
GROTHENDIECK RINGS OF VARIETIES AND STACKS

MATTIA TALPO

Abstract. The Grothendieck ring of varieties over a field k is a ring that is additively
generated by isomorphism classes of varieties over k, modulo a “cut and paste” relation
with respect to closed subvarieties, and where the product is cartesian product. Its main
application is currently Kontsevich’s theory of motivic integration, but it is also related to
several other things (for example, point counting over a finite field). There is a variant of
this construction that replaces varieties with algebraic stacks.

The talk will be mostly a survey about these Grothendieck rings. I will focus first on
the Grothendieck ring of varieties and some interesting questions about it, and eventually
I will move on to the variant that involves algebraic stacks (I will not assume that people
know about stacks beforehand). Towards the end I will mention a problem that I have been
working on lately, about computing the class of the classifying stack BG for an algebraic
group G, and that is “morally” related to the Noether problem (rationality of the field of
invariants) for G.
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1. Introduction

The talk will be in two parts: first part about varieties, second part about stacks. The
second part will not be “for experts only”.

2. The Grothendieck ring of varieties

Let us fix a field k (not necessarily algebraically closed). Throughout the talk, “variety”
will mean separated (reduced) scheme of finite type over k. Each such thing has an open
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cover where it becomes isomorphic to the locus cut out by finitely many polynomials in An
k ,

but for example it might not be quasi-projective, globally. Let us denote by Vark the set of
isomorphism classes of varieties over k (this is a big set).

The Grothendieck ring of varieties over k, denoted by K0(Vark), is defined as follows: it
is generated by isomorphism classes [X] of varieties over k, modulo the relations

[X] = [Y ] + [U ]

for every closed subvariety Y ⊆ X with open complement U . The sum is a “formal” sum
modulo these relations, and the product is defined by product of varieties over k

[X] · [Y ] = [X ×k Y ]

and extended by linearity.
The additive unit element is 0 (the empty sum) and the multiplicative unit is 1 = [Spec k]

(the class of a point).

Remark 2.1. If you add “reduced”, then you should set [X] · [Y ] = [(X ×k Y )red] if k is not
perfect. In any case, for any X the closed embedding Xred ⊆ X has empty complement, so
[Xred] = [X].

Also, if you give the same definition but only allow quasi-projective varieties, you will get
the same ring.

2.1. Examples. An important element of this ring is the Lefschetz motive L = [A1
k].

Example 2.2.

1. Since An
k
∼= A1

k ×k · · · ×k A1
k, we see that [An

k ] = Ln.
2. Let us compute [Pn

k ]. Using Pn
k = Pn−1

k

⋃
An

k , we obtain [Pn
k ] = [Pn−1

k ] + Ln, and
inductively we get

[Pn
k ] = Ln + Ln−1 + · · ·+ L + 1 = (Ln+1 − 1)/(L− 1).

3. More generally, assume that we write X as a disjoint union of locally closed subsets
X = tiXi (this is sometimes called a stratification). Then [X] =

∑
i[Xi].

In particular say that X has an affine paving, i.e. a decomposition as above with
Xi
∼= Ani

k , then [X] is a polynomial in L.
For example for Pn, we have

Pn
k = An

k + An−1
k + · · ·+ A1

k + A0
k.

Then
[X] = Ln1 + Ln2 + · · ·Lnr .

This also applies for example to grassmannians.
4. Let us compute the class of the algebraic group GLn, with a non-completely rigourous

argument: matrices in GLn correspond to bases of kn (via the column of the matrix,
for example). To choose the first column, you can take any vector in kn minus the
origin. This has class (Ln − 1). For the second column, you can choose any vector
of kn minus the span of the first column, and this has class (Ln − L). Iterating, we
obtain

[GLn] = (Ln − 1)(Ln − L) · · · (Ln − Ln−1).
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If you’ve ever computed the cardinality of GLn(Fq), this and the previous formulas
should remind you of something (more about this in a bit).

The way to formalize the non-rigourous reasoning in the last example is to prove the
following:

Proposition 2.3. Let E → X be a vector bundle of rank r. Then [E] = Ln[X].
More generally, assume that we have a fibration Y → X for the Zariski topology with fiber

F (i.e. Zariski locally on X, Y is isomorphic to X × F ). Then [Y ] = [F ][X].

Proof. Take an open set U ⊆ X over which the fibration is trivial and use noetherian
induction. �

For example, An+1
k \ {0} → Pn is a Zariski-locally trivial fibration with fiber Gm, so

Ln+1 − 1 = [Pn
k ](L− 1).

Something more general than this holds, where Y → X is only (Zariski-locally) trivial
with fiber F on a stratification of X.

