Classi caratteristiche di fibrati vettoriali

Mattia Talpo

29 Giugno 2007

Introduzione

Entrambi i concetti vengono dalla geometria differenziale.

Fibrato tangente a una varietà differenziabile
$$TM = \coprod_{x \in M} T_x M$$
 Fibrati vettoriali su spazi topologici

Fibrato pprox famiglia continua di spazi omeomorfi, localmente fatta

Le classi caratteristiche associano a ogni fibrato vettoriale una classe di coomologia dello spazio base, in modo da verificare alcune proprietà di funtorialità.

Introduzione

Entrambi i concetti vengono dalla geometria differenziale.

Fibrato tangente a una varietà differenziabile
$$TM = \coprod_{x \in M} T_x M$$

Fibrati vettoriali su spazi topologici

Fibrato \approx famiglia continua di spazi omeomorfi, localmente fatta come un prodotto.

Le classi caratteristiche associano a ogni fibrato vettoriale una classe di coomologia dello spazio base, in modo da verificare alcune proprietà di funtorialità.

Introduzione

Entrambi i concetti vengono dalla geometria differenziale.

Fibrato tangente a una varietà differenziabile
$$TM = \coprod_{x \in M} T_x M$$

Fibrati vettoriali su spazi topologici

Fibrato \approx famiglia continua di spazi omeomorfi, localmente fatta come un prodotto.

Le classi caratteristiche associano a ogni fibrato vettoriale una classe di coomologia dello spazio base, in modo da verificare alcune proprietà di funtorialità.

Fibrati vettoriali

Definizione

Un fibrato $\xi = E \stackrel{p}{\to} X$ a fibra F è una tripla $\xi = (E, p, X)$, dove:

- $p: E \rightarrow X$ è una funzione continua e surgettiva (proiezione)
- condizione di banalità locale: per ogni $x \in X$ esistono $U \subseteq X$ intorno di x e un omeomorfismo $\phi_x : p^{-1}(U) \to U \times F$ (banalizzazione locale), tale che $\pi_U \circ \phi_x = p$.

$$p^{-1}(U) \xrightarrow{\phi_{\times}} U \times F$$

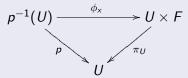
Un fibrato si dice banale se ha una banalizzazione con dominio E.

Fibrati vettoriali

Definizione

Un fibrato $\xi = E \xrightarrow{p} X$ a fibra F è una tripla $\xi = (E, p, X)$, dove:

- $p: E \rightarrow X$ è una funzione continua e surgettiva (proiezione)
- condizione di banalità locale: per ogni $x \in X$ esistono $U \subseteq X$ intorno di x e un omeomorfismo $\phi_x : p^{-1}(U) \to U \times F$ (banalizzazione locale), tale che $\pi_U \circ \phi_x = p$.



Un fibrato si dice banale se ha una banalizzazione con dominio E.

Definizione

Un fibrato vettoriale complesso di rango n è un fibrato $\xi = E \stackrel{p}{\to} X$ a fibra \mathbb{C}^n tale che:

- su ogni fibra $p^{-1}(x)$ c'è una struttura di spazio vettoriale complesso
- per ogni $x \in X$ esiste una banalizzazione locale $\phi_x : p^{-1}(U) \to U \times \mathbb{C}^n$, che è un isomorfismo lineare tra $p^{-1}(y)$ e $\{y\} \times \mathbb{C}^n$ per ogni $y \in U$.

Definizione

Un fibrato vettoriale complesso di rango n è un fibrato $\xi = E \stackrel{p}{\to} X$ a fibra \mathbb{C}^n tale che:

- su ogni fibra $p^{-1}(x)$ c'è una struttura di spazio vettoriale complesso
- per ogni $x \in X$ esiste una banalizzazione locale $\phi_x : p^{-1}(U) \to U \times \mathbb{C}^n$, che è un isomorfismo lineare tra $p^{-1}(y)$ e $\{y\} \times \mathbb{C}^n$ per ogni $y \in U$.

Esempi: fibrato banale $X \times \mathbb{C}^n$, fibrato tangente a una varietà differenziabile (nel caso reale), nastro di Moebius "prolungato".

