Uniqueness for a second order gradient flow of elastic networks

Matteo Novaga and Paola Pozzi

Abstract

In a previous work by the authors a second order gradient flow of the p-elastic energy for a planar theta-network of three curves with fixed lengths was considered and a weak solution of the flow was constructed by means of an implicit variational scheme. Long-time existence of the evolution and convergence to a critical point of the energy were shown. The purpose of this note is to prove uniqueness of the weak solution when $p=2$.

Keywords: elastic flow of networks, minimizing movements, long-time existence.
MSC(2010): 35K92, 53A04, 53C44.

1 Introduction

In [1] we considered a second order gradient flow of the p-elastic energy for a planar theta-network of three curves with fixed lengths. We constructed a weak solution of the flow by means of an implicit variational scheme and showed long-time existence of the evolution and as well as convergence to a critical point of the energy. The purpose of this short note is to show uniqueness of the long-time weak solution when $p=2$.

For the sake of conciseness we refer to [1] for motivation and a list of relevant references. Let us here briefly recall the setting and state our new contribution.

We consider a theta-network composed of three inextensible planar curves. Each curve $\gamma_{i}=\gamma_{i}(s)$ of fixed length $L_{i}>0, i=1,2,3$, is parametrized by

[^0]arc-length s over the domain $\bar{I}_{i}=\left[0, L_{i}\right]$. Without loss of generality we may assume that
$$
0<L_{3} \leq \min \left\{L_{2}, L_{1}\right\}
$$

Since the network is a theta- network, the three curves satisfy the constraint

$$
\gamma_{1}(0)=\gamma_{2}(0)=\gamma_{3}(0), \quad \gamma_{1}\left(L_{1}\right)=\gamma_{2}\left(L_{2}\right)=\gamma_{3}\left(L_{3}\right)
$$

Let $T^{i}=T^{i}(s)=\gamma_{i}^{\prime}(s)=\left(\cos \theta^{i}, \sin \theta^{i}\right)$ denote the unit tangent of the curve γ_{i} and let $\boldsymbol{\kappa}_{i}=\partial_{s} T^{i}$ be the curvature vector. Letting $p \in(1,+\infty)$, the p-elastic energy of the network is defined as

$$
E_{p}(\Gamma)=\sum_{i=1}^{3} E_{p}\left(\gamma_{i}\right)
$$

where

$$
E_{p}\left(\gamma_{i}\right):=\frac{1}{p} \int_{I_{i}}\left|\boldsymbol{\kappa}_{i}\right|^{p} d s=\frac{1}{p} \int_{I_{i}}\left|\partial_{s} T^{i}\right|^{p} d s=: F_{p}\left(T^{i}\right)
$$

In [1] we studied the L^{2}-gradient flow of the energy

$$
F_{p}(\Gamma):=\sum_{i=1}^{3} F_{p}\left(T^{i}\right)
$$

when expressed in terms of the angles θ^{i} corresponding to the tangent vectors T^{i}. This gave rise to a second order parabolic system.

The long-time existence result presented in [1] reads as follows: We let

$$
\begin{array}{r}
H:=\left\{\boldsymbol{\theta}=\left(\theta^{1}, \theta^{2}, \theta^{3}\right) \in W^{1, p}\left(0, L_{1}\right) \times W^{1, p}\left(0, L_{2}\right) \times W^{1, p}\left(0, L_{3}\right) \mid\right. \\
\left.\int_{I_{1}}\left(\cos \theta^{1}, \sin \theta^{1}\right) d s=\int_{I_{2}}\left(\cos \theta^{2}, \sin \theta^{2}\right) d s=\int_{I_{3}}\left(\cos \theta^{3}, \sin \theta^{3}\right) d s\right\}
\end{array}
$$

where note that the above constraint accounts for the fact that the thetanetwork should maintain its topology along the flow.

