Stability of crystalline evolutions

M. Novaga
Dipartimento di Matematica, Universita di Pisa,
via Buonarroti 2, 56127 Pisa, Italy

E. Paolini
Dipartimento di Matematica, Universita di Firenze,
viale Morgagni 67a, 50134 Firenze, Italy

Abstract

In this paper we analyse the stability properties of the Wulff-shape
in the crystalline flow. It is well known that the Wulff-shape evolves
selfsimilarly, and eventually shrinks to a point. We consider the flow
restricted to the set of convex polyhedra and we show that the crys-
talline evolutions may be viewed, after a proper rescaling, as an integral
curve in the space of polyedra with fixed volume and we compute the
Jacobian matrix of this field. If the eigenvalues of such a matrix have
real part different from zero, we can determine if the Wulff-shape is
stable or unstable, i.e. if all the evolutions starting close enough to the
Wulft-shape converge or not, after rescaling, to the Wulff-shape itself.

1 Introduction

In the last few years, a considerable effort has been done in the analysis
of geometric evolution problems, like for example the mean curvature flow.
This research is motivated by various applications coming from the theory
of phase transitions and crystal growth [12], [11], and from the denoising
problem in image reconstruction [2], [7]. In some applications, particular
directions are preferred by the evolving set, thus leading to anisotropic evo-
lutions. In this paper we are concerned with a typical example of such
evolution, the so called crystalline mean curvature flow (see [11],[5],[3]).

This motion corresponds to a weighted L?-gradient flow for a (crys-
talline) surface energy of the type

Py(E) := - ¢°(v)dH" (1)
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where the function ¢° : R* — R is positive definite, positively one-homogeneous
and piecewise linear. Functions ¢° with these properties are called crys-
talline anisotropies. The fact that the function ¢° is not strictly convex
makes more difficult the study of the functional and of the related flow,
since usual elliptic operators are replaced by degenerate monotone opera-
tors.

A dual function ¢ : R* — R defined by ¢(¢) = sup{({,v) : ¢°(v) < 1},
is naturally associated to the function ¢°. The function ¢ is a crystalline
anisotropy too and its unit ball Wy, := {£ : ¢(£) < 1} is a convex polyhedron
which is usually called the Wulff-shape associated to the energy (1).

It turns out that the Wulff-shape is always a homothetic solution of the
anisotropic mean curvature flow (even if ¢° is not piecewise linear). In the
case of euclidean curvature flow for embedded curves, i.e. when ¢°(z) = |z|
and the space dimension is n = 2, Gage and Hamilton proved in [4] that
the evolution exists up to an extinction time and that, if we suitably rescale
the evolution (e.g. in such a way that the volume is kept fixed), the curves
converge to a circle. Shortly afterwards, Huisken [6] proved that any convex
set in R™ moving under the euclidean mean curvature flow, shrinks to a
point in finite time, and after rescaling converges to a ball.

Surprisingly, there are some obstructions to the extension of these results
to the crystalline setting. Despite the difficulties coming from the weak con-
vexity of the function ¢°, in two dimensions the analysis is much easier
because the evolution of a regular curve reduces to a simple ODE. For such
evolutions many properties are known, among them: the validity of a com-
parison principle and the existence of the evolution up to a maximal time
when the curve shinks to a point [5]. From the work of Stancu [9], we also
know that a stability result holds for two—dimensional crystalline evolutions;
more precisely, under the assumption that the anisotropy is symmetric, i.e.
¢°(—z) = ¢°(z), and that the Wulff-shape is not a quadrilateral, any em-
bedded regular curve converges, after rescaling, to the Wulff-shape. On
the contrary, if the Wulff-shape is a square, any rectangle shrinks selfsimi-
larly under the related crystalline flow, hence it is a stationary point for the
rescaled flow.

However, as shown in the examples discussed in [8], [10] this result is not
true in higher dimensions. For example when the Wulff-shape is a cube any
rectangular prism (also very close to Wy) has a rescaled evolution which
becomes very different from Wy, and in most of the cases converges to a
straight line or to a plane. The cube is not the only unstable Wulff-shape,
but we show that there exist many other examples.