Esempio: vedendo \mathbb{P}^1 come l'insieme delle rette di \mathbb{C}^2 , definiamo

$$E = \{(v, r) \in \mathbb{C}^2 \times \mathbb{P}^1 : v \in r\} \subseteq \mathbb{C}^2 \times \mathbb{P}^1$$
$$\rho = \pi_{\mathbb{P}^1}.$$

Il fibrato $\gamma_1^1 = E \xrightarrow{P} \mathbb{P}^1$ è detto fibrato tautologico su \mathbb{P}^1 . La fibra di γ_1^1 sopra un punto r di \mathbb{P}^1 (una retta in \mathbb{C}^2) è la retta r stessa.

Esempi: fibrato banale $X \times \mathbb{C}^n$, fibrato tangente a una varietà differenziabile (nel caso reale), nastro di Moebius "prolungato". **Esempio**: vedendo \mathbb{P}^1 come l'insieme delle rette di \mathbb{C}^2 , definiamo

$$E = \{(v, r) \in \mathbb{C}^2 \times \mathbb{P}^1 : v \in r\} \subseteq \mathbb{C}^2 \times \mathbb{P}^1$$

 $p = \pi_{\mathbb{P}^1}.$

Il fibrato $\gamma_1^1=E\stackrel{P}{\to}\mathbb{P}^1$ è detto fibrato tautologico su \mathbb{P}^1 . La fibra di γ_1^1 sopra un punto r di \mathbb{P}^1 (una retta in \mathbb{C}^2) è la retta r stessa.

Definizione

Un morfismo $f: \xi \to \eta$ tra due fibrati vettoriali $\xi = E \xrightarrow{p} X$ e $\eta = F \xrightarrow{q} X$ su X è una funzione continua $f: E \to F$ tale che:

- $q \circ f = p$, cioè la fibra $p^{-1}(x)$ viene mandata in $q^{-1}(x)$
- f è lineare ristretta ad ogni fibra di ξ.

In particolare un morfismo $f:\xi\to\eta$ è un isomorfismo se è un isomorfismo lineare ristretto a ogni fibra; equivalentemente se esiste un morfismo $g:\eta\to\xi$ tale che $g\circ f=\mathrm{id}_E$ e $f\circ g=\mathrm{id}_F$

Definizione

Un morfismo $f: \xi \to \eta$ tra due fibrati vettoriali $\xi = E \stackrel{p}{\to} X$ e $\eta = F \stackrel{q}{\to} X$ su X è una funzione continua $f: E \to F$ tale che:

- $q \circ f = p$, cioè la fibra $p^{-1}(x)$ viene mandata in $q^{-1}(x)$
- f è lineare ristretta ad ogni fibra di ξ.

In particolare un morfismo $f:\xi\to\eta$ è un isomorfismo se è un isomorfismo lineare ristretto a ogni fibra; equivalentemente se esiste un morfismo $g:\eta\to\xi$ tale che $g\circ f=\mathrm{id}_E$ e $f\circ g=\mathrm{id}_F$.

Pullbacks

 $\xi = E \stackrel{p}{\to} X$ fibrato vettoriale, $f: Y \to X$ continua. Definiamo un fibrato su Y, costruendolo a partire da ξ :

$$E' = \{(y, e) \in Y \times E : f(y) = p(e)\} \subseteq Y \times E$$
$$p' = \pi_Y : E' \to Y$$
$$f' = \pi_E : E' \to E.$$

 $f^*(\xi) = E' \xrightarrow{p'} Y$ è un fibrato vettoriale chiamato pullback di ξ , e f' manda con un isomorfismo la fibra di $f^*(\xi)$ sopra g nella fibra di ξ sopra ξ nella fibra di ξ nella fibra di ξ sopra ξ nella fibra di ξ nella fibra

Inoltre $f^*(\xi)$ è l'unico fibrato con queste proprietà, a meno di isomorfismo

Pullbacks

 $\xi = E \stackrel{p}{\to} X$ fibrato vettoriale, $f: Y \to X$ continua. Definiamo un fibrato su Y, costruendolo a partire da ξ :

$$E' = \{(y, e) \in Y \times E : f(y) = p(e)\} \subseteq Y \times E$$
$$p' = \pi_Y : E' \to Y$$
$$f' = \pi_E : E' \to E.$$

 $f^*(\xi) = E' \xrightarrow{p'} Y$ è un fibrato vettoriale chiamato pullback di ξ , e f' manda con un isomorfismo la fibra di $f^*(\xi)$ sopra y nella fibra di ξ sopra f(y).

Inoltre $f^*(\xi)$ è l'unico fibrato con queste proprietà, a meno di isomorfismo.