Theorem 1 Let $\boldsymbol{\theta}_{0} \in H$ and let $T>0$. Assume that the lengths of the three curves are such that

$$
\begin{equation*}
L_{3}<\min \left\{L_{1}, L_{2}\right\} \tag{1}
\end{equation*}
$$

Then, there exist functions $\boldsymbol{\theta}=\left(\theta^{1}, \theta^{2}, \theta^{3}\right)$, with $\theta^{j} \in L^{\infty}\left(0, T ; W^{1, p}\left(I_{j}\right)\right) \cap$ $H^{1}\left(0, T ; L^{2}\left(I_{j}\right)\right)$, and Lagrange multipliers $\lambda^{1}, \lambda^{2}, \mu^{1}, \mu^{2} \in L^{2}(0, T)$ such that the following properties hold:
(i) for any $\varphi=\left(\varphi^{1}, \varphi^{2}, \varphi^{3}\right)$ with $\varphi^{j} \in L^{\infty}\left(0, T ; W^{1, p}\left(I_{j}\right)\right), j=1,2,3$, there holds

$$
\begin{align*}
& 0= \sum_{j=1}^{3} \int_{0}^{T} \int_{I_{j}} \partial_{t} \theta^{j} \varphi^{j} d s d t+\sum_{j=1}^{3} \int_{0}^{T} \int_{I_{j}}\left|\theta_{s}^{j}\right|^{p-2} \theta_{s}^{j} \cdot \varphi_{s}^{j} d s d t \\
&-\int_{0}^{T}\left(\lambda^{1}-\mu^{1}\right) \int_{I_{1}} \sin \left(\theta^{1}\right) \varphi^{1} d s d t+\int_{0}^{T}\left(\lambda^{2}-\mu^{2}\right) \int_{I_{1}} \cos \left(\theta^{1}\right) \varphi^{1} d s d t \tag{2}\\
&+\int_{0}^{T} \lambda^{1} \int_{I_{2}} \sin \left(\theta^{2}\right) \varphi^{2} d s d t-\int_{0}^{T} \lambda^{2} \int_{I_{2}} \cos \left(\theta^{2}\right) \varphi^{2} d s d t \\
&-\int_{0}^{T} \mu^{1} \int_{I_{3}} \sin \left(\theta^{3}\right) \varphi^{3} d s d t+\int_{0}^{T} \mu^{2} \int_{I_{3}} \cos \left(\theta^{3}\right) \varphi^{3} d s d t
\end{align*}
$$

(ii) the maps $\left|\partial_{s} \theta^{j}\right|^{p-2} \partial_{s} \theta^{j}$ belong to $L^{\infty}\left(0, T ; L^{\frac{p}{p-1}}\left(I_{j}\right)\right) \cap L^{2}\left(0, T ; H^{1}\left(I_{j}\right)\right)$, $j=1,2,3$, and satisfy

$$
\begin{array}{r}
\left(\left|\partial_{s} \theta^{1}\right|^{p-2} \partial_{s} \theta^{1}\right)_{s}=\theta_{t}^{1}-\left(\lambda^{1}-\mu^{1}\right) \sin \theta^{1}+\left(\lambda^{2}-\mu^{2}\right) \cos \theta^{1}, \\
\left(\left|\partial_{s} \theta^{2}\right|^{p-2} \partial_{s} \theta^{2}\right)_{s}=\theta_{t}^{2}+\lambda^{1} \sin \theta^{2}-\lambda^{2} \cos \theta^{2}, \\
\left(\left|\partial_{s} \theta^{3}\right|^{p-2} \partial_{s} \theta^{3}\right)_{s}=\theta_{t}^{3}-\mu^{1} \sin \theta^{3}+\mu^{2} \cos \theta^{3}, \\
\theta_{s}^{j}(0, t)=\theta_{s}^{j}\left(L_{j}, t\right)=0, \text { for } j=1,2,3 \text { and for a.e. } t \in(0, T) ; \tag{6}
\end{array}
$$

(iii) for all $t \in[0, T]$, there holds

$$
\begin{equation*}
\int_{I_{1}}\left(\cos \theta^{1}, \sin \theta^{1}\right) d s=\int_{I_{2}}\left(\cos \theta^{2}, \sin \theta^{2}\right) d s=\int_{I_{3}}\left(\cos \theta^{3}, \sin \theta^{3}\right) d s \tag{7}
\end{equation*}
$$

Notice that the time $T>0$ can be chosen arbitrarily, and hence Theorem 1 provides a long-time existence result.

