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Abstract In a previous work by the authors a second order gradient flow
of the p-elastic energy for a planar theta-network of three curves with fixed
lengths was considered and a weak solution of the flow was constructed by
means of an implicit variational scheme. Long-time existence of the evolution
and convergence to a critical point of the energy were shown. The purpose
of this note is to prove uniqueness of the weak solution when p = 2.
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1 Introduction

In [1] we considered a second order gradient flow of the p-elastic energy for
a planar theta-network of three curves with fixed lengths. We constructed
a weak solution of the flow by means of an implicit variational scheme and
showed long-time existence of the evolution and as well as convergence to
a critical point of the energy. The purpose of this short note is to show
uniqueness of the long-time weak solution when p = 2.

For the sake of conciseness we refer to [1] for motivation and a list of
relevant references. Let us here briefly recall the setting and state our new
contribution.

We consider a theta-network composed of three inextensible planar curves.
Each curve γi = γi(s) of fixed length Li > 0, i = 1, 2, 3, is parametrized by

Matteo Novaga
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arc-length s over the domain Īi = [0, Li]. Without loss of generality we may
assume that

0 < L3 ≤ min{L2, L1}.

Since the network is a theta- network, the three curves satisfy the constraint

γ1(0) = γ2(0) = γ3(0), γ1(L1) = γ2(L2) = γ3(L3).

Let T i = T i(s) = γ′i(s) = (cos θi, sin θi) denote the unit tangent of the
curve γi and let κi = ∂sT

i be the curvature vector. Letting p ∈ (1,+∞), the
p-elastic energy of the network is defined as

Ep(Γ ) =

3∑
i=1

Ep(γi),

where

Ep(γi) :=
1

p

ˆ
Ii

|κi|pds =
1

p

ˆ
Ii

|∂sT i|pds =: Fp(T
i).

In [1] we studied the L2-gradient flow of the energy

Fp(Γ ) :=

3∑
i=1

Fp(T
i),

when expressed in terms of the angles θi corresponding to the tangent vectors
T i. This gave rise to a second order parabolic system.

The long-time existence result presented in [1] reads as follows: We let

H :=
{
θ = (θ1, θ2, θ3) ∈W 1,p(0, L1)×W 1,p(0, L2)×W 1,p(0, L3) |ˆ

I1

(cos θ1, sin θ1)ds =

ˆ
I2

(cos θ2, sin θ2)ds =

ˆ
I3

(cos θ3, sin θ3)ds
}

where note that the above constraint accounts for the fact that the theta-
network should maintain its topology along the flow.

Theorem 1 Let θ0 ∈ H and let T > 0. Assume that the lengths of the three
curves are such that

L3 < min{L1, L2}. (1)

Then, there exist functions θ = (θ1, θ2, θ3), with θj ∈ L∞(0, T ;W 1,p(Ij)) ∩
H1(0, T ;L2(Ij)), and Lagrange multipliers λ1, λ2, µ1, µ2 ∈ L2(0, T ) such that
the following properties hold:
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(i) for any ϕ = (ϕ1, ϕ2, ϕ3) with ϕj ∈ L∞(0, T ;W 1,p(Ij)), j = 1, 2, 3,
there holds

0 =

3∑
j=1

ˆ T

0

ˆ
Ij

∂tθ
j ϕjdsdt+

3∑
j=1

ˆ T

0

ˆ
Ij

|θjs|p−2θjs · ϕjs dsdt

−
ˆ T

0

(λ1 − µ1)

ˆ
I1

sin(θ1)ϕ1dsdt+

ˆ T

0

(λ2 − µ2)

ˆ
I1

cos(θ1)ϕ1dsdt (2)

+

ˆ T

0

λ1
ˆ
I2

sin(θ2)ϕ2dsdt−
ˆ T

0

λ2
ˆ
I2

cos(θ2)ϕ2dsdt

−
ˆ T

0

µ1

ˆ
I3

sin(θ3)ϕ3dsdt+

ˆ T

0

µ2

ˆ
I3

cos(θ3)ϕ3dsdt ;