2.2. Euler characteristics. The idea of this definition is the following:

Definition 2.4. A generalized Euler characteristic is a function f : Vark → R, that respects
the formulas above, i.e. f(X) = f(X ′) if X ∼= X ′, f(X) = f(Y ) + f(U) for Y ⊆ X closed
with complement U , and f(X ×k Y ) = f(X) · f(Y ).

For every generalized Euler characteristic, because of the “universal” definition of the
ring K0(Vark) there will be a ring homomorphism K0(Vark) → R that factors the function
f : Vark → R. The natural map Vark → K0(Vark) is the “universal” generalized Euler
characteristic.

Example 2.5.

• Let k be a subfield of C. For a variety X, set χc(X) =
∑

i(−1)i dimH i
c(X,C). This

is a gEc, where H i
c(X,C) denotes compactly supported cohomology. One can also

use ordinary cohomology, but it is not immediate to show that χ(X) = χc(X).
• Let k = Fq be a finite field. The function Vark → Z defined on generators by
X 7→ #X(Fq) is a gEc, sometimes called the “point counting measure”.

Because of this universal property, if two varieties X and Y have the same class [X] = [Y ]
in K0(Vark), then every Euler characteristic will take the same value on X and Y . Thus, it
is interesting to understand when exactly is [X] = [Y ].

Note that if X and Y can be decomposed as tiXi and tiYi for locally closed subvarieties,
and Xi

∼= Yi for every i, then [X] = [Y ].

Conjecture 2.6 (Larsen-Lunts). Is the converse true?

Spoiler: this is true in some cases, but the (recent) answer in the general case is “no”.
More on this later.

Remark 2.7. This universal property is nice and natural, but note that this ring is not
likely to have nice properties or be easy to study in general. For example, I think that one
can show that it is not finitely generated over Z. It is also not reduced.
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Generally speaking getting a firm handle on things on this ring is not easy, morally because
it contains a wealth of information.

Remark 2.8. There is a conjectural abelian category of motives over k, that has an analo-
gous universal property with respect to “cohomology theories” instead of “Euler character-
istics”. The idea here is that K0(Vark) should be the K0 of this abelian category (as the
notation somewhat suggests).

Here is another example of an Euler characteristic. Let k be a subfield of C.

Proposition 2.9. There is a ring homomorphism P : K0(Vark) → Z[t], such that for X
smooth and projective, the polynomial P ([X]) is the Poincaré polynomial

∑
i t

i·dimH i(X,C).

Note that P (X)(−1) = χ(X). For X arbitrary, the polynomial P (X) is called the virtual
Poincaré polynomial. We have that P (L) = t2, since L = [P1

k] − 1, and P ([P1
k]) = 1 + t2,

P (1) = 1.
Now let C be a smooth projective curve of genus g > 0. Then P ([C]) = 1 + gt+ t2. Note

that this implies that [C] is not a polynomial in L.
In fact, for an irreducible curve over an algebraically closed field, [C] = L + β with β ∈ Z

if and only if C is rational.

2.3. Interesting facts. Related to point counting, recall that if X is a scheme of finite type
over k = Fq, its Zeta function is the formal power series

Z(X) = exp

(∑
n≥1

tn · #X(Fqn)

n

)
.

This is a rational function, satisfies a functional equation, etc. (Weil conjectures, . . .)
There is a motivic version of this, due to Kapranov. Let k be again an arbitrary field.
For a quasi-projective variety X, consider the symmetric powers SymnX. Recall that these

are defined as Xn modulo the permutation action of Sn. These are again quasi-projective
varieties.

Define
Zmot(X) =

∑
n≥0

tn · [SymnX] ∈ 1 + tK0(Vark)[[t]].

Proposition 2.10. This defines a group homomorphism K0(Vark)→ (1 + tK0(Vark)[[t]], ·)

If k is a finite field, then by using the point-counting homomorphism, Zmot(X) specifies
to the Hasse-Weil zeta function. It is maybe natural to expect that Zmot(X) is also rational
(in some sense... it is not completely clear what it should mean!).

This is the case for smooth projective curves (Kapranov), but not in general: Larsen-Lunts
showed that for a smooth projective surface, Zmot(X) is rational if and only if X has negative
Kodaira dimension. So rationality is not “motivic”, in most cases.

Another interesting connection is with stable birationality.

Definition 2.11. Two varieties X and Y are stably birational if for some n,m ≥ 0 we have
that X ×k Pn

k and Y ×k Pm
k are birationally isomorphic. A variety X is stably rational if it

is stably birational to Spec k (or to any projective space).
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Let SBirk denote the monoid of stable birational equivalence classes of varieties over k,
where the operation is product. Let Z[SBirk] be the monoid algebra.

Proposition 2.12. There is a surjective ring homomorphism K0(Vark)→ Z[SBirk] sending
the class of a smooth projective variety to its stable birational equivalence class, whose kernel
is the ideal generated by L. Hence Z[SBirk] ∼= K0(Vark)/(L).