The behavior of the solutions as $t \rightarrow+\infty$, the possible relaxation of condition (11), as well as the treatment of triods instead of theta-networks are discussed detail in [1].

Here we want to address the question of uniqueness of the above weak solution when $p=2$. Our goal is to show the following statement.
Theorem 2 Let the assumptions of Theorem 1 hold and let $p=2$. Then the solution $(\boldsymbol{\theta}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ given in Theorem 1 is unique.

Before providing the proof let us recall some important facts about the Lagrange multipliers and the solution given in Theorem 1. First of all by 1, Lemma 3.5] we have that

$$
\begin{equation*}
\sup _{(0, T)}\left\|\partial_{s} \theta^{j}\right\|_{L^{p}\left(I_{j}\right)} \leq C, \quad j=1,2,3, \tag{8}
\end{equation*}
$$

where the constant C depends on the energy of the initial data and the choice of p. By [1, Proposition 3.9], we have also a uniform bound

$$
\begin{equation*}
|\boldsymbol{\lambda}(t)|+|\boldsymbol{\mu}(t)| \leq C \tag{9}
\end{equation*}
$$

for any $t \in(0, T)$, where $\boldsymbol{\lambda}(t)=\left(\lambda^{1}(t), \lambda^{2}(t)\right), \boldsymbol{\mu}(t)=\left(\mu^{1}(t), \mu^{2}(t)\right)$. More precisely, the Lagrange multipliers solve the system

$$
\begin{align*}
\boldsymbol{\lambda} \cdot A^{2}+\boldsymbol{\mu} \cdot A^{3} & =G^{3}-G^{2} \tag{10}\\
-\boldsymbol{\lambda} \cdot\left(A^{2}+A^{1}\right)+\boldsymbol{\mu} \cdot A^{1} & =G^{2}-G^{1} \tag{11}
\end{align*}
$$

for a.e. time $t \in(0, T)$ where $A^{i}, i=1,2,3$, are the matrices

$$
A^{i}=A^{i}(t)=\left(\begin{array}{cc}
\int_{I_{i}} \sin ^{2} \theta^{i} d s & -\int_{I_{i}} \sin \theta^{i} \cos \theta^{i} d s \tag{12}\\
-\int_{I_{i}} \sin \theta^{i} \cos \theta^{i} d s & \int_{I_{i}} \cos ^{2} \theta^{i} d s
\end{array}\right)=: A^{i}\left(\theta^{i}\right)
$$

and G^{i} are the vectors

$$
\begin{equation*}
G^{i}=G^{i}\left(\theta^{i}\right):=\int_{I_{i}}\left|\partial_{s} \theta^{i}\right|^{p}\left(\cos \theta^{i}, \sin \theta^{i}\right) d s \tag{13}
\end{equation*}
$$

As discussed in (1) condition (1) yields not only the solvability of the above system, but also the bound

$$
\begin{equation*}
|\boldsymbol{\lambda}(t)|+|\boldsymbol{\mu}(t)| \leq C\left(\left|G^{3}-G^{2}\right|+\left|G^{2}-G^{1}\right|\right) \tag{14}
\end{equation*}
$$

which is crucial for the analysis. The above constants C appearing in (9) and (14) depend on the initial data, initial energy, the length of the three curves, but not on time (see [1, Lemma 2.5 and Proposition 3.9] for more details).

