Analisi di Fourier e alcune equazioni della fisica matematica ¹

SESTA e SETTIMA Lezione Serie di Fourier

Via F. Buonarroti 1/C

email: saccon@mail.dm.unipi.it

web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento: ogni lunedì, dalle 8.30 alle 11.30

¹prof. Claudio Saccon, Dipartimento di Matematica Applicata,

La serie di Fourier

In tutto quanto segue considereremo:

$$\boxed{T>0}$$
 (periodo), $\boxed{\omega_0:=rac{2\pi}{T}}$ (frequenza angolare)

Inoltre (almeno all'inizio) considereremo delle $f: \mathbb{R} \to \mathbb{C}$, dove \mathbb{C} indica i numeri complessi, con la condizione di T-periodicità

$$f(t+T) = f(t) \quad \forall t \in \mathbb{R}.$$

Dato n intero relativo indicheremo con $e_n : [0,T] \to \mathbb{C}$ la funzione T-periodica definita da:

$$e_n(t) := e^{in\omega_0 t}$$

Cercheremo di esprimere una generica funzione T-periodica f come una combinazione degli e_n - dato che n varia in $\mathbb Z$ cercheremo quindi di trovare dei coefficienti c_n , con n che varia in $\mathbb Z$ tali che:

$$f = \sum_{n \in \mathbb{Z}} c_n e_n = \sum_{n=0}^{\infty} c_n e_n + \sum_{n=1}^{\infty} c_{-n} e_{-n}$$

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 5 □ □ ✓ Q (> April 24, 2009 2/26

Si ha (se $z \in \mathbb{C}$ \bar{z} indica il coniugato di z)

$$\int_0^T e_n(t) \overline{e_m(t)} dt = \begin{cases} 0 & \text{se } n \neq m, \\ T & \text{se } n = m. \end{cases}$$

Esprimiamo questo fatto dicendo che le funzioni e_n sono ortogonali (rispetto al "prodotto scalare" $f \cdot g := \int_0^T f(x) \overline{g(x)} dx$).

Definizione

Data una funzione f T-periodica poniamo:

$$f_n(t) := \sum_{k=-n}^n c_k e_k(t)$$
 dove $c_k := \frac{1}{T} \int_0^T f(t) e^{-ik\omega_0 t} dt$.

Chiameremo f_n il polinomio trigonometrico di Fourier di f di ordine n e chiameremo coefficienti di Fourier complessi in numeri c_k .

O April 24, 2009

In tutti i discorsi che seguono useremo in maniera "disinvolta" la nozione di integrale, dando per buono varie proprietà che richiederebbero in realtà un'estensione del solito integrale di Riemann.

La prima questione che ci poniamo è se la successione dei polinomi di Fourier converga alla funzione di partenza, e in che senso ciò eventualmente avvenga.

Ci si potrebbe aspettare che la continuità di f sia una condizione naturale per la convergenza - ciò NON 'E vero. Si potrebbe dimostrare che esistono funzioni continue la cui serie di Fourier non converge in nessun punto !!!

Vediamo cosa si può ottenere aggiungendo delle ipotesi di derivabilità.

April 24, 2009 4 / 26

Convergenza puntuale della serie di Fourier

Teorema

Se f è una funzione T-periodica, se t_0 un punto con le seguenti proprietà:

- f derivabile in un intorno sinistro $]t_0 \delta, t_0[$ e in un intorno destro $]t_0, t_0 + \delta[$,
- f' continua e limitata sia in $]t_0 \delta, t_0[$ che in $]t_0, t_0 + \delta[$, allora esistono finiti i limiti destro e sinistro in t_0

$$f(t_0^-) := \lim_{t \to t_0^-} f(t), \qquad f(t_0^+) := \lim_{t \to t_0^+} f(t)$$

e i polinomi di Fourier in t_0 tendono alla media $traf(t_0^-)$ e $f(t_0^+)$:

$$\lim_{n \to \infty} f_n(t_0) = \frac{f(t_0^-) + f(t_0^+)}{2}$$

-0

Supponiamo che f sia T-periodica e abbia derivata prima continua. Allora $f_n \rightarrow f$ uniformemente su [0,T].

Osservazione

Dal primo dei teoremi precedenti segue in particolare che f univocamente determinata a partire dai suoi coefficienti di Fourier.

Più precisamente Se f e g sono T-periodiche ed esistono un numero finito di punti t_1, \ldots, t_k in [0,T] tali che f e g sono derivabili con derivata limitata in $[0,T] \setminus \{t_1,\ldots,t_k\}$, e se f e g hanno gli stessi coefficienti di Fourier, allora f(t) = g(t) per ogni t in $[0,T] \setminus \{t_1,\ldots,t_k\}$.