(ii) the maps |∂sθj |p−2∂sθj belong to L∞(0, T ;L
p

p−1 (Ij))∩L2(0, T ;H1(Ij)),
j = 1, 2, 3, and satisfy

(|∂sθ1|p−2∂sθ1)s = θ1t − (λ1 − µ1) sin θ1 + (λ2 − µ2) cos θ1, (3)

(|∂sθ2|p−2∂sθ2)s = θ2t + λ1 sin θ2 − λ2 cos θ2, (4)

(|∂sθ3|p−2∂sθ3)s = θ3t − µ1 sin θ3 + µ2 cos θ3, (5)

θjs(0, t) = θjs(Lj , t) = 0, for j = 1, 2, 3 and for a.e. t ∈ (0, T ); (6)

(iii) for all t ∈ [0, T ], there holds

ˆ
I1

(cos θ1, sin θ1)ds =

ˆ
I2

(cos θ2, sin θ2)ds =

ˆ
I3

(cos θ3, sin θ3)ds. (7)

Notice that the time T > 0 can be chosen arbitrarily, and hence Theorem 1
provides a long-time existence result.

The behavior of the solutions as t → +∞, the possible relaxation of con-
dition (1), as well as the treatment of triods instead of theta-networks are
discussed detail in [1].

Here we want to address the question of uniqueness of the above weak
solution when p = 2. Our goal is to show the following statement.

Theorem 2 Let the assumptions of Theorem 1 hold and let p = 2. Then the
solution (θ,λ,µ) given in Theorem 1 is unique.

Before providing the proof let us recall some important facts about the
Lagrange multipliers and the solution given in Theorem 1. First of all by [1,
Lemma 3.5] we have that

sup
(0,T )

‖∂sθj‖Lp(Ij) ≤ C, j = 1, 2, 3, (8)

where the constant C depends on the energy of the initial data and the choice
of p. By [1, Proposition 3.9], we have also a uniform bound
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|λ(t)|+ |µ(t)| ≤ C (9)

for any t ∈ (0, T ), where λ(t) = (λ1(t), λ2(t)), µ(t) = (µ1(t), µ2(t)). More
precisely, the Lagrange multipliers solve the system

λ ·A2 + µ ·A3 = G3 −G2 (10)

−λ · (A2 +A1) + µ ·A1 = G2 −G1 (11)

for a.e. time t ∈ (0, T ) where Ai, i = 1, 2, 3, are the matrices

Ai = Ai(t) =

( ´
Ii

sin2 θids −
´
Ii

sin θi cos θids

−
´
Ii

sin θi cos θids
´
Ii

cos2 θids

)
=: Ai(θi), (12)

and Gi are the vectors

Gi = Gi(θi) :=

ˆ
Ii

|∂sθi|p(cos θi, sin θi)ds. (13)

As discussed in [1] condition (1) yields not only the solvability of the above
system, but also the bound

|λ(t)|+ |µ(t)| ≤ C
(
|G3 −G2|+ |G2 −G1|

)
(14)

which is crucial for the analysis. The above constants C appearing in (9) and
(14) depend on the initial data, initial energy, the length of the three curves,
but not on time (see [1, Lemma 2.5 and Proposition 3.9] for more details).

