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Abstract

The aim of this talk is to apply non standard methods to recursion
theory [5] and computable analysis [7].
Some direct consequences of this approach are a (new) notion of hyper-
computable function and the extension of the theory of representations
(see [7]) to non standard universes.
The hypercomputable functions we will introduce can be considered
as functions computed by abstract Turing machines which transform
internal digital hypersequences. Such hypersequences can be either hy-
perfinite strings of symbols from a given alphabet, or elements of the
enlarged Baire space.
In the first case we work essentially in the field of recursion theory,
more precisely we study computable functions on ∗N.
In the second case hypersequences can be used to denote individuals in
enlargements of mathematical structures (like R) whose elements are
usually coded by infinite sequences in classical computable analysis.
In this way we obtain a concept of computability for such enlarged
structures.
Consequently, we show that some basic classical results of non standard
analysis ([6]) may be expressed in terms of hypercomputation, in the
same way (standard) computable analysis provides effective versions
of standard analysis theorems.

1 Hypercomputable functions

We apply conceptual instruments of non standard analysis to recursion the-
ory and computable analysis. In this way we obtain a non standard extension
of the classical notion of computability.
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Following the terminology used by R. Goldblatt in his introduction to non
standard analysis ([2]), we sometimes use the prefix “hyper” to refer to non
standard extensions of standard notions. In this sense we will speak of hy-
percomputability. The word “hypercomputability” has been used already in
other contexts, usually to denote abstract notions of computability beyond
the limit of Church-Turing’s thesis. These concepts share with our notion
a high level of abstraction not reducible to the classical concrete notion of
computability. Therefore, we think we can use the same word also in our
context.

We work with topological spaces used in recursion theory and com-
putable analysis:

• the discrete topology on Σ<N, i.e. the set of all finite words from a
countable alphabet Σ containing 0,1. We use alphabets 2 = {0, 1},
4 = {0, 1,−, /}, N;

• the Baire space B, i.e. the product topology on NN.

These are elements of any universe (or “superstrucure”) U(X) such that
R ⊆ X (without loss of generalization this holds also for 4<N). We enlarge
this universe by the usual ultrafilter method, obtaining U(∗X), which is the
enlargement of U(X). See [2] or [4] for more details.

As in [4], we assume that the elements of X are atomic, thus if b ∈ X
there is no a ∈ U(X) such that a ∈ b.
Any element ∗x ∈ U(∗X), for x ∈ U(X), is called standard. When x ∈ X,
we often identify x with its image ∗x ∈ ∗X.
Given an a ∈ U(X)rX, we say that ∗a ∈ U(∗X) is the enlargement of a.
We recall that an element a ∈ U(∗X) is internal if there is b ∈ U(X) such
that a ∈ ∗b.
An element that is not internal is external.

Observe that we have previously called U(∗X) the “enlargement” of
U(X). We are thus using the word “enlargement” with two slightly dif-
ferent meanings, for elements a ∈ U(X) and for U(X) respectively. This
produces no ambiguity, since U(X) is not an element of the universe, and so
∗U(X) is not the enlargement of U(X) (in the second meaning of the word).
We use the same word, since in both cases we refer to extensions (indeed
“enlargement”) of mathematical objects.
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We use a language LX defined as in [2] or [4] to speak of U(X). All ele-
ments a ∈ U(X) are constants of the language, and all quantifiers occurring
in LX -formulas are of the type ∃x ∈ t and ∀x ∈ s, where t, s are LX -terms.
The only predicates of the language are ∈ and =.
Mathematical structures and entities (metric spaces, topological spaces, con-
tinuous functions...) have corresponding extensions (“enlargements”) in
U(∗X). In particular, this holds for notions of computable analysis, like
“computable metric space”, “realization”, “representation”, and so on. We
refer the reader to [7] and [1] for a satisfactory introduction to these con-
cepts, but we will provide here some basic definition. These concepts can be
then enlarged in U(∗X), satisfying the transfer principle. We won’t provide
here the necessary technical details, but we assume that the transfer princi-
ple assures that all enlarged notions satisfy the same LX -properties of the
corresponding original standard notions.
We will refer to enlarged notions through the expression “internally”. In
this sense we will speak for example of “internally computable function”,
“internally continuous function”, or ”internally computable metric space”.
For the sake of linguistic soundness, we will sometimes use the simpler ex-
pression “internal”, instead of “internally”. For example, we will speak of
“internal realization”, rather than “internally realization”, even if, properly
speaking, an internal realization of a set X would be an internal surjective
function δ :⊆ B → X, whereas we mean a(n internal) surjective functions
δ :⊆ ∗B→ X. Similar arrangements will be taken for analogous cases.