Spesso si incontra il problema "inverso": dati dei coefficienti c_k si si può chiedere se la serie di Fourier ottenuta da tali coefficienti definisca una funzione. I seguenti teoremi rispondono (parzialmente) a questo problema.

Sia $(c_n)_{n\in\mathbb{N}}$ una successione di numeri complessi e indichiamo con f_n i polinomi trigonometrici associati ai c_k : $f_n(t) := \sum_{k=-n}^n c_k e^{-i\omega_0 kt}$.

- Se $\sum_{n=-\infty}^{+\infty} |c_n| < +\infty$ allora esiste una funzione continua e T-periodica f tale che f_n converge uniformemente a f. Inoltre i coefficienti di Fourier di f sono esattamente i numeri c_k di partenza.
- Se $\sum_{n=-\infty}^{+\infty} n|c_n| < +\infty$, allora f è derivabile, f ed f' sono continue e T-periodiche. Inoltre f_n converge uniformemente a f, f'_n converge uniformemente a f', da cui

$$f'(t) = \sum_{n=-\infty}^{+\infty} c_n i \omega_0 n e^{-i\omega_0 nt}.$$

In maniera analoga si può considerare il problema della regolarità delle derrivate successive alla prima.

• Dato un intero h, se $\sum_{n=-\infty}^{+\infty} n^h |c_n| < +\infty$, allora f ha derivate fino alla h-esima continue e T periodiche. Inoltre per ogni $j=0,1,\ldots,h$ si ha che $f_n^{(j)}$ converge uniformemente a $f^{(j)}$ da cui

$$f^{(j)}(t) = \sum_{n=-\infty}^{+\infty} c_n i^j \omega_0^j n^j e^{-i\omega_0 nt}.$$

0

Caso reale: sviluppi in seni e coseni

Osservazione

Supponiamo che $f: \mathbb{R} \to \mathbb{R}$ sia in T-periodica a valori reali. Siano c_k i coefficienti di Fourier di f. Allora

$$Tc_{-k} = \int_0^T f(t)e^{ik\omega_0 t} dt = \int_0^T f(t)\overline{e^{-ik\omega_0 t}} dt = \overline{\int_0^T f(t)e^{-ik\omega_0 t} dt} = T\overline{c_k}$$

 $cio \hat{e} \ c_{-k} = \overline{c_k}$.

Si potrebbe dimostrare che vale anche il viceversa e quindi

$$c_{-k} = \overline{c_k} \quad \forall k \in \mathbb{Z} \Leftrightarrow f \text{ reale}$$

Vediamo ora una forma reale della serie di Fourier nel caso di f reale.

9/26

April 24, 2009

Formalmente:

$$\sum_{n=-\infty}^{+\infty} c_k e_k = c_0 e_0 + \sum_{n=1}^{+\infty} (c_k e_k + c_{-k} e_{-k}) = c_0 e_0 + \sum_{n=1}^{+\infty} (c_k e_k + \overline{c_k e_k}) =$$

$$c_0 e_0 + 2 \sum_{n=1}^{+\infty} \Re(c_k e_k) = c_0 + 2 \sum_{n=1}^{+\infty} \Re(c_k) \cos(\omega_0 kt) - 2 \sum_{n=1}^{+\infty} \Im(c_k) \sin(\omega_0 kt)$$

$$= a_0 + \sum_{n=1}^{+\infty} a_k \cos(\omega_0 kt) + \sum_{n=1}^{+\infty} b_k \sin(\omega_0 kt)$$

dove:

$$a_{o} = c_{0} = \frac{1}{T} \int_{0}^{T} f(t) dt \quad \text{e per } k \ge 1:$$

$$a_{k} = 2\Re(c_{k}) = \frac{2}{T} \int_{0}^{T} f(t) \cos(\omega_{0}kt) dt \qquad (1)$$

$$b_{k} = -2\Im(c_{k}) = \frac{2}{T} \int_{0}^{T} f(t) \sin(\omega_{0}kt) dt$$

April 24, 2009

10/26

0

Si ritrovano i risultati di convergenza del caso complesso.

