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Open-loop and closed-loop systems

Open-loop system :

ẋ = f (x, u), y = ϕ(x).

x ∈ Rn : is the state vector,

u ∈ Rp : the input vector,

y ∈ Rq : the output vector.

Ψ : Rq → Rp, y 7→ u = Ψ(y) : a static feedback

Closed-loop system :

ẋ = f (x, Ψ(ϕ(x)))

- ẋ = f(x, u) - y = ϕ(x)u

- ẋ = f(x, u)

u = Ψ(y)
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y = ϕ(x)u
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Feedback Stabilization

ẋ = f (x, u)

Assume that f (0, 0) = 0.

Find a feedback u = R(x) such that R(0) = 0 and the origin

of the closed loop system

ẋ = f (x,R(x))

is GLOBALLY ASYMPTOTICALLY STABLE (GAS).

- ẋ = f(x, u)

u = R(x)
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Global asymptotic stability

ẋ = F (x), F (0) = 0.

x = 0 is GAS ⇔ x = 0 is stable and globally attractive

Definition 1

stable ⇔ ∀ε > 0∃δ > 0∀x(t)(‖x(0)‖ < δ ⇒ ∀t > 0 ‖x(t)‖ < ε)

globally attractive ⇔ ∀x(t) lim
t→+∞

x(t) = 0

Nonstandard characterization :

ASSUME THAT F IS STANDARD THEN

x = 0 is GAS ⇔ x = 0 is s-GAS

Definition 2 x = 0 is s-GAS if and only if

∀x(t) ∀t (x(0) limited and t ' +∞⇒ x(t) ' 0)
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Examples : the origin of the following systems,

where ε ' 0 is s-GAS.

• ẋ = x(εx− 1). The origin is stable but not GAS.

- ¾ -
0 1/ε

• ẋ = ε− x. The origin is not an equilibrium.

- ¾
ε

• ẋ = x2(ε− x). The origin is unstable.

- ¾-
0 ε
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Practical semi-global stability

ẋ = F (x, ε)

Definition 3 x = 0 is practically semi-globally asymptotically

stable (PSGAS) when ε → 0 if for all A > 0 and r > 0 there

exist ε0 > 0 and T > 0 such that for all ε, for all solution

x(t, ε) and for all time t

ε < ε0 ‖x(0, ε)‖ < A and t > T ⇒ ‖x(t, ε)‖ < r

Remark In the case of uniqueness of the solution x(t, x0, ε)

with initial condition x(0, x0, ε) = x0, the origin x = 0 is PS-

GAS if and only if

lim
t→+∞,ε→0

x(t, x0, ε) = 0,

the limit being uniform for x0 in any prescribed bounded domain.
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Proposition 1 If F is standard then the origin of

ẋ = F (x, ε)

is PSGAS when ε → 0 if and only if it is s-GAS for all ε ' 0.
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Stabilization of slow and fast systems

The state vector (x, z) has slow components x and fast com-

ponents z.

ẋ = f (x, z, u), εż = g(x, z, u).

with f (0, 0, 0) = 0 and g(0, 0, 0) = 0.

Problem : design a control

u = R(x, z), such that R(0, 0) = 0

and the equilibrium (0, 0) of the closed loop system

ẋ = f (x, z, R(x, z)), εż = g(x, z, R(x, z)).

is asymptotically stable for small ε.
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The problem of singular perturbations

ẋ = F (x, z, ε), x ∈ Rn ẋ = dx
dt

εż = G(x, z, ε), z ∈ Rm ż = dz
dt .

What is the asymptotic behavior of solutions

as ε → 0 and t ∈ [0, T ] ?

lim
ε→0

x(t, ε) and lim
ε→0

z(t, ε) for t ∈ [0, T ].
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Tykhonov’s theory

ẋ = F (x, z, ε), x(0) = ξ,

εż = G(x, z, ε), z(0) = ζ.
(1)

We write the system at time scale τ =
t

ε
. We obtain

x′ = εF (x, z, ε), where x′ = dx
dτ = εdx

dt

z′ = G(x, z, ε), where z′ = dz
dτ = εdz

dt

Now the continuous dependance of solutions with respect to the

parameter ε applies :

THE SOLUTIONS ARE APPROXIMATED FOR τ ∈ [0, L] BY

THE SOLUTIONS OF SYSTEM

x′ = 0

z′ = G(x, z, 0)
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The fast equation

z′ = G(x, z, 0).