2 Proof of uniqueness

Here we provide the proof of Theorem 2. Let the assumptions of Theorem 1 hold and let $p=2$. Moreover let $\boldsymbol{\theta}=\left(\theta^{1}, \theta^{2}, \theta^{3}\right)$ and $\hat{\boldsymbol{\theta}}=\left(\hat{\theta}^{1}, \hat{\theta}^{2}, \hat{\theta}^{3}\right)$ with Lagrange multipliers $\left(\lambda^{1}, \lambda^{2}\right),\left(\mu^{1}, \mu^{2}\right)$ respectively $\left(\hat{\lambda}^{1}, \hat{\lambda}^{2}\right),\left(\hat{\mu}^{1}, \hat{\mu}^{2}\right)$ be two solutions to the same initial data $\boldsymbol{\theta}_{0} \in H$ and satisfying (2). Taking the difference of the two weak formulations tested with $\varphi=\left(\varphi^{1}, \varphi^{2}, \varphi^{3}\right), \varphi^{j}=$ $\left(\theta^{j}-\hat{\theta}^{j}\right) \eta_{\epsilon}, j=1,2,3$, where $\eta_{\epsilon} \in C^{\infty}([0, T],[0,1])$ is such that $\eta_{\epsilon}(t)=1$ for $t \in[0, \tau], \eta_{\epsilon}(t)=0$ for $t \in[\tau+\epsilon, T], 0<\epsilon<T-\tau$, we obtain after sending $\epsilon \rightarrow 0$ the following equation

$$
\begin{aligned}
& 0=\sum_{j=1}^{3} \int_{0}^{\tau} \int_{I_{j}}\left(\partial_{t} \theta^{j}-\partial_{t} \hat{\theta}^{j}\right)\left(\theta^{j}-\hat{\theta}^{j}\right) d s d t+\sum_{j=1}^{3} \int_{0}^{\tau} \int_{I_{j}}\left|\left(\theta_{s}^{j}-\hat{\theta}_{s}^{j}\right)\right|^{2} d s d t \\
& +\left\{-\int_{0}^{\tau}\left(\lambda^{1}-\mu^{1}\right) \int_{I_{1}} \sin \left(\theta^{1}\right)\left(\theta^{1}-\hat{\theta}^{1}\right) d s d t\right. \\
& +\int_{0}^{\tau}\left(\lambda^{2}-\mu^{2}\right) \int_{I_{1}} \cos \left(\theta^{1}\right)\left(\theta^{1}-\hat{\theta}^{1}\right) d s d t \\
& -\left(-\int_{0}^{\tau}\left(\hat{\lambda}^{1}-\hat{\mu}^{1}\right) \int_{I_{1}} \sin \left(\hat{\theta}^{1}\right)\left(\theta^{1}-\hat{\theta}^{1}\right) d s d t\right. \\
& \left.+\int_{0}^{\tau}\left(\hat{\lambda}^{2}-\hat{\mu}^{2}\right) \int_{I_{1}} \cos \left(\hat{\theta}^{1}\right)\left(\theta^{1}-\hat{\theta}^{1}\right) d s d t\right) \\
& +\int_{0}^{\tau} \lambda^{1} \int_{I_{2}} \sin \left(\theta^{2}\right)\left(\theta^{2}-\hat{\theta}^{2}\right) d s d t-\int_{0}^{\tau} \lambda^{2} \int_{I_{2}} \cos \left(\theta^{2}\right)\left(\theta^{2}-\hat{\theta}^{2}\right) d s d t \\
& -\left(\int_{0}^{\tau} \hat{\lambda}^{1} \int_{I_{2}} \sin \left(\hat{\theta}^{2}\right)\left(\theta^{2}-\hat{\theta}^{2}\right) d s d t-\int_{0}^{\tau} \hat{\lambda}^{2} \int_{I_{2}} \cos \left(\hat{\theta}^{2}\right)\left(\theta^{2}-\hat{\theta}^{2}\right) d s d t\right) \\
& -\int_{0}^{\tau} \mu^{1} \int_{I_{3}} \sin \left(\theta^{3}\right)\left(\theta^{3}-\hat{\theta}^{3}\right) d s d t+\int_{0}^{\tau} \mu^{2} \int_{I_{3}} \cos \left(\theta^{3}\right)\left(\theta^{3}-\hat{\theta}^{3}\right) d s d t \\
& \left.-\left(-\int_{0}^{\tau} \hat{\mu}^{1} \int_{I_{3}} \sin \left(\hat{\theta}^{3}\right)\left(\theta^{3}-\hat{\theta}^{3}\right) d s d t+\int_{0}^{\tau} \hat{\mu}^{2} \int_{I_{3}} \cos \left(\hat{\theta}^{3}\right)\left(\theta^{3}-\hat{\theta}^{3}\right) d s d t\right)\right\} .
\end{aligned}
$$