Teorema

Sia $f : \mathbb{R} \to \mathbb{R}$ una funzione T-periodica e siano $(a_k)_{k \geq 0}$, $(b_k)_{k \geq 1}$ definiti in (1). Poniamo

$$f_n(t) := \sum_{k=0}^n a_k \cos(\omega_0 k t) + \sum_{k=1}^n b_k \sin(\omega_0 k t).$$
 (2)

Si ha che

• se f derivabile in un intorno sinistro $]t_0 - \delta, t_0[$ e in un intorno destro $]t_0, t_0 + \delta[$ con f' continua e limitata sia in $]t_0 - \delta, t_0[$ che in $]t_0, t_0 + \delta[$, allora

$$\lim_{n\to\infty} f_n(t_0) = \frac{f(t_0^-) + f(t_0^+)}{2};$$

• se f ha derivata seconda continua, allora f_n converge a f uniformemente

◆ロト ◆部 ▶ ◆注 > ◆注 > 注 の Q (*)

Viceversa ...

Teorema

Supponiamo che $(a_k)_{k\geq 0}$ e $(b_k)_{k\geq 1}$ siano due successioni di numeri reali tali che

$$\sum_{k=0}^{\infty} |a_k| < +\infty, \qquad \sum_{k=1}^{\infty} |b_k| < +\infty.$$

Allora, definendo f_n come in (2), esiste una funzione continua e T-periodica f tale che f_n converge uniformemente a f. Inoltre sviluppando tale f in serie di Fourier si ha che i coefficienti dati da (1) coincidono con gli $(a_k)_{k\geq 0}$ e $(b_k)_{k\geq 1}$ di partenza. Inoltre se j è un intero e se

$$\sum_{k=0}^{\infty} k^{j} |a_{k}| < +\infty, \qquad \sum_{k=1}^{\infty} k^{j} |b_{k}| < +\infty.$$

si ha che la f detta sopra ha derivata j-esima continua pari alla serie delle derivate.

4 D F 4 B F 4 B F 9 9 0

April 24, 2009 12 / 26

Un altro modo di vedere le cose nel caso di f a valori reali, è il seguente. Sia $k \neq 0$ e scriviamo $c_k = \rho_k e^{i\theta_k}$. Per le (1) si ha $a_k = 2\rho_k \cos(\theta_k)$ e $b_k = -2\rho_k \sin(\theta_k)$ e dunque

$$a_k \cos(\omega_0 kt) + b_k \sin(\omega_0 kt) = 2\rho_k \cos(\omega_0 kt + \theta_k).$$

In sostanza il modulo del coefficiente c_k è legato all'ampiezza della componente (sinusoidale) $a_k \cos(\omega_0 kt) + b_k \sin(\omega_0 kt)$ mentre l'argomento di c_k è legato alla fase di tale componente.

Osservazione

Dato che le funzioni che consideriamo sono T-periodiche è facile vedere che i coefficienti di Fourier di f si possono ottenere come

$$c_n = \frac{1}{T} \int_{t_0}^{t_0+T} f(t) e^{-i\omega_0 nt} dt$$

qualunque sia t_0 in \mathbb{R} (e lo stesso discorso vale per gli a_n/b_n).

O April 24, 2009 13 / 26

Sia f in T-periodica. Allora

- f è reale se e solo se $\overline{c_{-k} = \overline{c_k}}$ per ogni k;
- ② $f \ e$ pari se e solo se $\overline{c_{-k} = c_k}$ per ogni k;
- f è dispari se e solo se $\overline{c_{-k} = -c_k}$ per ogni k;
- f è reale pari se e solo se $c_{-k} = c_k \in \mathbb{R}$ per ogni k; questo è equivalente a dire che $b_k = 0$ per ogni k;
- **⑤** f è reale dispari se e solo se $c_{-k} = -c_k \in i\mathbb{R}$ per ogni k (cioè i c_k sono immaginari puri); questo è equivalente a dire che $a_k = 0$ per ogni k;
- se $t_0 \in \mathbb{R}$ indichiamo con f_{t_0} la funzione translata di $t_0 f_{t_0}(t) := f(t t_0)$; allora detti c_k^* i coefficienti di Fourier di f_{t_0} si ha $c_k^* = e^{-i\omega_0 t_0 k} c_k$

ALCUNE VERIFICHE

La serie di Fourier in L^2

In realtà l'ambientazione corretta per le serie di Fourier si trova tra le *funzioni a energia finita*. Diamo qualche idea – una teoria rigorosa richiederebbe strumenti avanzati (integrale secondo Lebesgue).