The slow manifold

G(x, z, 0) = 0 ⇔ z = h(x).

THE EQUILIBRIUM z = h(x) OF THE FAST EQUTION IS

ASYMPTOTICALLY STABLE UNIFORMLY IN x ∈ X

The Reduced Problem

ẋ = F (x, h(x), 0) x(0) = ξ.

HAS A UNIQUE SOLUTION x0(t) ∈ X , for 0 ≤ t ≤ T .
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Tykhonov’s theorem

Under some regularity conditions in the domain

0 ≤ t ≤ T, x ∈ X, ‖z − h(x)‖ ≤ r, 0 < ε ≤ ε0

every solution of (1) is defined at least on [0, T ] and satisfies :

lim
ε→0

x(t, ε) = x0(t) uniformly on [0, T ]

lim
ε→0

z(t, ε) = h(x0(t)) uniformly on 0 < [t0, T ]

THERE IS A BOUNDARY LAYER IN z(t, ε).

Let z̃(τ ), be the solution of

z′ = G(ξ, z, 0), z(0) = ζ

We have

lim
ε→0

(z(t, ε)− z̃(t/ε)) = h(x0(t))− h(ξ) on [0, T ]
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An example : Predators and Preys

ẋ = xz − x, εż = z(2− z)− xz.

• The fast equation is : z′ = z(2− z)− xz.

• The slow manifold is : z = 0 or z = 2− x.

The component z = 0 is asymptotically stable if x > 2 and

unstable if 0 < x < 2

The component z = 2 − x is asymptotically stable if 0 <

x < 2.

• The Reduced equation on z = 0 is :

ẋ = −x.

• The Reduced equation on z = 2− x is :

ẋ = x(1− x).
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Symbolical representation of the orbits of prey-predator system,

according to Zeeman conventions.
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Numerical orbits for ε = 0.1.
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SINGULAR PERTURBATION THEORY

CONSIDERS ONLY

one parameter deformations

ẋ = F (x, z, ε), εż = G(x, z, ε).

and there no notion of “perturbation” in

Singular Perturbation Theory
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Actually, as noticed by Arnold :

The behaviour of the perturbed problem solutions “takes place

in all systems that are close to the original unperturbed system.

Consequently, one should simply study neighbourhoods of the

unperturbed problem in a suitable function space. However,

here and in other problems of perturbation theory, for the sake

of mathematical convenience, in the statements of the results

of an investigation such as an asymptotic result, we introduce

(more or less artificially) a small parameter ε and, instead of

neighborhoods, we consider one-parameter deformations of the

perturbed systems. The situation here is as with variational

concepts: the directional derivative (Gateaux differential) his-

torically preceded the derivative of a mapping (the Fréchet dif-

ferential)”.

• V.I. Arnold (Ed.), Dynamical Systems V, Encyclopedia of Mathematical Sciences, Vol. 5,
Springer-Verlag, 1994, footnote page 157.
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The nonstandard notion of perturbation

Let U0 is a standard open subset of Rd. Let

f0 : U0 → Rm

be a standard function.

A point x is said to be nearstandard in U0 if there exists a

standard x0 ∈ U0 such that x ' x0.

Definition 4 A continuous function f : U → Rm is said to be

a perturbation of f0, which is denoted by f ' f0, if

• U contains all the nearstandard points in U0,

• f (x) ' f0(x) for all nearstandard x in U0.

In other words f ' f0 if and only if for all standard compact

subset K ⊂ U0 and for all standard ε > 0,

K ⊂ U and sup
x∈K

‖f (x)− f0(x)‖ < ε
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Nonstandard singular perturbation theory

Instead of considering one parameter deformations

ẋ = F (x, z, ε), εż = G(x, z, ε),

we consider perturbations

ẋ = F (x, z), εż = G(x, z).

where the vector field

(F,G) : D ⊂ Rn × Rm −→ Rn × Rm

is a perturbation of a standard vector field

(F0, G0) : D0 ⊂ Rn × Rm −→ Rn × Rm

that is to say

∀st(x0, y0) ∈ D0 ∀(x, y) ∈ D[x ' x0 and y ' y0

⇒ F (x, y) ' F0(x, y) and G(x, y) ' G0(x, y)]
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Behavior of solutions when ε ' 0 and t ∈ [0, T ]

ẋ = F (x, z), x(0) = ξ,

εż = G(x, z), z(0) = ζ.

