cap B_{1}(0)$ lies in a strip of width $2 t$, that is, there is $\bar{\nu}^{x} \in \mathbb{S}^{d-1}$ with $\left.\partial\left(\left(E^{x}-x\right) / \rho\right) \cap B_{1}(0) \subset\left\{\left|y \cdot \bar{\nu}^{x}\right| \leq t\right\}\right)$.
Indeed, if this is not the case, one can find $t>0, \rho_{k} \rightarrow 0, x_{k} \in K \cap S$, such that $\partial\left(\left(E^{x_{k}}-\right.\right.$ $\left.\left.x_{k}\right) / \rho_{k}\right) \cap B_{1}(0)$ is not contained in any strip of width $2 t$. Up to a subsequence we may assume that $x_{k} \rightarrow x \in K \cap S$, and from the bound on the perimeter, that $\left(E^{x_{k}}-x_{k}\right) / \rho_{k} \cap B_{1}(0)$ converges to a local minimizer of $\int_{\partial E} F\left(0, \nu^{E}\right) d \mathscr{H}^{d-1}$ and is thus a halfspace. ${ }^{2}$ Moreover, $\partial\left(\left(E^{x_{k}}-x_{k}\right) / \rho_{k}\right) \cap B_{1}(0)$ converges in the Hausdorff sense (thanks to the density estimates) to a hyperplane. We easily obtain a contradiction.
The thesis follows when we observe that the proof of Proposition 3.8 can be reproduced by replacingthe direction $\nu^{E^{x}}(x)$ (which exists only if x lies in the reduced boundary of E^{x}) with the direction $\bar{\nu}^{x}$ given above.

[^2]
3.3 A counterexample.

We provide an example where $g \in L^{d-\varepsilon}(\Omega)$, with $\varepsilon>0$ arbitrarily small, and Theorem 3.8 does not hold.
Let $\Omega=B_{1}(0)$ be the unit ball of \mathbb{R}^{d} and let $E=\Omega \cap\left\{x_{d} \leq 0\right\}$. We shall construct a vector field $z: \Omega \rightarrow \mathbb{R}^{d}$ such that $z=\nu^{E}$ on $\partial E \cap \Omega,|z| \leq 1$ everywhere in Ω, $\operatorname{div} z \in L^{d-\varepsilon}(\Omega)$, but 0 is not a Lebesgue point of z. Notice that E minimizes the functional (3) with $g=\operatorname{div} z$.
Letting $r_{n} \rightarrow 0$ be a decreasing sequence to be determined later, and let $B_{n}=B_{r_{n}}\left(x_{n}\right)$ with $x_{n}=2 r_{n} e_{d}$. Without loss of generality, we may assume $r_{n+1}<r_{n} / 4$ so that the balls B_{n} are all disjoint. We define the vector field z as follows: $z(x)=e_{d}$ if $x \in \Omega \backslash \cup_{n} B_{n}$, and $z(x)=\left|x-x_{n}\right| e_{d}$ if $x \in B_{n}$. It follows that $\operatorname{div} z=0$ in $\Omega \backslash \cup_{n} B_{n}$ and $|\operatorname{div} z| \leq 1 / r_{n}$ in B_{n}, so that

$$
\int_{\Omega}|\operatorname{div} z|^{d-\varepsilon} d x=\sum_{n} \int_{B_{n}}|\operatorname{div} z|^{d-\varepsilon} d x \leq \omega_{d} \sum_{n} r_{n}^{\varepsilon}<+\infty
$$

if we choose r_{n} converging to zero sufficiently fast, so that $g=-\operatorname{div} z \in L^{d-\varepsilon}(\Omega)$.
However, since $z \cdot e_{d} \leq 1 / 2$ in $B_{r_{n} / 2}\left(x_{n}\right)$, we also have

$$
\int_{B_{3 r_{n}}(0)} z \cdot e_{d} d x \leq\left|B_{3 r_{n}}(0)\right|-\frac{1}{2}\left|B_{r_{n} / 2}\left(x_{n}\right)\right|
$$

so that

$$
\frac{1}{\left|B_{3 r_{n}}(0)\right|} \int_{B_{3 r_{n}}(0)} z \cdot e_{d} d x \leq 1-\frac{1}{6^{d}}<1 .
$$

On the other hand, for $\delta \in\left(0,1 / 6^{d}\right)$ we have

$$
\frac{1}{\left|B_{r_{n}}(0)\right|} \int_{B_{r_{n}}(0)} z \cdot e_{d} d x \geq \frac{1}{\left|B_{r_{n}}(0)\right|}\left(\left|B_{r_{n}}(0)\right|-\sum_{i=n+1}^{\infty}\left|B_{r_{i}}\left(x_{i}\right)\right|\right) \geq 1-\delta
$$

if we take the sequence r_{n} converging to 0 sufficiently fast. It follows that 0 is not a Lebesgue point of z.