Recall that ∗N = N ∪ N∞, where N∞ is the external set of unlimited
hypernatural numbers.
We use lower-case letters n, m, k, i, j for standard natural numbers, and cor-
responding capital letters for unlimited or generic hypernatural numbers.

The Baire topology is a metric space: for p 6= q ∈ B, d(p, q) = 2−y, where
y = µz ∈ N : p(z) 6= q(z).
∗B is the internal(ly) metric space of all internal(ly) sequences p : ∗N→ ∗N.

Given any two hypersequences p, q ∈ ∗B, d(p, q) is infinitesimal (d(p, q) '
0) if and only if either p = q or the least z such that p(z) 6= q(z) is unlimited
(thus z ∈ N∞).

Therefore for any p ∈ ∗B, its monad µ(p) is the set:

{q ∈ ∗B : ∀y ∈ ∗N[q(y) 6= p(y) ⇒ y ∈ N∞]}.
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Since B is a limited metric spaces, the same is ∗B (d(p, q) ≤ 1 for all
p, q ∈ ∗B). Nevertheless, the Baire space is not compact and its enlarge-
ment ∗B contains elements which are not near-standard (all sequences p for
which there is a standard n such that p(n) ∈ N∞).

The enlargement ∗(Σ<N) = ∗Σ<∗N is the set of all internal words of
hyperfinite length. If Σ is finite, then ∗Σ = Σ.

Notation 1.1 Given any p ∈ B and n ∈ N, we denote by p[n] the initial
segment of p of length n.
For p ∈ B and n ∈ N, we write “n ¢ p” if n ∈ range(p) (thus p lists n).
The same conventions are used for p ∈ ∗B and N ∈ ∗N.

1.1 Turing hypermachines

We use Type-2 Turing machines described in [7]. In this context we define
the notion of computable function:

Definition 1.2 Computable function. A function G :⊆ Bn → B, for
n ∈ N, is computable if there is a Type-2 Turing machineM that transforms
any input (p1, ..., pn) ∈ dom(G) ⊆ Bn into the sequence G(p1, ..., pn) ∈ B.
By this definition, computations run by M may converge also on a larger
set than dom(G).

Definition 1.3 Comp is the set of all computable functions F :⊆ Bn → B,
for n ∈ N.
Rec is the set of all recursive functions f :⊆ Nm → N, for m ∈ N.

By using Cantor pairing functions, one can not be rigorous in specifying
the ariety of functions in Comp and Rec.

Comp and Rec are elements of U(∗X), and therefore are enlarged to
∗Comp and ∗Rec in U(∗X).
According to our linguistic conventions, functions in ∗Comp and ∗Rec are
called internally computable (or hypercomputable) and internally recursive
(or hyperrecursive), respectively.

By transfer principle, all computability concepts can be then immedi-
ately extended to ∗Comp and ∗Rec. For example there is a hyper-enumeration
{ϕN}N∈∗N of ∗Rec satisfying both the utm- and the smn-properties (see [7])
(admissible enumeration).
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In analogy with standard computability theory, it may be of some help
to consider hypercomputable functions of the set ∗Comp as if they were
computed by suitable Turing machines. Actually, these machines should
be conceived as “hyperphysical” extensions of the standard TTE-Turing-
machines.
An hyper-Turing machine will be characterized by the following features:

1. hyperfinitely many input tapes, an output tape and hyperfinitely many
working tapes, which are hypersequences of cells;

2. a program made by a hyperfinite list of instructions.

 1   2   3    4   5    6   7   8    9  10 11  12                            I-2  I-1  I   I+1 I+2                     N-1 N N+1 

 1    2   3    4   5   6   7    8   9                          J-2 J-1  J  J+1       

An example of Turing hypermachine. I and J are unlimited hypernatural numbers.
Each cloud hides uncountably many cells galaxies.
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A Turing hypermachine can be conceived as a device working in a “hyper-
physical time and space”, where temporal intervals are made of hyperfinite
sets of instants.
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2 Theory of naming systems

For an introduction to the theory of naming systems see [7].

Definition 2.1 Naming systems.
A notation of a set A ∈ U(X) is a surjective function ν :⊆ Σ<N → A.
A representation of a set A ∈ U(X) is a surjective function δ :⊆ B→ A.
A naming system of a set A ∈ U(X) is either a notation or a representation
of A.

In the case Σ = N, since |N<N| = |N|, it is enough to define notations
with domain in N.

Example 2.2 Some useful notations.