This gives

$$
\begin{array}{r}
\sum_{j=1}^{3} \frac{1}{2}\left\|\left(\theta^{j}-\hat{\theta}^{j}\right)(\tau)\right\|_{L^{2}\left(I_{j}\right)}^{2}+\sum_{j=1}^{3} \int_{0}^{\tau}\left\|\left(\theta_{s}^{j}-\hat{\theta}_{s}^{j}\right)(t)\right\|_{L^{2}\left(I_{j}\right)}^{2} d t \tag{15}\\
=\sum_{j=1}^{3} \frac{1}{2}\left\|\left(\theta^{j}-\hat{\theta}^{j}\right)(0)\right\|_{L^{2}\left(I_{j}\right)}^{2}-\{\ldots\}
\end{array}
$$

where the first term in the right-hand side vanishes since $\boldsymbol{\theta}$ and $\hat{\boldsymbol{\theta}}$ have the same initial data. The terms in the bracket $\{\ldots\}$ are made up of differences that are estimated in a similar way. We give here in a exemplary manner the treatment of the term

$$
J:=\int_{0}^{\tau} \lambda^{1} \int_{I_{2}} \sin \left(\theta^{2}\right)\left(\theta^{2}-\hat{\theta}^{2}\right) d s d t-\int_{0}^{\tau} \hat{\lambda}^{1} \int_{I_{2}} \sin \left(\hat{\theta}^{2}\right)\left(\theta^{2}-\hat{\theta}^{2}\right) d s d t
$$

First of all notice that

$$
\begin{array}{r}
|J| \leq\left|\int_{0}^{\tau}\left(\lambda^{1}-\hat{\lambda}^{1}\right) \int_{I_{2}} \sin \left(\theta^{2}\right)\left(\theta^{2}-\hat{\theta}^{2}\right) d s d t\right| \\
+\left|\int_{0}^{\tau} \hat{\lambda}^{1} \int_{I_{2}}\left(\sin \left(\hat{\theta}^{2}\right)-\sin \left(\theta^{2}\right)\right)\left(\theta^{2}-\hat{\theta}^{2}\right) d s d t\right| \\
\leq C \int_{0}^{\tau}\left|\lambda^{1}(t)-\hat{\lambda}^{1}(t)\right|\left\|\left(\theta^{2}-\hat{\theta}^{2}\right)(t)\right\|_{L^{2}\left(I_{2}\right)} d t \tag{16}\\
\quad+C \int_{0}^{\tau}\left\|\left(\theta^{2}-\hat{\theta}^{2}\right)(t)\right\|_{L^{2}\left(I_{2}\right)}^{2} d t
\end{array}
$$

where we have used the mean value theorem and the bound 9 in the last inequality.

