

Geometria e Algebra Lineare / I parte — Scritto del 18/2/20 — Quesiti

Nome _____ Cognome _____ Matricola _ _ _ _

1. Se $X \subset \mathbb{R}^7$ ha dimensione 3, $f : \mathbb{R}^9 \to \mathbb{R}^7$ è lineare e $\mathbb{R}^7 = X \oplus \text{Im}(f)$ e sono dati 11 generatori di Ker(f), quanti bisogna scartane per ottenere una base?

2. Trovare la base
$$\mathcal{B}$$
 di \mathbb{R}^2 tale che $[8e_1 + 13e_2]_{\mathcal{B}} = \begin{pmatrix} -4 \\ 5 \end{pmatrix}$ e $[18e_1 - e_2]_{\mathcal{B}} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

3. Se $X,Y,Z\subset\mathbb{C}^9$ sono sottospazi tutti di dimensione 5 e $X\cap Y$ ha dimensione 3, che dimensione può avere $(X+Y)\cap Z$?

4. Al variare di $t \in \mathbb{R}$ stabilire quante sono le soluzioni del sistema $\begin{cases} (t+2)x + (2-2t)y = t \\ (6-3t)x + (2t+3)y = 3-2t. \end{cases}$

5. Calcolare det
$$\begin{pmatrix} 1 & -2 & 0 & 3 \\ 0 & 5 & 2 & 1 \\ -4 & 1 & 1 & 2 \\ 7 & 3 & 1 & 0 \end{pmatrix}.$$

6. In una matrice $A \in \mathcal{M}_{6\times 6}(\mathbb{R})$ esiste una sottomatrice $B \in \mathcal{M}_{2\times 2}(\mathbb{R})$ avente determinante non nullo tale che *una sola* orlata C di B ha determinante non nullo. È possibile che A abbia rango 4? Spiegare.

7. Posto $X = \{x \in \mathbb{R}^3 : 3x_1 + 4x_2 - 7x_3 = 0\}$ e $Y = \text{Span}(-9e_1 + 11e_2 + 4e_3)$ determinare la proiezione su X di $2e_1 - e_2 + 5e_3$ rispetto alla decomposizione $\mathbb{R}^3 = X \oplus Y$.

Le risposte devono essere sinteticamente giustificate

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Questo foglio deve essere intestato immediatamente con nome, cognome e matricola. Questo foglio va consegnato alla fine della prima ora. Durante la prima ora non è concesso alzarsi né chiedere chiarimenti. Durante la prima ora sul tavolo è consentito avere solo i fogli forniti e la cancelleria.

Corso di Laurea in Ingegneria Civile, Ambientale ed Edile

Geometria e Algebra Lineare / I parte — Scritto del 18/2/20 — Esercizî

1. Porre
$$\mathcal{B} = \left(\begin{pmatrix} 2 \\ i \\ 1-i \\ 3 \end{pmatrix}, \begin{pmatrix} -3i \\ 1+2i \\ 1 \\ -i \end{pmatrix} \right) \in w = \begin{pmatrix} 12+i \\ -4+3i \\ 1-2i \\ 11-2i \end{pmatrix}.$$

- (A) (1 punto) Provare che \mathcal{B} è base di un sottospazio vettoriale W di \mathbb{C}^4 .
- (B) (4 punti) Trovare equazioni cartesiane di \mathcal{B} .
- (C) (4 punti) Provare che w appartiene a W e trovare $[w]_{\mathcal{B}}$.
- (D) (3 punti) Se $f: W \to W$ è tale che $[f]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} -3 & 2+i \\ 5i & -2 \end{pmatrix}$ calcolare f(w).

2. Considerare le matrici
$$M = \begin{pmatrix} 3 & 1 & 3 & 5 \\ 2 & 4 & 1 & 5 \\ 1 & 2 & -1 & 2 \\ 4 & -2 & -1 & 3 \end{pmatrix}$$
 e $P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ e il sottospazio U di \mathbb{R}^4

di equazione $x_4 = 0$.