• Natural numbers:

– For Σ = 2 define νN(0) = 0 and νN(ak, ..., a0) =
∑k

i=0 ai2i, for
ak 6= 0;

– For Σ = N define νN(n) = n;

• Integer numbers:

– For Σ = 4 define νZ(w) = νN(w) and νZ(−w) = −νN(w), for
w ∈ dom(νN);

– For Σ = N define νZ(2n) = n and νZ(2n + 1) = −n;

• Rational numbers:

– For Σ = 4 define νQ(u/v) = νZ(u)/νN(v), for νN(v) 6= 0;

– For Σ = N define νQ〈n1, n2〉 = νZ(n1)/(νN(n2) + 1).

All notations νN , νZ , νQ are in U(X). Therefore they have immediate en-
largements in U(∗X). By transfer principle they are notations of ∗N, ∗Z, ∗Q,
respectively, and we denote them by ν∗N , ν∗Z , ν∗Q .

Observe that for Σ = 2 a ν∗N-name of an N ∈ ∗N is a string like:
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10011101011100010101                                  00010
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whose length is d∗ log2(N)e. The cloud hides uncountably many galaxies
(see [2]) of digits in case N ∈ N∞. For Σ = 4, a ν∗Q-name of a (negative)
hyperrational number is a string like:

-10101011110001                      00101/1011                           110100011�����
�����

�����
�����
�����

���
���

�����
�����

�����
�����

�����
�����

�����
�����
�������������

�����
�����

�����
�����

��������
��������

��������
��������
��������

�������
�������

�������
�������
��������������
�������

��������
��������
��������

��������
��������
��������

��������
��������
����������������

��������
��������

�������
�������

��������
��������
��������

������
������
������
������

������
������
������

�����
�����

����
����

��������
��������
��������

�����
���������
����������

������
������

where each cloud hides possibly uncountably many digits galaxies.
For Σ = N, a ν∗N-name of a non standard hyperrational number is a number
〈N1, N2〉 ∈ ∗N, where either N1 or N2 are unlimited.

2.1 Enlarging representations

By transfer principle, the notion of representation can extended to non stan-
dard universes, and the same is for the notion of admissible representation,
which we now consider only for the case of computable metric spaces.

Definition 2.3 Computable metric space. A computable metric space
(Y, d, ν) is a 3-tuple where (X, d) is a nonempty complete metric space and:

• ν : N→ Y is a dense sequence in Y ;

• the set ed =
{

(n,m, k, i) ∈ N4 : νQ(n) < d(ν(m), ν(k)) < νQ(i)
}

is r.e.

Definition 2.4 Admissible representations of computable metric
spaces. Given a computable metric space Y = (Y, d, ν) ∈ U(X), let (In)n∈N
be a computable enumeration of all balls with center in range(ν) and radius
in Q+. We define then the following representations of Y , for p ∈ B:

Standard representation: δY(p) = y ∈ Y ⇐⇒ ∀n ∈ N(y ∈ In ↔ n + 1 ¢

p);

Cauchy representation: δC
Y(p) = y ∈ Y ⇐⇒ ∀n ∈ N : d(y, ν(p(n)) <

2−n.
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Definition 2.5 Realizations. Let γ1 :⊆ B → X1 and γ0 :⊆ B → X0 be
representations. Let f :⊆ X1 → X0 be a function.
The function F :⊆ B → B is a (γ1, γ0)-realization of f if and only if
γ0 ◦ F (p) = f ◦ γ1(p) for all p ∈ B such that γ1(p) ∈ dom(f).
The function f is said to be (γ1, γ0)-continuous if and only if it has a con-
tinuous (γ1, γ0)-realization.
The function f is said to be (γ1, γ0)-computable if and only if it has a com-
putable (γ1, γ0)-realization.

B F //

γ1

²²

B
γ0

²²
X1 f

// X0

By enlargement construction, the notions of “internally (γ1, γ0)-con-
tinuous” and internally “(γ1, γ0)-computable” function are obtained.
LX -properties of standard computability are transferred to internal com-
putability. Therefore, we can directly deduce the existence of a certain
hypercomputable function, if we know that there is a standard function do-
ing something similar in the standard world. On the other hand, we can
prove the existence of a standard computable function, provided that we
know that there is an internally computable function that behaves similarly.
The following theorem shows non standard extensions of basic results of
computable analysis:

Lemma 2.6 The followings hold in U(∗X):

1. (a) the composition G◦F of any two internally computable functions
F :⊆ ∗B→ ∗B, G :⊆ ∗B→ ∗B is internally computable;

(b) given any two internally (δY1 , δY2)- and (δY2 , δY3)-computable
functions f :⊆ Y1 → Y2 and g :⊆ Y2 → Y3, for Yi (1 ≤ i ≤ 3)
an internally computable metric space, the composition g ◦ f is
internally (δY1 , δY3)-computable;

2. (a) any internally computable function F :⊆ ∗B → ∗B is internally
continuous;

(b) given any two internally computable metric spaces Y1,Y0 and
any internal function f :⊆ Y1 → Y0, if f is internally (δY1 , δY0)-
computable then it is internally (δY1 , δY0)-continuous;
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3. given any two internally computable metric spaces Y1,Y0 and any
internal function f :⊆ Y1 → Y0, the function f is internally continuous
if and only if it has an internally continuous (δY1 , δY0)-realization.