Definizione

Data una funzione $f:[0,T]\to\mathbb{C}$, oppure una funzione T-periodica $f:\mathbb{R}\to\mathbb{C}$, chiamiamo energia di f l'espressione (eventualmente infinita)

$$\mathscr{E}(f) := \int_0^T |f(t)|^2 dt$$

Introduciamo degli spazi di funzioni a energia finita:

$$\begin{split} L^2(0,T) &= \{f: [0,T] \to \mathbb{C} : \mathscr{E}(f) < +\infty\} \\ L^2_T(\mathbb{R}) &= \{f: \mathbb{R} \to \mathbb{C}, f \text{ T-periodica} : \mathscr{E}(f) < +\infty\} \end{split}$$

Non c'ùna grossa differenza tra i due, ma sono oggetti formalmente diversi.

April 24, 2009 15 / 26

イロト イポト イラト イラト

Nel seguito scriviamo L^2 per indicare uno tra i due spazi.

Definizione

Se $f \in L^2$ definiamo la sua norma L^2 :

$$||f||_2 := \sqrt{\mathscr{E}(f)} = \sqrt{\int_0^T |f(t)|^2 dt}$$

Se $f, g \in L^2$ definiamo il loro prodotto scalare:

$$\langle f, g \rangle := \int_0^T f(t) \overline{g(t)} dt$$

□ ト 4 回 ト 4 直 ト 4 直 ト 9 へ ○

April 24, 2009 16 / 26

Teorema (disuguaglianza di Schwartz)

Se f e g sono in L_T^2 allora $f\bar{g}$ integrabile e vale la disuguaglianza

$$\left| \int_0^T f(t)\bar{g}(t) \, dt \right|^2 \le \int_0^T |f(t)|^2 \, dt \int_0^T |g(t)|^2 \, dt$$

che equivale a dire

$$|\langle f, g \rangle| \le ||f||_2 ||g||_2 \qquad \forall f, g \in L_T^2.$$

La disuguaglianza di Schwartz dice che il prodotto scalare ha le proprietà che ci si aspetta da lui. Per esempio permette di definire "l'angolo" θ tra due funzioni f e g in L_T^2 mediante la relazione:

$$\cos(\theta) := \frac{\langle f, g \rangle}{\|f\|_2 \|g\|_2}$$

◆□▶◆□▶◆□▶◆□▶ □ からで

April 24, 2009 17 / 26

Alcune proprietà

- $\langle f_1 + f_2, g_1 + g_2 \rangle = \langle f_1, g_1 \rangle + \langle f_2, g_1 \rangle + \langle f_1, g_2 \rangle + \langle f_2, g_2 \rangle;$
- $\langle f, g \rangle = \overline{\langle g, f \rangle};$
- $\langle \alpha f, g \rangle = \alpha \langle f, g \rangle$, $\langle f, \beta g \rangle = \bar{\beta} \langle f, g \rangle$;
- $||f||_2^2 = \langle f, f \rangle$ da cui $||f + g||^2 = ||f||^2 + 2 \langle f, g \rangle + ||g||^2$;
- $||f||_2 = 0$ se e solo se f = 0 (*)
- $\|\alpha f\|_2 = |\alpha| \|f\|_2$
- $||f+g||_1 \le ||f|| + ||g||$ (disuguaglianza triangolare)

Osservazione

La disuguaglianza triagolare è una semplice conseguenza della disuguaglianza di Schwartz e implica che L^2 è uno spazio vettoriale, cioè che, se $f,g\in L^2$ e $\alpha,\beta\in\mathbb{C}$, allora $\alpha f+\beta g\in L^2$

April 24, 2009

La norma della differenza $||f-g||_2$ fornisce una valutazione della "distanza tra le due funzioni f e g". Tale distanza è "misurata in energia", quindi mediante un integrale (a differenza della norma uniforme).

Una volta definita la distanza si può dire che una successione di funzioni (f_n) converge in L^2 a una funzione f se $||f_n - f||_2 \to 0$. Questa convergenza è diversa dalla convergenza uniforme ed è "più debole" (cosa che può essere un difetto ma anche un pregio). Per esempio se

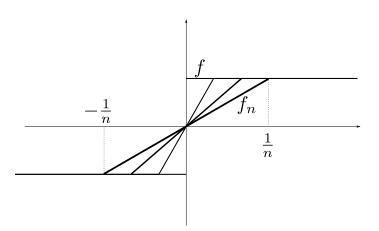
$$f(x) = \begin{cases} 1 & \text{se } x > 0, \\ 0 & \text{se } x = 0, \\ -1 & \text{se } x < 0 \end{cases}, \quad f_n(x) = \begin{cases} 1 & \text{se } x > \frac{1}{n}, \\ nx & \text{se } |x| \le \frac{1}{n}, \\ -1 & \text{se } x < -\frac{1}{n} \end{cases}$$

si può verificare abbastanza facilmente che $f_n \xrightarrow{L^2} f$, cioè che $||f_n - f||_2 \to 0$, ma che f_n NON converge uniformemente a f.