The fast equation

z′ = G0(x, z).

The slow manifold

G0(x, z) = 0 ⇔ z = h(x).

THE EQUILIBRIUM z = h(x) OF THE FAST EQUTION IS

ASYMPTOTICALLY STABLE UNIFORMLY IN x ∈ X

The Reduced Problem

ẋ = F0(x, h(x)) x(0) = ξ0 := st(ξ).

HAS A UNIQUE SOLUTION x0(t) ∈ X , for 0 ≤ t ≤ T .

20



Nonstandard Tykhonov’s theorem

ẋ = F (x, z), εż = G(x, z), x(0) = ξ, z(0) = ζ. (2)

ẋ = F0(x, h(x)) x(0) = ξ0 := st(ξ).

z′ = G0(ξ0, z), z(0) = ζ0 := st(ζ)

Theorem 1 Every solution of (2) is defined at least on [0, T ]

and there exists L ' +∞ such that εL ' 0 and we have :

x(t, ε) ' x0(t) for all t ∈ [0, T ]

z(t, ε) ' h(x0(t)) for all t ∈ [εL, T ]

z(t, ε) ' z̃(t/ε) for all t ∈ [0, εL]
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UNIFORM ASYMPTOTIC STABILITY

Definition 5 The equilibrium z = h(x) of

z′ = G(x, z, 0)

is said to be asymptotically stable uniformly for x ∈ X if

∀µ > 0 ∃η > 0 ∀x ∈ X ∀z(τ, x)

‖z(0, x)− h(x)‖ < η ⇒ ∀τ > 0 ‖z(τ, x)− h(x)‖ < µ

and lim
τ→+∞

z(τ, x) = h(x)

Proposition 2 Assume that G, h and X are standard. Then

z = h(x) asymptotically stable uniformly for x ∈ X if and only

if there exists η > 0 standard such that for all x ∈ X , any

solution z(τ, x) with ‖z(0, x)− h(x)‖ < η satisfies

z(τ, x) ' h(x) for all τ ' +∞.
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Approximations for all 0 ≤ t < ∞
ẋ = F (x, z), εż = G(x, z), x(0) = ξ, z(0) = ζ.

ẋ = F0(x, h(x)) x(0) = ξ0 := st(ξ).

Supplementary assumption

• F0(0, 0) = 0, h(0) = 0

• the equilibrium x = 0 of the reduced equation is asymp-

totically stable and the initial condition ξ0 is in its basin of

attraction.

Theorem 2 The solution x(t, ε), (z(t, ε) is defined for all t ≥ 0

and satisfies

x(t, ε) = x0(t), for all t ≥ 0

z(t, ε) = h(x0(t)), for all noninfinitesimal t > 0.
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HENCE

t ' +∞ ⇒ x(t, ε) ' 0, z(t, ε) ' 0.

BUT this result does not imply that the origin of the system is

asymptotically stable.

ẋ = x2(ε− x)

εż = −z
(3)

• z = 0 is GAS for the fast equation z′ = −z

• the slow manifold is z = 0

• x = 0 is GAS for the reduced equation ẋ = −x3

• the origine is unstable for (3)
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Khalil’s Theorem : Asymptotic Stability

ẋ = F (x, z, ε), εż = G(x, z, ε).

F (0, 0, ε) = 0, G(0, 0, ε) = 0, h(0) = 0

hence the origin is an equilibrium for all ε > 0.

• regularitry conditions on

0 ≤ t < ∞, x ∈ X, ‖z − h(t, x)‖ ≤ r, 0 < ε ≤ ε0

• x = 0 is exponentially stable for

ẋ = F (x, h(x), 0)

• z = h(x) is uniformly exponentially stable on x ∈ X for

z′ = G(x, z, 0)
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Definition 6 z = h(x) is exponentially stable uniformly in x ∈
X for

z′ = G(x, z, 0)

if there exist k > 0, γ > 0, and r > 0 such that for all x ∈ X

any solution z(τ, x) with ‖z(0, x)− h(x)‖ ≤ r satisfies

‖z(τ, x)‖ ≤ k‖z(0)‖e−γτ for all τ ≥ 0.

Theorem 3 There exists ε∗ > 0 such that for all 0 < ε < ε∗,
the origin is exponentially stable for

ẋ = F (x, z, ε), εż = G(x, z, ε).