2 Proof of uniqueness

Here we provide the proof of Theorem 2. Let the assumptions of Theorem 1
hold and let p = 2. Moreover let θ = (θ1, θ2, θ3) and θ̂ = (θ̂1, θ̂2, θ̂3) with

Lagrange multipliers (λ1, λ2), (µ1, µ2) respectively (λ̂1, λ̂2), (µ̂1, µ̂2) be two
solutions to the same initial data θ0 ∈ H and satisfying (2). Taking the
difference of the two weak formulations tested with ϕ = (ϕ1, ϕ2, ϕ3), ϕj =

(θj − θ̂j)ηε, j = 1, 2, 3, where ηε ∈ C∞([0, T ], [0, 1]) is such that ηε(t) = 1 for
t ∈ [0, τ ], ηε(t) = 0 for t ∈ [τ + ε, T ], 0 < ε < T − τ , we obtain after sending
ε→ 0 the following equation
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0 =

3∑
j=1

ˆ τ

0

ˆ
Ij

(∂tθ
j − ∂tθ̂j) (θj − θ̂j)dsdt+

3∑
j=1

ˆ τ

0

ˆ
Ij

|(θjs − θ̂js)|2 dsdt

+
{
−
ˆ τ

0

(λ1 − µ1)

ˆ
I1

sin(θ1) (θ1 − θ̂1)dsdt

+

ˆ τ

0

(λ2 − µ2)

ˆ
I1

cos(θ1) (θ1 − θ̂1)dsdt

−
(
−
ˆ τ

0

(λ̂1 − µ̂1)

ˆ
I1

sin(θ̂1) (θ1 − θ̂1)dsdt

+

ˆ τ

0

(λ̂2 − µ̂2)

ˆ
I1

cos(θ̂1) (θ1 − θ̂1)dsdt
)

+

ˆ τ

0

λ1
ˆ
I2

sin(θ2) (θ2 − θ̂2)dsdt−
ˆ τ

0

λ2
ˆ
I2

cos(θ2) (θ2 − θ̂2)dsdt

−
(ˆ τ

0

λ̂1
ˆ
I2

sin(θ̂2) (θ2 − θ̂2)dsdt−
ˆ τ

0

λ̂2
ˆ
I2

cos(θ̂2) (θ2 − θ̂2)dsdt

)
−
ˆ τ

0

µ1

ˆ
I3

sin(θ3) (θ3 − θ̂3)dsdt+

ˆ τ

0

µ2

ˆ
I3

cos(θ3) (θ3 − θ̂3)dsdt

−
(
−
ˆ τ

0

µ̂1

ˆ
I3

sin(θ̂3) (θ3 − θ̂3)dsdt+

ˆ τ

0

µ̂2

ˆ
I3

cos(θ̂3) (θ3 − θ̂3)dsdt

)}
.

This gives

3∑
j=1

1

2
‖(θj − θ̂j)(τ)‖2L2(Ij)

+

3∑
j=1

ˆ τ

0

‖(θjs − θ̂js)(t)‖2L2(Ij)
dt (15)

=

3∑
j=1

1

2
‖(θj − θ̂j)(0)‖2L2(Ij)

− {. . .},

where the first term in the right-hand side vanishes since θ and θ̂ have the
same initial data. The terms in the bracket {. . .} are made up of differences
that are estimated in a similar way. We give here in a exemplary manner the
treatment of the term

J :=

ˆ τ

0

λ1
ˆ
I2

sin(θ2) (θ2 − θ̂2)dsdt−
ˆ τ

0

λ̂1
ˆ
I2

sin(θ̂2) (θ2 − θ̂2)dsdt.

First of all notice that
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|J | ≤
∣∣∣∣ˆ τ

0

(λ1 − λ̂1)

ˆ
I2

sin(θ2) (θ2 − θ̂2)dsdt

∣∣∣∣
+

∣∣∣∣ˆ τ

0

λ̂1
ˆ
I2

(sin(θ̂2)− sin(θ2)) (θ2 − θ̂2)dsdt

∣∣∣∣
≤ C

ˆ τ

0

|λ1(t)− λ̂1(t)| ‖(θ2 − θ̂2)(t)‖L2(I2)dt (16)

+C

ˆ τ

0

‖(θ2 − θ̂2)(t)‖2L2(I2)
dt

where we have used the mean value theorem and the bound (9) in the last
inequality.