References

[1] F.J. Almgren, R. Schoen, L. Simon, Regularity and singularity estimates on hypersurfaces minimizing elliptic variational integrals, Acta Math., 139 (1977), 217-265.
[2] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Science Publications, 2000.
[3] L. Ambrosio, E. Paolini, Partial regularity for quasi minimizers of perimeter, Ricerche Mat. 48 (1999), suppl., 167-186.
[4] F. Andreu-Vaillo, V. Caselles, J.M. Mazòn, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, collection "Progress in Mathematics" 223, Birkhäuser, 2004.
[5] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Annali di Matematica Pura ed Applicata, 135 (1983), 1, 293-318.
[6] G. Anzellotti, On the minima of functionals with linear growth, Rend. Sem. Mat. Univ. Padova 75 (1986), 91-110.
[7] G. Anzellotti, Traces of bounded vector fields and the divergence theorem, unpublished.
[8] E. Barozzi, E. Gonzalez, I. Tamanini, The mean curvature of a set of finite perimeter, Proc. Amer. Math. Soc. 99 (1987), no. 2, 313-316.
[9] G. Bouchitté, G. Dal Maso, Integral representation and relaxation of convex local functionals on $B V(\Omega)$ Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), no. 4, 483533.
[10] A. Chambolle, An algorithm for mean curvature motion, Interfaces Free Bound. 6 (2006), no. 2, 195-218.
[11] A. Chambolle, M. Goldman, M. Novaga, Plane-like minimizers and differentiability of the stable norm, Preprint (2012).
[12] E. Gonzalez, U. Massari Variational mean curvatures, Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), no. 1, 1-28.
[13] U. Massari, Frontiere orientate di curvatura media assegnata in L^{p} (Italian), Rend. Sem. Mat. Univ. Padova 53 (1975), 37-52.
[14] E. Paolini, Regularity for minimal boundaries in \mathbb{R}^{n} with mean curvature in L^{n}, Manuscripta Math. 97 (1998), no. 1, 15-35.
[15] Y.G. Reshetnyak, Weak Convergence of Completely Additive Vector Functions on a Set, Siberian Math. J. 9 (1968), 1386-1394.
[16] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, Cambridge university Press, 1993.
[17] R. Temam, Problèmes mathématiques en plasticité (French), Méthodes Mathématiques de l'Informatique, 12, Gauthier-Villars, Montrouge, 1983.
[18] B. White, Existence of smooth embedded surfaces of prescribed topological type that minimize parametric even elliptic functionals on three-manifolds, J. Diff. Geometry, 33 (1991), 413-443.

[^0]: * CMAP, Ecole Polytechnique, CNRS, Palaiseau, France, email: antonin.chambolle@cmap.polytechnique.fr
 ${ }^{\dagger}$ Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstrasse 22, 04103 Leipzig, Germany, email: goldman@mis.mpg.de, funded by a Von Humboldt PostDoc fellowship
 ${ }^{\ddagger}$ Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy, email: novaga@math.unipd.it

[^1]: ${ }^{1}$ We use here that $F(\bar{x}, \cdot) \nabla F(\bar{x}, \cdot)=\left[F^{\circ}(\bar{x}, \cdot) \nabla F^{\circ}(\bar{x}, \cdot)\right]^{-1}$, so that $\bar{z}=\nabla F\left(\bar{x}, \nu^{\bar{E}}(y)\right)$ implies both $F^{\circ}(\bar{x}, \bar{z})=1$ and $\nu^{\bar{E}}(y) / F\left(\bar{x}, \nu^{\bar{E}}\right)(y)=\nabla F^{\circ}(\bar{x}, \bar{z})$

[^2]: ${ }^{2}$ If $d=2$, this Bernstein result readily follows from the strict convexity of F, see [11, Prop 3.6] whereas for $d=3$, see [18]. In the case of the area i.e when $F(x, D u)=|D u|$ and $d \leq 7$, see also [12, Rem 3.2].