In the present paper we study the validity of Huisken’s convergence the-



orem for crystalline anisotropies in R3. In particular we give an explicit (but
rather complicated) formula by means of which we can determine if a given
Waulff-shape is stable or unstable.

The plan of the paper is the following. As a first step we restrict ourselves
to a finite dimensional case by considering only polyhedral sets obtained from
the Wulff-shape by not to large translations of the facets. If the Wulff-shape
has N facets, every such polyhedron can be identified by a point z € RV . To
simplify the analysis we also assume that the Wulff-shape is simple, which
means that the number of facets meeting at a vertex is exactly three. We
let Q C RN be the open set of the points corresponding to all the polyhedra
considered and z € 2 be the point corresponding to the Wulff-shape. We
notice that the class of polyhedral sets is not stable under crystalline mean
curvature flow, since “facet-breaking” phenomena may occur [3], [13], hence
the evolution we study coincides with the crystalline evolution provided such
singularities do not appear, however this doesn’t happen if the evolving set
is close enough to the Wulff-shape. In this setting the crystalline evolution
of a polyhedron becomes the solution z(t) to the system of ODE’s

= k(x)

where k: Q — RY is the vector field representing the crystalline mean cur-
vature. We express this by saying that z(¢) is an integral curve of the vector
field &.

The second step is to renormalize such evolutions up to rescaling and
translation. To achieve this we consider a N — 4-dimensional manifold
M C Q which rappresents all the polyhedra which have the same volume
and the same barycenter of the Wulff-shape (so that z € M). We then
consider a projection w:  — M which maps a polyhedron z to the only
polyhedron 7(z) € M which is homothetic to z. We then show that the
rescaled evolution y(t) = w(z(t)) is itself, up to reparameterization, the in-
tegral curve of a N — 4-dimensional vector field n € T M (Theorem 3.2).
In Theorem 3.1 we point out that every other choice for rescaling (e.g. by
keeping constant the perimeter instead of the volume) is, in some sense,
equivalent.

The last step is to study the stability of the rescaled evolution § = 7(y).
Clearly n(z) = 0 since the Wulff-shape is self-similar under the crystalline
evolution. Hence the stability of the Wulff-shape can be determined by
inspecting the eigenvalues of the Jacobian matrix dn (Theorem 4.1). In fact
if the real part of all the eigenvalues is negative, then the Wulff-shape is
stable. On the other hand, if at least one eigenvalue has positive real part,



then the Wulff-shape is unstable. Notice that even if the Wulff-shape is
stable, there might be some rescaled evolutions which do not converge to
the Wulff-shape. Indeed, there are evidences of anisotropies in which the
Whulff-shape is stable but there exist different stationary solutions of the
rescaled flow [8]. In Section 4 we explain how to compute the Jacobian
matrix dn in terms of the geometry of the Wulff-shape.

We conclude the paper discussing some numerical computation in which
the eigenvalues of the Jacobian matrix are computed for some polyhedron.
The diagrams show that if the number of faces is high enough and the shape
is roughly spherical then it is likely that the Wulff-shape is stable. There
are also some evidences that the stability as well as instabilty properties are
preserved by small C°-perturbation of the W4, in particular we expect the
existence of regular and strictly convex anisotropies which do not satisfy the
convergence theorem.

Acnkowledgements. We wish to thank M. Paolini and J. Taylor for fruit-
ful discussions.

2 Notation

Let ¢ : R3 — R be a positively one-homogeneous, convex and coercive
function, i.e. suppose that

1. ¢(Mv) = Ap(v) for all v € R® and A > 0;

2. (v +w) < P(v) + p(w);
3. ¢(v) =0 if and only if v = 0.

Let Wy := {v € R® : ¢(v) < 1} be the unit ball with respect to ¢. Wy
turns out to be a convex closed neighbourhood of 0 and is usually called
Wulff-shape relative to ¢.