- (A) (4 punti) Determinare una base del nucleo e una dell'immagine di M vista come applicazione lineare $\mathbb{R}^4 \to \mathbb{R}^4$, verificando la formula della dimensione.
- (B) (4 punti) Provare che la formula $f(u) = P \cdot M \cdot u$ definisce un'applicazione lineare invertibile $f: U \to U$.
- (C) (4 punti) Provare che $\mathbb{R}^4 = U \oplus \operatorname{Ker}(M)$ e determinare la matrice della proiezione su U associata a tale decomposizione.

Deve essere esibito il libretto o un documento. I telefoni devono essere mantenuti spenti. Sul tavolo è consentito avere solo i fogli forniti e la cancelleria. Dall'inizio della seconda ora si possono consultare i libri di testo del corso, esclusivamente in originale e senza annotazioni. Si può uscire solo in casi eccezionali. Ogni foglio consegnato deve recare nome e numero di matricola. La soluzione di ogni esercizio deve essere consecutiva su un solo foglio. La minuta non va consegnata. Per risolvere un punto di un esercizio è sempre lecito utilizzare gli enunciati dei punti precedenti, anche se non si è riusciti a risolverli.

Geometria e Algebra Lineare / I parte — Scritto del 18/2/20 — Quesiti

Risposte ai quesiti

 $5. \diamondsuit$

- **1.** 6
- **2.** $\mathcal{B} = (3e_1 2e_2, 4e_1 + e_2)$
- 3. Tra 3 e 5 compresi
- 4. Infinite per t=6, nessuna per $t=\frac{1}{4}$, una altrimenti
- **5.** −17
- **6.** No. Per assurdo: esiste una orlata $D \in \mathcal{M}_{4\times 4}(\mathbb{R})$ di C con determinante non nullo. La sottomatrice $E \in \mathcal{M}_{4\times 3}$ di D che contiene B ma non contiene C ha rango 3, dunque una orlata F di B in E ha determinante non nullo, e F non coincide con C
- 7. $29e_1 34e_2 7e_3$
 - 1. \spadesuit 2. \heartsuit 3. \spadesuit 4. \clubsuit 5. \diamondsuit 6. \spadesuit 7. \clubsuit 8. \heartsuit 9. \clubsuit 10. \diamondsuit

Geometria e Algebra Lineare / I parte — Scritto del 18/2/20 — Esercizî

Soluzioni degli esercizî

 $5. \diamondsuit$

1.

- (A) I due vettori che costituiscono \mathcal{B} sono linearmente indipendenti
- (B) Ad esempio $\begin{cases} 3z_1 + (5+3i)z_2 + (1-4i)z_3 = 0\\ (4+i)z_2 2(1+3i)z_3 + 3z_4 = 0 \end{cases}$
- (C) $\begin{pmatrix} 3-i \\ -1+2i \end{pmatrix}$
- (D) $\begin{pmatrix} 7 9i \\ -21 + 12i \\ 30i \\ -28 + 11i \end{pmatrix}$

2.

- (A) Per il nucleo $\begin{pmatrix} 17 \\ 9 \\ 5 \\ -15 \end{pmatrix}$, per l'immagine le prime tre colonne di $M;\, 1+3=4$
- (B) L'immagine di P è U, dunque f è ben definita e lineare; rispetto alla base (e_1, e_2, e_3) di U la matrice associata è $\begin{pmatrix} 2 & 4 & 1 \\ 1 & 2 & -1 \\ 3 & 1 & 3 \end{pmatrix}$ che è invertibile
- (C) U ha dimensione 3, Ker(M) ha dimensione 1, e la loro intersezione è banale; $\frac{1}{15}\begin{pmatrix} 15 & 0 & 0 & -17 \\ 0 & -15 & 0 & 9 \\ 0 & 0 & 15 & -5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$