Test sui limiti di successioni

Proposizione	Vera	Falsa
$\frac{2^{n+1}+1}{3^n+1} \simeq \frac{2^n+1}{3^n+1}$		
$\frac{n^3 - n^2}{n^5 + 2n + 3} = o\left(\frac{n^5 + 1}{n^6 + 1}\right)$		
$\frac{n! + n^n}{3^n + n^n} = o\left(1\right)$		
$\frac{n!}{n^n} = o\left(\frac{1}{n}\right)$		
$\left(\frac{n+1}{n+4}\right)^n = O(1)$		
$\frac{n^3 + n + 1}{n^3 + 4} = 1 + O\left(\frac{1}{n^2}\right)$		

Domanda	Risposta	difficoltà
$\lim_{n \to +\infty} \frac{3^n - n^n}{n! + \ln(n)} = ??$		*
$\lim_{n \to +\infty} \sqrt[n]{5^n + 2^n + n} = ??$		*
$\lim_{n \to +\infty} \frac{\ln(n^2 + 1)}{\ln^2(n+1)} = ??$		*
$\lim_{n \to +\infty} \left(\frac{2n^2 + 3}{2n^2 + n - 1} \right)^n = ??$		**
$\lim_{n \to +\infty} n \ln \left(\frac{n-1}{n+1} \right) = ??$		**
$\sqrt[20]{n^{20} + 4n^{10} + 5n^5 - 1} = n + O\left(\frac{1}{n^k}\right) \text{ dove } k = ??$		**

Le domande con risposta vero/falso valgono 2 punti in caso di risposta corretta e -2 punti in caso di risposta errata. Le domande a risposta aperta non danno luogo a punteggi negativi e valgono 2 punti se contrassegnate da * (facili - il risultato si vede "a occhio"), 4 punti se contrassegnate da ** (bisogna fare qualche calcolo). RISPOSTE AL FOGLIO SEGUENTE

Test sui limiti di successioni - RISPOSTE

Proposizione	Vera	Falsa
$\frac{2^{n+1}+1}{3^n+1} \simeq \frac{2^n+1}{3^n+1}$		X
$\frac{n^3 - n^2}{n^5 + 2n + 3} = o\left(\frac{n^5 + 1}{n^6 + 1}\right)$	x	
$\frac{n! + n^n}{3^n + n^n} = o\left(1\right)$		X
$\frac{n!}{n^n} = o\left(\frac{1}{n}\right)$	x	
$\left(\frac{n+1}{n+4}\right)^n = O(1)$	X	
$\frac{n^3 + n + 1}{n^3 + 4} = 1 + O\left(\frac{1}{n^2}\right)$	x	

Domanda	Risposta	difficoltà
$\lim_{n \to +\infty} \frac{3^n - n^n}{n! + \ln(n)} = ??$	$-\infty$	*
$\lim_{n \to +\infty} \sqrt[n]{5^n + 2^n + n} = ??$	5	*
$\lim_{n \to +\infty} \frac{\ln(n^2 + 1)}{\ln^2(n+1)} = ??$	0	*
$\lim_{n \to +\infty} \left(\frac{2n^2 + 3}{2n^2 + n - 1} \right)^n = ??$	$e^{-\frac{1}{2}}$	**
$\lim_{n \to +\infty} n \ln \left(\frac{n-1}{n+1} \right) = ??$	-2	**
$\sqrt[20]{n^{20} + 4n^{10} + 5n^5 - 1} = n + O\left(\frac{1}{n^k}\right) \text{ dove } k = ??$	9	**