To estimate the difference in the Lagrange multipliers we recall that they fulfill the system (10), for almost every time. Subtraction of the corresponding equations yield

$$
\begin{array}{r}
(\boldsymbol{\lambda}-\hat{\boldsymbol{\lambda}}) \cdot A^{2}+(\boldsymbol{\mu}-\hat{\boldsymbol{\mu}}) \cdot A^{3}=r h s 1 \\
-(\boldsymbol{\lambda}-\hat{\boldsymbol{\lambda}}) \cdot\left(A^{2}+A^{1}\right)+(\boldsymbol{\mu}-\hat{\boldsymbol{\mu}}) \cdot A^{1}=r h s 2
\end{array}
$$

where

$$
\begin{array}{r}
r h s 1=G^{3}-\hat{G}^{3}-\left(G^{2}-\hat{G}^{2}\right)+\hat{\boldsymbol{\lambda}}\left(\hat{A}^{2}-A^{2}\right)+\hat{\boldsymbol{\mu}}\left(\hat{A}^{3}-A^{3}\right) \\
r h s 2=G^{2}-\hat{G}^{2}-\left(G^{1}-\hat{G}^{1}\right)+\hat{\boldsymbol{\lambda}}\left(A^{2}+A^{1}-\hat{A}^{2}-\hat{A}^{1}\right)+\hat{\boldsymbol{\mu}}\left(\hat{A}^{1}-A^{1}\right) .
\end{array}
$$

Similarly to 14 we obtain

$$
|\boldsymbol{\lambda}-\hat{\boldsymbol{\lambda}}|+|\boldsymbol{\mu}-\hat{\boldsymbol{\mu}}| \leq C(|r h s 1|+|r h s 2|)
$$

Again we show exemplary the treatment of a few terms in the evaluation of $|r h s 1|+|r h s 2|$, since all remaining ones are estimated in a similar way. We have using the mean value theorem that

$$
\begin{array}{r}
\left|G^{3}-\hat{G}^{3}\right|=\left.\left|\int_{I_{3}}\right| \partial_{s} \theta^{3}\right|^{2}\left(\cos \theta^{3}, \sin \theta^{3}\right) d s-\int_{I_{3}}\left|\partial_{s} \hat{\theta}^{3}\right|^{2}\left(\cos \hat{\theta}^{3}, \sin \hat{\theta}^{3}\right) d s \mid \\
\leq\left|\int_{I_{3}}\left(\left|\partial_{s} \theta^{3}\right|^{2}-\left|\partial_{s} \hat{\theta}^{3}\right|^{2}\right)\left(\cos \theta^{3}, \sin \theta^{3}\right) d s\right| \\
+\left.\left|\int_{I_{3}}\right| \partial_{s} \hat{\theta}^{3}\right|^{2}\left(\cos \hat{\theta}^{3}-\cos \theta^{3}, \sin \hat{\theta}^{3}-\sin \theta^{3}\right) d s \mid \\
\leq C\left\|\left(\theta_{s}^{3}-\hat{\theta}_{s}^{3}\right)\right\|_{L_{2}\left(I_{3}\right)}\left\|\left(\theta_{s}^{3}+\hat{\theta}_{s}^{3}\right)\right\|_{L_{2}\left(I_{3}\right)}+C\left\|\hat{\theta}_{s}^{3}\right\|_{L_{2}\left(I_{3}\right)}^{2}\left\|\theta^{3}-\hat{\theta}^{3}\right\|_{L^{\infty}\left(I_{3}\right)}
\end{array}
$$

Using (8) and embedding theory yields

$$
\left|G^{3}-\hat{G}^{3}\right| \leq C\left\|\left(\theta_{s}^{3}-\hat{\theta}_{s}^{3}\right)\right\|_{L_{2}\left(I_{3}\right)}+C\left\|\left(\theta^{3}-\hat{\theta}^{3}\right)\right\|_{L_{2}\left(I_{3}\right)} .
$$

Next observe that by (9) and the mean value theorem we can compute

$$
\left|\hat{\boldsymbol{\lambda}}\left(\hat{A}^{2}-A^{2}\right)\right| \leq C \int_{I_{2}}\left|\theta^{2}-\hat{\theta}^{2}\right| d s \leq C\left\|\left(\theta^{2}-\hat{\theta}^{2}\right)\right\|_{L_{2}\left(I_{2}\right)}
$$