Why do you have to kill L??? Because the image of [P1
k] and of 1 has to be the same, and

[P1
k] = L + 1.
On the opposite side of the spectrum, sometimes it is important to invert L. For example

in motivic integration, you want to define a measure on the arc space of an algebraic variety,
with values in K0(Vark), but normalized in a way that the measure of affine space is 1, so
you want to divide by L. This will also be important for the Grothendieck ring of stacks.

A question is natural at this point. Is L a zero-divisor in K0(Vark)? Poonen proved in
2002 that K0(Vark) is not a domain. His example used some abelian varieties, such that
A×A ∼= B ×B but A is not isomorphic to B (more or less). Still, it is possible that L is a
non-zerodivisor. This was widely believed to be true.

Very recently (2014) Borisov proved that L is in fact a zero divisor, and his proof also
implies that the “cut and paste” question of Larsen-Lunts has a negative answer.

He shows that for two smooth derived equivalent non-birational Calabi-Yau 3folds X and
Y (pfaffian-grassmannian double mirror correspondence) we have

([X]− [Y ])(L2 − 1)(L− 1)L7 = 0.

3. The Grothendieck ring of stacks

3.1. Algebraic stacks. Now I have to briefly tell you what algebraic stacks are, without
really telling you.

Algebraic stacks are a category of “spaces” that contains algebraic varieties and schemes.
They are sometimes kind of shunned because to be very precise about them you need a not-
so-small chunk of category theory (you need to talk about categories fibered in groupoids
that satisfy descent).

Here is the sentence that you will hear in any talk that uses algebraic stacks for an audience
that is not likely to know about them: you should think about algebraic stacks as some sort
of algebraic varieties, where points are allowed to have intrinsic “stabilizer groups” attached
to them. Caveat: this is only a first approximation of the truth, but it will be sufficient for
today.

So, every algebraic variety or scheme is an algebraic stack, where all these stabilizer groups
are trivial.

Algebraic stacks were invented because sometimes you want a space that parametrizes
some kinds of objects and with certain properties, and that space does not exist as a variety
or a scheme. Sometime it exists as a stack.

Remark 3.1. The most famous example is the moduli stackMg,n of stable curves of genus
g with n marked points. You might have heard about the construction of the coarse moduli
space M g,n, a projective variety whose (geometric) points correspond to isomorphism classes
of stable curves over k. This used to make people happy, and still does it for someone.
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But for example, the coarse moduli space is not smooth (even though the deformation
theory of nodal marked curves is smooth, in a sense), and does not have a universal family.
Singular points come from “extra automorphisms” of the corresponding curves. The alge-
braic stackMg,n is smooth, and does have a universal family. In particular, it explains why
M g,n has a well-defined intersection product with rational coefficients.

3.1.1. Quotient stacks. A big source of examples and intuition about algebraic stacks is given
by group actions.

Let G be an algebraic group over k (it can be a finite group, for example) acting on a
variety X. It is useful to be able to construct quotients (i.e. orbit spaces), and you might
have heard that this is a big industry in algebraic geometry (Geometric Invariant Theory).
The short story: it is not always (and this is not rare) possible to have a nice quotient X/G as
a variety or even a scheme. The GIT solution is to be content to just define a quotient for a
smaller (dense open usually) subset of X, where the group action is well-behaved (semistable
points). There is a quotient map X → X/G, but this does not alway have nice properties.
Even if the action of G on X is without stabilizers (so that you expect the fibers of the
projection to be isomorphic to G, as varieties), it is not always true that X → X/G is a
G-principal bundle.

In the stacks world, every group action has a quotient stack [X/G], and there is a projection
X → [X/G] that is a G-principal bundle. The geometry of [X/G] “is” the G-equivariant
geometry of X, so objects on the quotient are objects on X + a compatible group action on
them. For example, vector bundles on [X/G] are G-equivariant vector bundles on X.

Points of [X/G] correspond to orbits of G on X, and the group associated to such a point
is exactly the “stabilizer group of the orbit”. So the “geometry” of the quotient stack is
a mix of the geometry of an orbit space and some data about the stabilizers of the group
action.

In the extreme case where X = Spec k (and G is of course acting trivially), you get the
“classifying stack” BG = [Spec k/G] of G. This construction is the analogue of classifying
spaces in topology, where you take a simply connected space EG with a free action of G,
and take the quotient BG = EG/G (for example S1 = R/Z is the classifying space of Z).
Apart from simple examples, in topology BG is typically infinite dimensional. In AG, the
complication is in fact that it is a stack.

3.2. The Grothendieck ring of stacks. The same construction that I introduced for
varieties produces a Grothendieck ring of stacks.