Let Fy :={¢ € R®: (£,v) <1 Vw € Wy}. The bracket product (-,-) is
the usual inner product of R3: ((£1,£2,¢€3), (v1,v9,v3)) 1= E'vg + E2v9 + &30,
Fy is usually called Frank Diagram and is itself a unit ball with respect to
a dual norm ¢° which is defined by

¢°(€) == §,v).

max (
B(v)<1

It can be easily proved that ¢° is again positively one-homogeneous, convex
and coercive, moreover ¢°° = ¢, Fyy = Wyo and Wy = Fo.



Given a set E C R® with lipschitz boundary, we can define its perimeter
with respect to the anisotropy ¢:

Py(E) = . ¢°(vp(z)) dH*(z).

Here vg(z) is the external unit normal to E and H? is the Hausdorff area
measure.

When ¢(z) = |z| (the usual euclidean norm of R*) we have Wy = Fj; =
B; (the closed unit ball) and P, is the usual euclidean perimeter Py(E) =
H?(OF). In this case the mean curvature of E can be viewed as minus the
gradient of Py with respect to the L?-norm of the variations of E [3].

2.1 The crystalline setting

From now on we restrict to the case when Wy (and hence Fy) is a polyhedron
(crystalline case), i.e. when the function ¢ is piecewise linear. We call a
polyhedron simple if all its vertices are the intersection of exactly three
facets; we also say that a polyhedron is simplicial if every facet has three
edges. In order to simplify the computations, we shall assume that Wy is
simple, which in turn implies that Fj is simplicial.

Notice that there is a one-to-one correspondence between the vertices of
F4 and the facets of Wy, and that the vector representing a vertex of Fy
is orthogonal to the corresponding facet of Wy. Moreover, if £ is a vertex
of Fy, then the facet of Wy corresponding to ¢ is contained in the plane
{v : (£, v) = 1} which has distance 1/|¢| from the origin.

We shall only consider sets £ which are simple convex polyhedra with
the same number of facets of Wy and such that every facet of E is parallel
to a corresponding facet of Wy. In fact E will be regarded as a variation of
Wy, obtained by moving the facets parallel to themselves. In this setting,
the space of sets we consider can be identified with an open subset of RY,
where N is the number of facets of Wj.

Let 1,...,&n be the vertices of Fy. Given z € RY we define

Ez)={veR: (&,v) <z, Vk=1,....N}={veR: E.v<z}

where = := rows{&, ..., &y} is the matrix generated by the vectors &1, ..., &n.
Notice that Wy = E(z) where z = (1,1,...,1) € RV,

So E(z) is a polyhedron with no more than N facets and it has exactly N
facets if z is close enough to Z. Given k, j,4 different indices in {1,2,..., N}



we define the facets, edges and vertices of E(x) as
Biu(o) i= {0 € (o) (61,0) = 1),
Ej(z) := Ex(z) N Ej(x), Epji(z) = Ex(z) N Ej(z) N Ei(x),
together with their measures
m(z) = H (E(z)),  my(z) = H*(By(2)),
myj(x) = H (Brj(2),  mpgi(e) := HO(Bpji(x)).
Moreover, we define the barycenters of the elements of E(z) as

) = 1 z 3Z xTr) = L z 22
@)= i 200G, w= s [ )

1 1
brj(z) == W/Ekj(w)zd?{ (2).

Finally, we consider the sets of relevant indices of facets, edges and vertices:

11:2{132)-.-’N}’ I2::{(k)])e'[%O<mk](j)<oo}’
I = {(k,j,i) € I} : my;i(z) = 1}.

Notice that my; = co only if & = j and my;; € {0,1,00}. Clearly #1; is the
number of facets of Wy, #1> is twice the number of edges and, since W is
simple, #1I3 is six times the number of vertices.

We now restrict our study to the following subset of RV :

Q:={z € R" : myj;(z) = mpji(x), V(k,j,4) € I3}.

This definition implies that for every z € Q the polyhedron E(z) has the
same number of facets, edges and vertices of Wy = E(Z). Being W simple
the set ) is open and clearly z € ).