With similar argument as depicted above we therefore infer that

$$
\begin{array}{r}
|\boldsymbol{\lambda}(t)-\hat{\boldsymbol{\lambda}}(t)|+|\boldsymbol{\mu}(t)-\hat{\boldsymbol{\mu}}(t)| \tag{17}\\
\leq C \sum_{j=1}^{3}\left(\left\|\left(\theta_{s}^{j}-\hat{\theta}_{s}^{j}\right)(t)\right\|_{L_{2}\left(I_{j}\right)}+\left\|\left(\theta^{j}-\hat{\theta}^{j}\right)(t)\right\|_{L_{2}\left(I_{j}\right)}\right)
\end{array}
$$

for almost every time $t \in(0, T)$. Using this estimate in (16) for the evaluation of the term J we obtain by means of a ϵ-Young inequality

$$
|J| \leq \epsilon \sum_{j=1}^{3} \int_{0}^{\tau}\left\|\left(\theta_{s}^{j}-\hat{\theta}_{s}^{j}\right)(t)\right\|_{L_{2}\left(I_{j}\right)}^{2} d t+C_{\epsilon} \sum_{j=1}^{3} \int_{0}^{\tau}\left\|\left(\theta^{j}-\hat{\theta}^{j}\right)(t)\right\|_{L_{2}\left(I_{j}\right)}^{2} d t
$$

Going back to 15 and treating all remaining terms in the bracket $\{\ldots\}$ in an analogous way we finally infer

$$
\begin{array}{r}
\sum_{j=1}^{3} \frac{1}{2}\left\|\left(\theta^{j}-\hat{\theta}^{j}\right)(\tau)\right\|_{L^{2}\left(I_{j}\right)}^{2}+\sum_{j=1}^{3} \int_{0}^{\tau}\left\|\left(\theta_{s}^{j}-\hat{\theta}_{s}^{j}\right)(t)\right\|_{L^{2}\left(I_{j}\right)}^{2} d t \\
\leq \epsilon \sum_{j=1}^{3} \int_{0}^{\tau}\left\|\left(\theta_{s}^{j}-\hat{\theta}_{s}^{j}\right)(t)\right\|_{L_{2}\left(I_{j}\right)}^{2} d t+C_{\epsilon} \sum_{j=1}^{3} \int_{0}^{\tau}\left\|\left(\theta^{j}-\hat{\theta}^{j}\right)(t)\right\|_{L_{2}\left(I_{j}\right)}^{2} d t .
\end{array}
$$

Choosing ϵ sufficiently small yields

$$
\sum_{j=1}^{3}\left\|\left(\theta^{j}-\hat{\theta}^{j}\right)(\tau)\right\|_{L^{2}\left(I_{j}\right)}^{2} \leq C \sum_{j=1}^{3} \int_{0}^{\tau}\left\|\left(\theta^{j}-\hat{\theta}^{j}\right)(t)\right\|_{L_{2}\left(I_{j}\right)}^{2} d t
$$

for any $\tau \in(0, T)$. A Gronwall argument gives $\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}$ and hence by (17) also equality of the Lagrange multipliers, as claimed.

Acknowledgements MN has been supported by GNAMPA-INdAM and PP has been supported by the DFG (German Research Foundation) Projektnummer: 404870139.

References

1. Novaga, M., Pozzi, P. : A second order gradient flow of p-elastic planar networks, Preprint 2019, https://arxiv.org/abs/1905.06742
2. Okabe, S., Pozzi, P., Wheeler, G. : A gradient How for the p-elastic energy defined on closed planar curves, Math. Ann. (2019), https://doi.org/10.1007/ s00208-019-01885-6

[^0]: Matteo Novaga
 Dipartimento di Matematica, Università di Pisa, Pisa, Italy, e-mail: matteo.novaga@ unipi.it

 Paola Pozzi
 Fakultät für Mathematik, Universität Duisburg-Essen, Essen, Germany, e-mail: paola.pozzi@uni-due.de