26



EXPONENTIAL STABILTY CANNOT BE REPLACED BY

ASYMPTOTIC STABILITY

ẋ = x2(ε− x), εż = −z

x = 0 is GAS but not exponentially stable for the reduced

equation ẋ = −x3 and the origin is unstable for the complete

system.
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The result holds only for ε < ε∗




ẋ = −z2

εż1 = −z1 + x

εż2 = −z2 + z1

(4)

• (z1, z2) = (x, x) is an exponentially stable equilibrium of

z′1 = −z1 + x

z′2 = −z2 + z1

• x = 0 is exponentially stable for ẋ = −x.

By Khalil’s theorem, the origin of (4) is exponentially stable for

small ε. When ε > 2, the origin is unstable.
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The attractivity is not global

ẋ = −x + x2z, εż = −z. (5)

• z = 0 is globally exponentially stable for the fast equation

z′ = −z

• x = 0 globally exponentially stable for the reduced problem

ẋ = −x

• By Khalil’s theorem, the origin of (5) is exponentially stable

for small ε.
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• Actually the origin is exponentially stable for all ε > 0, but

the attractivity is not global since

d

dt
(xz) = xz(xz − 1− 1/ε),

shows that the hyperbolaxz = 1 + 1/ε is invariant.

• The basin of attraction of the origin is the set

B := {(x, z) ∈ R2 : xz < 1 + 1/ε}.
Thus the origin is not GAS for (5).

• The the origin of (5) is PSGAS when ε → 0.
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Practical semi global stability

We do not assume that

F (0, 0, ε) = 0, et G(0, 0, ε) = 0

Hence the origin is not an equilibrium of

ẋ = F (x, z, ε), εż = G(x, z, ε). (6)

Theorem 4 Assume that

• F (0, 0, 0) = 0, G(0, 0, 0) = 0, h(0) = 0

• x = 0 is GAS for ẋ = F (x, h(x), 0)

• z = h(x) is GAS for z′ = G(x, z, 0).

The origin of (6) is PSGAS as ε → 0.
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Stabilization of cascade systems

ẋ = f (x, z), εż = g(z, u).

with f (0, 0) = 0 and g(0, 0) = 0.

- ẋ = f(x, z) -

εż = g(z, u) ¾ u

x

z

THE OUTPUT OF THE FAST EQUATION IS THE INPUT

OF THE SLOW EQUATION

Problem : design a control u = R(x, z) such that the origin

of the closed loop system

ẋ = f (x, z), εż = g(z,R(x, z)).

is asymptotically stable for small ε.
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A simple case (that never occur in practice !) : we assume

that the slow manifold z = h(u) is an exponentially stable

equilibrium of the fast equation

z′ = g(z, u).

• Design a control u = us(x) such that the origin of the

reduced system

ẋ = f (x, h(us(x)))

is exponentially stable uniformly in x.
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Theorem 5 The feedback control

u = us(x)

will stabilizise the system, that is, for small ε, the origin is an

exponentially stable equilibrium of the closed-loop system

ẋ = f (x, z), εż = g(z, us(x)).

- ẋ = f(x, z) -

εż = g(z, u) ¾ u

x

z

- ẋ = f(x, z)

z = h(u)

&%

'$
¾ u = us(x)

x

z

- ẋ = f(x, z)

εż = g(z, u) ¾ u = us(x)

x

z
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The more realistic case : we do not assume that the slow man-

ifold z = h(u) is an exponentially stable equilibrium of the fast

equation

z′ = g(z, u).

Since we have the control u to our disposal, we can choose it

such that the slow manifold becomes exponentially stable.
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Composite control : u = us(x) + uf(x, z)

Step 1 Design a control u = us(x) such that the origin of the

reduced system

ẋ = f (x, h(us(x)))

is exponentially stable uniformly in x.

Step 2 With the knowledge of us design a control law u =

uf(x, z), such that uf(x, h(us(x))) = 0, which stabilizises

the fast equation

z′ = g(z, us(x) + u)

at z = h(us(x)), that is to say the equilibrium point z =

h(us(x)) of the closed-loop system

z′ = g(z, us(x) + uf(x, z))

is exponentially stable uniformly in x.
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Theorem 6 The composite feedback control

u = us(x) + uf(x, z)

will stabilizise the system, that is, for small ε, the origin is an

exponentially stable equilibrium of the closed-loop system

ẋ = f (x, z), εż = g(z, us(x) + uf(x, z)).