In this finite dimensional setting the anisotropic perimeter Py is given
by

P@) = Py(B(a) = Y ¢°(¢/ e hmila) = 37 ")

kel k €l

so that P :  — RT. It turns out that € should not be considered flat.
Indeed on Q we put the Riemannian metric which corresponds to the L?-®-
norm of variations of the sets E(x). So given z € Q and v € T, = RN | we



can consider the polyhedron E(z+wv) as a variation of E(z). The L?-®-norm
of the variation is then

lolle := (Z ”j’gif) k>

k

which is induced by the following scalar product

N
mp\x
(v,w)y == Z ﬁvkwk, v,w € Tp0.
k=1 |k

This scalar product turns {2 into a Riemannian manifold of dimension N.
We can now define the crystalline curvature vector field k : Q@ — RV
simply by
k(z) == =V P(x)

where (V;P(z),v)s = >_,;(VP)jvm;/|¢] = %—f(w). So we obtain

&l B_P(:C).

m;(z) Ox;

Kkj(z) =

3 Evolution and limit shape

The mean curvature evolution flow is then given (at least for a short time,
due to possible facet-breaking phenomena) by the solution of the following

system of ODE’s:
#(t) = r(=(t)),
2
{ z(0) = zo. 2)
Given an initial data zo € € this equation has a unique solution z(t) € €2
defined on a maximal time interval [0, 7.
First of all, notice that given z € Q and ¢ € R it holds P(tz) = t>P(z)
which implies

2P(2) = & P(t)os = (VP(2), 2)e = ~(5(z),2)e.

In particular x(z) # 0 for all z € Q (recall that z € Q implies P(z) > 0).
Moreover, if z(t) is a solution to (2) we get

(@(2), z(8))a(ry = —2P(2(1)) <0,



hence there exists a time T > 0 such that

lim z(t) € 09.
t—=T—

Also notice that

& P(a(t)) = (VP(a(0), 5(a(1) 1 = ~(5(a(0), K1)zt < 0

hence P(z(t)) is a strictly decreasing function.
An important result about this evolution law is that for £y = Z the
solution to (2) is the following:

2(t) = VI~ 2z

We notice that the evolution is self similar, defined for ¢ < T' = 1/2 and
that for ¢t — T~ we get z(t) — 0 € 99Q. So the set E(z(t)) tends to {0}
(in the sense of Hausdorff convergence of sets) as ¢ — T. But we are more
interested in the shape of E(z(t)) which, in this case, is always Wy.

As limit shape we mean the limits of a sequence of compact sets up to
translation an rescaling. More precisely: given a sequence Ej, of compacts,
non-empty subsets of R3, we say that a compact set E # ) is a limit shape
of E}, if there exist a sequence \; > 0 and a sequence z € R® such that

Me(Ep —2z) > E

with respect to the Hausdorff distance of compact sets.

Obviously if F is a limit shape than also AE + z is a limit shape for all
A > 0 and z € R®. Moreover every singleton {z} is always a limit shape.
The following theorem shows that apart from these pathologies the limit
shape is unique.

Theorem 3.1. Let Ey, E, F be compact subsets of R3, let A\, ui € R, with
A, e > 0, and zp,y € R3. Suppose that

Me(Ep —x) = E, pi(Ex —yg) = F

and suppose moreover that 0 < diam FE,diam F' < +oo. Then there exist
A >0 and v € R® such that

FE+z = \F.



Proof. Let A = diam E/diam F'. Since
Apdiam Fy, = diam (Mg (Ex — zx)) — diam E,
urdiam Ey = diam (pg(Ey — yx)) — diam F
we get A\p/uk — A So
k(B — k) + Moz — yk) = (B — yk) = Aw(Ex — y) = AF

and since A\ (E—z) — E we get that Ay (zx —yx) converges to some z € R3
with £ 4+ x = A\F. O

3.1 Renormalized evolution

We now want to define translations and rescaling on  C RY. Notice that
given z € 2 and A > 0 one has Az € Q and

E(\x) = AE(x).
Given z € R3, we define the translation operator 7, : Q — € so that
E(r,(z)) = E(z) + 2.
This implies that 7, can be defined in coordinates as
(2(2))k == 2k + (k> 2)

that is 7,(z) = = + E=z.
Let now define the (N — 4)-dimensional manifold M C Q which corre-
sponds to properly rescaled polyhedra

M = {z € Q:m(z) = m(z), b(z) = b(Z)}

and let 7m: Q — M be renormalization defined as

@)= (D) (e s (o)

o=

so that m(m(z)) = m(z) and b(n(z)) = b(Z). Notice that 7(Q) = M and
that m: M — M is the identity map on M.