VEDI FIGURA

◆□▶◆□▶◆□▶◆□▶ □ りへ(

0



Il prodotto scalare introduce una nozione di "ortogonalità" tra funzioni di L_T^2 . Tale nozione è proprio quella per cui, se $e_k(t) = e^{i\omega kt}$ si ha:

$$\langle e_k, e_h \rangle = 0 \text{ se } h \neq k, \qquad ||e_k|| = \sqrt{T}$$

Inoltre se $f \in L_T^2$, allora i coefficienti di Fourier c_k di f sono ben definiti e si ha $c_k = \frac{\langle f, e_k \rangle}{\langle e_k, e_k \rangle} = \frac{\langle f, e_k \rangle}{\|e_k\|_2^2}$.

L'idea che ci proponiamo di illustrare è la seguente:

gli e_k , al variare di k in \mathbb{Z} costituiscono una base ortonormale per L^2

◆ロト ◆部 → ◆意 → ◆意 → り へ ○ ○

April 24, 2009 21 / 26

Definizione

Per n in \mathbb{N} *poniamo*

$$E_n := \left\{ \sum_{k=-n}^n \lambda_k e_k : \lambda_k \in \mathbb{C}, k=-n,\ldots,n
ight\};$$

quindi E_n è il "sottospazio di dimensione finita" (pari a 2n+1) generato da $e_{-n}, \ldots, e_0, \ldots, e_n$.

É chiaro che se $f \in L_T^2$ il suo polinomio di Fourier di ordine n appartiene a E_n , Vedremo ora che per ogni n intero il polinomio di Fourier f_n è il "punto in E_n di minima distanza" (L^2) da f.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @ >

April 24, 2009 22 / 26

Sia f una funzione di L_T^2 e sia $n \in \mathbb{N}$. Allora il polinomio di Fourier f_n ha le seguenti proprietà:

- $f_n \in E_n$;
- per ogni g in E_n si ha $\langle f f_n, g \rangle = 0$;
- per ogni g in E_n si ha:

$$||f - g||_2^2 = ||f - f_n||_2^2 + ||f_n - g||_2^2$$
(3)

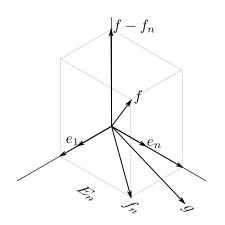
e quindi f_n è l'elemento in E_n che ha minima distanza (L^2) da f;

• si ha inoltre

$$||f||_2^2 = ||f_n||_2^2 + ||f - f_n||_2^2$$

VEDI FIGURA

April 24, 2009 23 / 26



4□ > 4□ > 4□ > 4□ > 4□ > 4□

Se $f \in L^2_T(\mathbb{R})$, cioè se f è T-periodica e ha energia finita, allora

$$\lim_{n \to \infty} ||f - f_n||_2 = 0. \tag{4}$$

Inoltre vale l' eguaglianza di Parseval

$$\frac{1}{T} \int_0^T |f(t)|^2 dt = \sum_{n = -\infty}^{+\infty} |c_n|^2 \tag{5}$$

Viceversa se (c_k) *una successione di numeri complessi tale che*

$$\sum_{n=-\infty}^{+\infty} |c_n|^2 < +\infty$$

 $e \ se \ f_n(t) = \sum_{k=-n}^n c_k e^{i\omega_0 kt}$, allora esiste $f \ in \ L^2_T(\mathbb{R})$ tale che valgano (4) e (5)

April 24, 2009 25 / 26

La relazione (4) dice che le f_n "tendono a f in energia", nel senso che l'energia della differenza tende a zero. Si può esprimere questo fatto scrivendo:

$$f \stackrel{L^2}{=} \sum_{n=-\infty}^{+\infty} c_n e_n$$

Dato che la convergenza di natura integrale essa, in generale, non ripetta la continuità e tantomeno la diffenziabilità. Come già detto possibile trovare funzioni f continue (quindi L^2) la cui serie di Fourier non converge alcun punto (mentre DEVE convergere in energia a f).

Rimane peraltro vero che i coefficienti i Fourier "individuano univocamente" la funzione – almeno in senso integrale (nota il "per quasi ogni").

Teorema (completezza dei polinomi trigonometrici)

Se f e g sono due funzioni di L_T^2 che hanno gli stessi coefficienti di Fourier, allora f(t) = g(t) "per quasi ogni t".

-0