- ẋ = f(x, z) -

εż = g(z, u) ¾ u

x

z

- ẋ = f(x, z)

z = h(u)

&%

'$
¾ u = us(x)

x

z

z′= g(z, us(x)+u) ¾

-

u = uf (x, z)

x

z

- ẋ = f(x, z)

εż = g(z, u) ¾

-

u = us(x) + uf (x, z)

x

z
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The Peaking phenomenon

ẋ = f (x, z),

ż1 = z2

ż3 = −z1/ε
2 − 2z2/ε.

(7)

We assume that x = 0 is a GAS equilibrium for the zero input

system

ẋ = f (x, 0).

The solutions of the linear equation

ż = G(ε)z, where G(ε) =

(
0 1

−1/ε2 −2/ε

)
.

are given by z(t, ε) = etG(ε)z0 where

etG(ε) =

(
1 + t/ε t

−t/ε2 1− t/ε

)
e−t/ε
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Assume that ε ' 0.

• If t is noninfinitesimal then z(t, ε) ' 0

FALSE REASONING : Since the solutions of ż = G(z, ε)

tend to 0 arbitrarily fast in t when ε → 0, then the zero-input

system

ẋ = f (x, 0)

takes over and drives x to zero.

• maxt≥0

(
t
ε2e

−t/ε
)

= 1
εe is reached for t = ε

The interaction of this peaking with the nonlinear growth in

the first equation in system (7) could destabilize system (7)
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Let f (x, z) = −(1 + z2)
x2

2

ẋ = −(1 + z2)
x2

2
,

with initial conditions x(0) = x0, z(0) = (1, 0). The solution is

• x(t, ε) = x0√
1+x2

0[t−1+(1+t/ε)e−t/ε]

• If x2
0 > 1 the solution explose in a finite time te(ε) > 0 et

te(ε) → 0 as ε → 0.
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Instantaneous Stability

Definition 7 The origin of system

ż = g(z)

is said to be instantaneously stable (IS) if for all solution z(t)

and all t > 0,

z(0) limited and t noninfinitesimal ⇒ z(t) ' 0.

Example If ε ' 0 then the origin of the following system is

IS

ż = G(ε)z, where G(ε) =

(
0 1

−1/ε2 −2/ε

)
.
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Uniform infinitesimal boundedness (UIB)

ẋ = f (x, z), ż = g(z) (8)

Definition 8 System (8) is UIB if

x(0), z(0) limited, and 0 < t ' 0 ⇒ x(t) is limited

Theorem 7 Assume that f is standard and

• H1 : x = 0 is GAS for ẋ = f (x, 0),

• H2 : The system (8) is UIB

• H3 : The origin of ż = g(z) is IS.

Then the origin of (8) is S-GAS, that is

x(0), z(0) limited, and t ' +∞⇒ x(t) ' 0 and z(t) ' 0
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Internal formulations

ẋ = f (x, z), ż = g(z, ε) (9)

Definition 9 The origin of system ż = g(z, ε) is IS as ε → 0,

if for all δ > 0, A > 0 and T > 0, there exists ε0 > 0 such that

for any solution z(t, ε), if ‖z(0, ε)‖ ≤ A, then ‖z(t, ε)‖ < δ

for all t ≥ T and all 0 < ε < ε0.

Definition 10 The system (9) is UIB as ε → 0, if for all A > 0,

there exist B > 0, t0 > 0 and ε0 > 0 such that for any

solution x(t, ε), x(t, ε) of system (9), if ‖x(0, ε)‖ ≤ A and

‖z(0, ε)‖ ≤ A, then ‖x(t, ε)‖ ≤ B for all t ∈ [0, t0] and all

0 < ε < ε0.
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Theorem 8 Assume that

• H1 : x = 0 is GAS for ẋ = f (x, 0),

• H2 : system (10) is UIB as ε → 0

• H3 : the origin of ż = g(z, ε) is IS as ε → 0.

Then the origin of

ẋ = f (x, z), ż = g(z, ε) (10)

is PSGAS as ε → 0, that is to say, for all A > 0 and r > 0

there exist ε0 > 0 and T > 0 such that, for all solution x(t, ε),

z(t, ε), and for all time t if ‖x(0, ε)‖ < A, ‖z(0, ε)‖ < A then

‖x(t, ε)‖ < r, ‖z(t, ε)‖ < r for all t > T and all 0 < ε < ε0.
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