Our aim is to study the stability of the self-similar evolutions, where self-
simlar means here stationary for the flow up to homothety and translation.
Given a solution to %(t) = k(z(t)) we consider the rescaled evolution 7 (z(t))



and, in the following theorem, we show that this evolution can be regarded
as an integral curve in M with respect to the vector field n € T'"M given by
n(y) == dmy - (y), for all y € M. So we can study the stability of m(z(t))
by inspecting the eigenvalues of the Jacobian (N —4) x (N — 4)-dimensional
matrix dn.

Theorem 3.2. Given zg € Q let z(t) (t € [0,T)) and y(s) (s € [0,5)) be
respectively the mazimal solutions to the following Cauchy problems:

{ i(s) = r(z(s)) { 9(s) = n(y(s))
z(0) = =g y(0) = m(z0)

Then there exists a reparameterization t — s(t) such that 7w(z(t)) = y(s(t)).

Lemma 3.3. Let z € Q). Then

m(x))—i

dry - k() = (m(a‘c) dTr(z) - 5(7 ().

Proof. Let zg € 2 be a given point. Given z € () define a(z) := (m(a’c)/m(x))% €
R and B(z) = b(z) — b(x) € R®. Recall that 7(x) = a(x)7g(;)(z). Consider
the application T': 2 — Q defined by

T'(z) := a(20)Tg(zg) (7) = a(z0)(z + EB(20))-

Clearly T'(zg) = 7(zo). Moreover w(T'(z)) = w(x) for all z € Q. Differenti-
ating the last equation in zy we get

d’/'rﬁ(mo) - dTSUo = d7rw0-

Notice now that dTy = a(zg)ld and recall that k(z) = a(z)x(w(z)). So we
obtain

dmy, - k(zo) = a2(x0)d7r7r(z0) - k(m(z0))

which is the claim of the lemma. O

Proof of Theorem 3.2:
Let a(z) be defined as in Lemma 3.3 and let

s(t) = /O o2 (7)) dr.

Clearly s(t) is strictly increasing and hence invertible. Let ¢(s) be its inverse
and define



We claim that z(s) = y(s) which concludes the proof. First notice that

#(0) = 7(2(0)) = m(z0) = y(0). Being i(s) = (a(z(t(s)))) " and applying
the previous lemma we get

2(s) = 1(s)dmy(a(s)) - 5(2(4(s))) = dmys) - 6(2(s)) = 1(2(s))-

So z and y are solutions to the same Cauchy problem therefore by uniqueness
we get z = . O

4 The stability condition for W,

Let us assume that y € M corresponds to a self-similar evolving polyhedron.
By the previous results we may state this simply as 7(y) = 0 which means
that g is a fixed point of the dynamical system z = 7n(z). We know that
Z (which represents the Wulff-shape) has always this property, but in some
cases there may exist self-similar solutions different from W.

We say that  correspond to a stable self-similar evolution if there exists
p > 0 such that for any zq € B,() we have lim,_,,— 7(z(t)) = . Conversely,
we say that ¢ correspond to an unstable evolution if there exists p > 0
such that for any p’ < p there exists 2’ € By(y) and 7 = 7(z') such that
2'(7) ¢ B, (7).

The following result follows by standard analysis on nonlinear ODE’s on
manifolds, see for example [1].

Theorem 4.1. Ifn(y) = 0 and all the eigenvalues of the linear mapping dng
have strictly negative real part then y corresponds to a stable evolution. On
the other hand, if n(y) = 0 and the linear mapping dng has an eigenvalue
with strictly positive real part, then § corresponds to an unstable evolution.

We want to write an explicit formula for dng, i.e. an expression which
involves only the geometric quantities of the polyhedron E(7): the measures
and the barycenters of edges and facets.