To estimate the difference in the Lagrange multipliers we recall that they
fulfill the system (10), (11) for almost every time. Subtraction of the corre-
sponding equations yield

(λ− λ̂) ·A2 + (µ− µ̂) ·A3 = rhs1

−(λ− λ̂) · (A2 +A1) + (µ− µ̂) ·A1 = rhs2

where

rhs1 = G3 − Ĝ3 − (G2 − Ĝ2) + λ̂(Â2 −A2) + µ̂(Â3 −A3)

rhs2 = G2 − Ĝ2 − (G1 − Ĝ1) + λ̂(A2 +A1 − Â2 − Â1) + µ̂(Â1 −A1).

Similarly to (14) we obtain

|λ− λ̂|+ |µ− µ̂| ≤ C(|rhs1|+ |rhs2|).

Again we show exemplary the treatment of a few terms in the evaluation of
|rhs1| + |rhs2|, since all remaining ones are estimated in a similar way. We
have using the mean value theorem that

|G3 − Ĝ3| =
∣∣∣∣ˆ
I3

|∂sθ3|2(cos θ3, sin θ3)ds−
ˆ
I3

|∂sθ̂3|2(cos θ̂3, sin θ̂3)ds

∣∣∣∣
≤
∣∣∣∣ˆ
I3

(|∂sθ3|2 − |∂sθ̂3|2)(cos θ3, sin θ3)ds

∣∣∣∣
+

∣∣∣∣ˆ
I3

|∂sθ̂3|2(cos θ̂3 − cos θ3, sin θ̂3 − sin θ3)ds

∣∣∣∣
≤ C‖(θ3s − θ̂3s)‖L2(I3)‖(θ

3
s + θ̂3s)‖L2(I3) + C‖θ̂3s‖2L2(I3)

‖θ3 − θ̂3‖L∞(I3).

Using (8) and embedding theory yields

|G3 − Ĝ3| ≤ C‖(θ3s − θ̂3s)‖L2(I3) + C‖(θ3 − θ̂3)‖L2(I3).

Next observe that by (9) and the mean value theorem we can compute
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|λ̂(Â2 −A2)| ≤ C
ˆ
I2

|θ2 − θ̂2|ds ≤ C‖(θ2 − θ̂2)‖L2(I2).

With similar argument as depicted above we therefore infer that

|λ(t)− λ̂(t)|+ |µ(t)− µ̂(t)| (17)

≤ C
3∑
j=1

(
‖(θjs − θ̂js)(t)‖L2(Ij) + ‖(θj − θ̂j)(t)‖L2(Ij)

)
for almost every time t ∈ (0, T ). Using this estimate in (16) for the evaluation
of the term J we obtain by means of a ε-Young inequality

|J | ≤ ε
3∑
j=1

ˆ τ

0

‖(θjs − θ̂js)(t)‖2L2(Ij)
dt+ Cε

3∑
j=1

ˆ τ

0

‖(θj − θ̂j)(t)‖2L2(Ij)
dt.

Going back to (15) and treating all remaining terms in the bracket {. . .} in
an analogous way we finally infer

3∑
j=1

1

2
‖(θj − θ̂j)(τ)‖2L2(Ij)

+

3∑
j=1

ˆ τ

0

‖(θjs − θ̂js)(t)‖2L2(Ij)
dt

≤ ε
3∑
j=1

ˆ τ

0

‖(θjs − θ̂js)(t)‖2L2(Ij)
dt+ Cε

3∑
j=1

ˆ τ

0

‖(θj − θ̂j)(t)‖2L2(Ij)
dt.

Choosing ε sufficiently small yields

3∑
j=1

‖(θj − θ̂j)(τ)‖2L2(Ij)
≤ C

3∑
j=1

ˆ τ

0

‖(θj − θ̂j)(t)‖2L2(Ij)
dt

for any τ ∈ (0, T ). A Gronwall argument gives θ = θ̂ and hence by (17) also
equality of the Lagrange multipliers, as claimed.
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