Define K0(Stackk) to be the ring generated by isomorphism classes [X] of algebraic stacks
of finite type over k with affine diagonal, subject to the relation [X] = [Y ] + [U ] for every
closed substack Y ⊆ X, and [E] = [An

k ×kX] for every vector bundle E → X of rank n, and
with product defined by [X][Y ] = [X ×k Y ] (so that [E] = Ln[X] in the formula above).

The condition about vector bundles follows from the other relations for varieties, but not
for stacks, and we certainly want it.

There is a natural map K0(Vark) → K0(Stackk). One can prove that from the relations
above, it follows that if Y → X is a GLn-principal bundle, then [Y ] = [X][GLn] (vector
bundles are very strictly related to principal bundles for GLn).
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Since Spec k → BGLn is a GLn-torsor, we have [GLn][BGLn] = 1, so

[GLn] = (Ln − 1)(Ln − L) · · · (Ln − Ln−1) = Lk(Ln − 1)(Ln−1 − 1) · · · (L− 1)

is invertible in K0(Stackk). This means that L and all polynomials Ln−1 are also invertible.
It is a remarkable fact that this is all you need to invert if you start from K0(Vark).

Proposition 3.2 (Ekedahl). The ring K0(Stackk) is isomorphic to the localization of K0(Vark)
on the multiplicative subset generated by L and Ln − 1 for n ∈ N.

3.3. Computing [BG]. Computing the class [BG] for a group G in the Grothendieck ring
of stacks is an interesting question.

An algebraic group G is special if every G-torsor is Zariski-locally trivial. If X → Y is a
G-torsor for G special, then [X] = [G][Y ]. This holds for X and Y varieties, but also for
stacks.

So ifG is special, since Spec k → BG is aG-torsor, we have 1 = [BG][G], i.e. [BG] = [G]−1.
The first guess is that it should in general be true that [BG] = [G]−1, if G is connected.

Ekedahl showed though that for every non-special G there is a G-principal bundle P → T
such that [P ] 6= [G] · [T ], so multiplicativity for G-torsors fails in general, and on second
thought if it fails for some torsor, it is reasonable to expect that it does for the “universal
one”.

Conjecture 3.3. There exists a connected linear algebraic group G such that [BG] 6= [G]−1.

The class of [BG] for G connected has been computed in some examples: by Daniel Bergh
for PGL2 and PGL3 and by Dhillon and Young for SO2n. Me and Angelo Vistoli computed
the class of BSOn for any n. In all those cases, we have [BG] = [G]−1.

If G is finite, the expected class for [BG] is 1. Ekedahl showed that this is the case in
many examples, but there are also examples where this fails. Interestingly, in the cases where
this fails the obstruction for it being true is given by the same obstruction that prevents the
Noether problem for G to have a positive answer.

3.4. The Noether problem. The Noether problem was posed by Emmy Noether sometime
in the first half of the 20th century. Here is the original formulation.

Let G be a finite group, and k be a field. Consider a purely transcendental extension
k(x1, . . . , xn) on which G acts by permuting the variables. We can consider the invariant
subfield k(x1, . . . , xn)G. The question is whether this is a purely transcendental extension of
k or not. Noether introduced this problem in relation to the inverse Galois problem over Q.

In particular one can look at the “translation” action of G on k(xg | g ∈ G), and consider
the invariant field for this. Noether’s problem for G asks if this field is purely transcendental
over k or not.

Swan proved that for G = Z/47Z over Q, the answer to this question is negative. Later
Saltman and Bogomolov found many more examples, over an arbitrary field.

For a non-finite algebraic group G (say connected, and maybe semisimple), the question
is the following: given a linear representation V of G with trivial generic stabilizer, is the
quotient V/G stably rational? Or retract rational?

There are a lot of results in this direction, but for example there is no known example of
a connected linear group G for which V/G is not rational.
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The fact that [BG] = [G]−1 or not is morally related (by analogy) with the Noether
problem for G.

3.5. Results. Recently with Roberto Pirisi we have been looking at the class of BG for spin
groups. The spin group Spinn is the universal (2:1) cover of SOn. It is special for n ≤ 6, so
in that range for sure [BSpinn] = [Spinn]−1. We have proved that this is also the case for
n = 7, 8, and that also [BG2] = [G2]

−1.

Theorem 3.4 (Pirisi,-). For k = C in the Grothendieck ring of stacks we have

[BG] = [G]−1

for G = G2, Spin7, Spin8.

For the general n, we reduce the computation to [BDn] for a finite subgroup Dn ⊆ Spinn.
We believe that Spinn for high n has a good change of being an example of a connected
group for which [BG] 6= [G]−1.

The Noether problem is still open for spin groups. Conjecturally, for n ≥ 15 quotients of
generically free Spinn-representations are not retract rational (Merkurjev’s conjecture). Our
hope is to be able to prove that for some n we have [BSpinn] 6= [Spinn]−1 and that this will
turn out to be equivalent to a negative answer to Noether’s problem.
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