In order to make explicit computations of the eigenvalues of dny, we
want to represent this linear mapping with an (N —4) x (N — 4) matrix. To
achieve this we consider an extension 7j: Q — RV of n € T M, defined on
the whole by the formula

7(z) := dry - k().

Then we consider any orthonormal basis (v1,...,vN—4) of TypM = drz(RY)
and let Q : TyM — RY be the (N—4) x N matrix with columns vy, ..., vN_4.
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The matrix which represents dny in these coordinate is
dng = QtdﬁgQ (3)

and we want to compute this matrix in terms of the geometric description
of the Wulff-shape. In order to accomplish this we have to compute the
matrices dmy and dijy.

Given z € €2, we have

Om(z) _ m;(z)

ozj |4l
For (k,j) € I we have
omy(z) _ ’mk.j(CU) with ay; := arccos M’
8'Tj |£]| SIN Qg |£k| |§]|
and 9 1
my () = Z cot g my; ().
Oz, 1€kl e,

From the equation % fE(w) zdz = ﬁ fEk(w) zdz we get

Oblz) _ my(a)
dur  Jexlmi()

o) _
Moreover, from e i) B(a) 747 =

[bx () — b()].

1 .
m fEkj (:1:) z dZ we obtain

Oby(x) _ 1 my;(x)
oz €] sin aj my ()

[brj(z) — bk ()],

: 2]
while from 7 fEk(w) zdz = Iéka\“’mk(x) — ﬁ Z(j,k)eh cot o fEkj(w) zdz we

get
Obp(z) _ & _ 1 B () my; ()
bo Tl Tl 2, (@)~

Finally, for (k, j,i) € I3 we have

Ompj(x) _ 1€k X &
0z; (& x &) - &l

while, for (k, j) € I,

8mkj(m) _ Z (f] X 5@) : (&k X f]) )
Oy, 1€, X &5 [(& x &) - &kl

(4,5,k)€13
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Notice that, since E(z) is simple, the last sum is composed by only two
terms. 1
Now we deal with the derivatives of 7. Recall that 7 (z) = [m(z)/m(z)] "3

{zk + & - [(Z) — b(2)]}, hence

oy (z) _ [m(:f)]_ m;(z)
Oz, m(Z) m(Z)|&;] (4)
{5 bl 6 3900~ o) by},

Ol
<.

Hl

where d;; = 1 if k = j and 0 otherwise.
We can now compute the components of dfjy = d(dr - )z, which are

01,(gy 0?2 (g 37(3 ) Okk(Y)
3:1:Z Z Bazz&vk Z Oz, Oz; (5)

where

kg(z) = —

&1 0P(z) 3 TZL/cj(iE) [€k| — |€] cos ;. (6)
(4,k)EI2 k

mg(z) Ozg () €kl €] sin cg;

So, gathering equations (4), (5) and (6) we are able to compute the ma-
trix (3) and hence the eigenvalues and eigenvectors of the linear mapping
dng in any point y € M.

5 Numerical computations

In this section we compute the eigenvalues of the matrix drnz for some class
of polyhedra, and we discuss the results. Our computation shows that, at
least in these classes, such matrix has always real eigenvalues, and we expect
this as a general property of the matrix dngz.

In Figure 1 we plot the eigenvalues corresponding to the prisms which
have a regular n-agonal basis, with n € {3,...,30}. The ratio between the
radius of the basis and the height of the prism does not affect the eigenvalues.

Both the upper and lower diagram show the eigenvalues, but the lower
one has been magnified in the y-axis. We recall that for a polyhedron with N
facets (in this case N = n + 2) the corresponding matrix dnz has dimension
(N—4) x (N—4) and hence has N —4 eigenvalues. We notice in particular
that every prism has the eigenvalue 1, which means that every prism is
unstable. Examining the corresponding eigenvector one can realize that
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Figure 1: n-agonal prisms, with n € {3,...,30}.



this instability corresponds to a “straightening” of the prism in the vertical
direction. We also notice that: the cube (n = 4) has 1 as a double eigenvalue,
the pentagonal prism has three positive eigenvalues (hence three different
instabilities), and the exagonal prism has 0 as a double eigenvalue. For
n > 7 all prims have the single eigenvalue 1, while all other eigenvalues are
negative and possibly double (hence all the other instabilities disappear).
It seems also that the set of the eigenvalues converges, as n — oo, to the
expected (infinite) set of eigenvalues for the cylinder.