Point 3 is the non standard extension of the Main Theorem in [7] (orig-
inally formulated in [3]).

3 Non standard effective versions of non standard
classical theorems

Non standard analysis deals mainly with external concepts: all basic notions
of the theory (infinitesimal numbers, unbounded numbers, monads...) are
external entities. Therefore, to prove hypercomputable versions of classical
non standard analysis theorems we will need to focus on the behavior of
hypercomputable functions on external subsets of their domains.
In this way we will be able to effectivize (in a non standard way) some
classical results. Among these, some theorems by the founder of nonstandard
analysis A. Robinson (see [6]). We begin with the following:

Theorem 3.1 [A. Robinson] Let a topological space (Y,Υ) ∈ U(X) be
given, for Υ a topology on a set Y, and let (∗Y, ∗Υ) ∈ U(∗X) be its en-
largement. If a point y ∈ Y belongs to the closure A of a set A ⊆ Y then
µ(∗y) ∩ ∗A 6= ∅ (for µ(∗y) the monad of ∗y).

We formulate an hypercomputable version of this result with respect to
metric spaces and open sets, through the following representation:

Definition 3.2 Let a computable metric space Y = (Y, d, ν) be given. Let
O(Y ) be the topology generated by its metric d. We define then θ+ as the
following representation of O(Y ):

θ+(p) = O ∈ O(Y ) =⇐⇒ O =
⋃

n+1¢p

In

for p ∈ B (see Definition 2.4).

Theorem 3.3 Let Y = (Y, d, ν) ∈ U(X) be a computable metric space
and let ∗Y ∈ U(∗X) be its enlargement. There is an internally computable
function F :⊆ ∗B× ∗B→ ∗B such that for any open O ⊆ Y , any y ∈ O, and
any standard p, q ∈ B with δ

Y
(p) = y, θ+(q) = O:

δ∗Y(F (∗p, ∗q)) ∈ µ(∗y) ∩ ∗O.
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3.0.1 Computability properties of overflow and spillover princi-
ples

We now show some applications of hypercomputability to two basic non
standard principles: overflow and spillover (see [2]).
The following theorem is a well known example of overflow:

Theorem 3.4 Robinson’s Sequential Lemma. Let (sN )N∈∗N be an
internal sequence in ∗R with sn ' 0 for all n ∈ N. There is then an M ∈ N∞
such that sN ' 0 for all N ≤ M .

This statement has been proved in [4] in an “almost hypercomputable”
way. An immediate effective version is the following:

Theorem 3.5 There is an internally (ρ
∗N, ρ)-computable function f map-

ping each internal sequence (sN )N∈∗N in ∗R with sn ' 0 for all n ∈ N to an
M ∈ N∞ such that sN ' 0 for all N ≤ M .

We now consider an example for the spillover principle taken from [2]:

Theorem 3.6 Let an internal set A ⊆ ∗R be given. If A has arbitrarily
large limited members, then it has a positive unlimited member.

Classically, this is a direct consequence of the internal Dedekind com-
pleteness. Differently from Theorem 3.4, but similarly to Theorem 3.1, we
consider only a special application of the statement. We need the following
representation:

Definition 3.7 Let a computable metric space Y = (Y, d, ν) be given. Let
A(Y ) be the class of all closed subsets of Y . We define the following repre-
sentations ψ+, ψ of A(Y ):

ψ+(p) = A ∈ A(Y ) ⇐⇒ (A ∩ In 6= ∅ ↔ n + 1 ¢ p)
ψ(p) = A ∈ A(Y ) ⇐⇒ (p = 〈q, r〉 ∧ ψ+(q) = A ∧ θ+(r) = Y rA)

for p, q, r ∈ B, n ∈ N, and λ(p, q).〈p, q〉 a Cantor pairing function.

We have then:

Theorem 3.8 There is an internally (ψ, ρ)-computable function f mapping
any hyperclosed set A ⊆ ∗R with arbitrarily large limited members to a pos-
itive unlimited member in it.
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