In Figure 2 we plot the eigenvalues corresponding to a prism which has a
polygon with 14 sides as basis. The basis is obtained from a regular eptagon
by cutting the vertices so that every new side of the resulting 14-agon is
parallel to the sides of the regular one (which we assume has sides of length
1) and has length [ € [0,1]. So for I = 0 we have the regular eptagonal
prism, while for [ = 1 we have the regular 14-agonal prism. We observe that
the set of eigenvalues converges, as [ — 07, to the set of eigenvalues of the
regular eptagonal prism, in the sense that the first five eigenvalues converge
to the five eigenvalues of the eptagonal prism, whereas the others go to +oo.

Considering these pictures, we expect some sort of stability of the eigen-
vectors under small perturbations (in the Hausdorff distance) of the Wulff-
shape, even in the case when the Wulff-shape changes geometry. In particu-
lar we would expect that every smooth Wulff-shape which is close enough to
an unstable polyhedron is itself unstable for the corresponding anisotropic
flow.

In Figure 3 we consider a family of dodecahedra depending on a param-
eter h. All dodecahedra have two parallel horizontal facets while the angle
between the other ten facets and the vertical is given by A radians. For h = 0
the two horizontal facets are regular pentagons while the other ten facets
are triangles. For small h the two horizontal facets are decagons and the
other facets are quadrilaterals. For the other values of A the dodecahedron
is composed by pentagons. The value h ~ 0.47 gives the regular dodecahe-
dron which has two different negative eigenvalues with multiplicities 5 and
3, hence it is stable. Moreover, close enough to the regular dodecahedron,
all the eigenvalues are still negative, hence the corresponding polyhedra are
stable. This fact suggests that all polyhedra which are close enough to the
sphere should be stable. We also notice that when the dodecahedron changes
geometry (for h ~ 0.1) the curve of eigenvalues has an angle, while for all
the other values this curve is smooth.
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Figure 2: 14-agonal prisms, with every other side of length [ € [0, 1].
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Figure 3: Dodecahedron with height h € [0, 1].

17



References

[1]
2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]
[13]

V.I. Arnold. Ordinary Differential Equations. MIT Press, 1978.

G. Bellettini, V. Caselles, and M. Novaga. The total variation flow in
RN . J. Differential Equations, 184:475-525, 2002.

G. Bellettini, M. Novaga, and M. Paolini. On a crystalline variational
problem, part I: first variation and global L*-regularity. Arch. Rational
Mech. Anal., 157:165-191, 2001.

M. Gage and R.S. Hamilton. The heat equation shrinking convex plane
curves. J. Differential Geom., 23:69-96, 1986.

Y. Giga and M.E. Gurtin. A comparison theorem for crystalline evo-
lutions in the plane. Quarterly of Applied Mathematics, LIV:727-737,
1996.

G. Huisken. Flow by mean curvature of convex surfaces into spheres.
J. Differential Geom., 20:237-266, 1984.

S.J. Osher and S. Esedoglu. Decomposition of images by the anisotropic
Rudin-Osher-Fatemi model. Preprint UCLA, 2003.

M. Paolini and F. Pasquarelli. Unstable crystalline Wulff Shapes in 3D.
Progress in Nonlinear Differential Equations and Their Applications,
pages 141-153, 2002.

A. Stancu. Asymptotic behavior of solutions to a crystalline flow.
Hokkaido Math. J., 27:303-320, 1998.

J.E. Taylor. Private communication.

J.E. Taylor. Crystalline variational problems. Bull. Amer. Math. Soc.
(N.S.), 84:568-588, 1978.

A. Visintin. Models of Phase Transitions. Birkhauser, Boston, 1996.

J. Yunger. Facet stepping and motion by crystalline curvature. PhD
thesis, Rutgers University, 1998.

18