- se $f,g:Y\to X$ sono omotope e Y è paracompatto, allora $f^*(\xi)\cong g^*(\xi)$
- l'associazione

$$X \to \operatorname{Vect}^n(X)$$
 $[f] \to f^*$

- è un funtore controvariante dalla categoria degli spazi paracompatti con classi di omotopia di funzioni alla categoria degli insiemi
- in particolare un'equivalenza omotopica induce una bigezione tra classi di isomorfismo di fibrati di rango fissato
- se ξ è un fibrato banale, allora è pullback di un fibrato che ha come spazio base un punto di X.

- se $f,g:Y\to X$ sono omotope e Y è paracompatto, allora $f^*(\xi)\cong g^*(\xi)$
- l'associazione

$$X o \operatorname{Vect}^n(X)$$
 $[f] o f^*$

è un funtore controvariante dalla categoria degli spazi paracompatti con classi di omotopia di funzioni alla categoria degli insiemi

- in particolare un'equivalenza omotopica induce una bigezione tra classi di isomorfismo di fibrati di rango fissato
- se ξ è un fibrato banale, allora è pullback di un fibrato che ha come spazio base un punto di X.

- se $f,g:Y\to X$ sono omotope e Y è paracompatto, allora $f^*(\xi)\cong g^*(\xi)$
- l'associazione

$$X \to \operatorname{Vect}^n(X)$$
 $[f] \to f^*$

è un funtore controvariante dalla categoria degli spazi paracompatti con classi di omotopia di funzioni alla categoria degli insiemi

- in particolare un'equivalenza omotopica induce una bigezione tra classi di isomorfismo di fibrati di rango fissato
- se ξ è un fibrato banale, allora è pullback di un fibrato che ha come spazio base un punto di X.

- se $f,g:Y\to X$ sono omotope e Y è paracompatto, allora $f^*(\xi)\cong g^*(\xi)$
- l'associazione

$$X \to \operatorname{Vect}^n(X)$$
 $[f] \to f^*$

è un funtore controvariante dalla categoria degli spazi paracompatti con classi di omotopia di funzioni alla categoria degli insiemi

- in particolare un'equivalenza omotopica induce una bigezione tra classi di isomorfismo di fibrati di rango fissato
- se ξ è un fibrato banale, allora è pullback di un fibrato che ha come spazio base un punto di X.

Altre costruzioni

 $\xi = E \xrightarrow{p} X$ ed $\eta = F \xrightarrow{q} X$ fibrati vettoriali su X, poniamo:

$$E' = \coprod_{x \in X} (p^{-1}(x) \oplus q^{-1}(x))$$
$$p'(p^{-1}(x) \oplus q^{-1}(x)) = \{x\}.$$

 $\xi \oplus \eta = E' \xrightarrow{p'} X$ è un fibrato vettoriale chiamato somma diretta di ξ ed η .

Molte altre costruzioni dell'algebra lineare, ad esempio il prodotto tensore, si trasportano allo stesso modo sui fibrati vettoriali.

Altre costruzioni

 $\xi = E \xrightarrow{p} X$ ed $\eta = F \xrightarrow{q} X$ fibrati vettoriali su X, poniamo:

$$E' = \coprod_{x \in X} (p^{-1}(x) \oplus q^{-1}(x))$$
$$p'(p^{-1}(x) \oplus q^{-1}(x)) = \{x\}.$$

 $\xi \oplus \eta = E' \xrightarrow{p'} X$ è un fibrato vettoriale chiamato somma diretta di ξ ed η .

Molte altre costruzioni dell'algebra lineare, ad esempio il prodotto tensore, si trasportano allo stesso modo sui fibrati vettoriali.

Classi caratteristiche

Definizione

Una classe caratteristica c di rango n è una associazione che a ogni fibrato vettoriale $\xi = E \stackrel{p}{\to} X$ assegna una classe di coomologia $c(\xi) \in H^*(X; \mathbb{Z})$, che dipende solo dalla classe di isomorfismo di ξ , e tale che per un pullback $f^*(\xi)$ valga $c(f^*(\xi)) = f^*(c(\xi))$. (naturalità)

Esempio: l'associazione che a ogni fibrato $\xi: E \xrightarrow{p} X$ fa corrispondere l'identità $1 \in H^*(X; \mathbb{Z})$ è una classe caratteristica

Classi caratteristiche

Definizione

Una classe caratteristica c di rango n è una associazione che a ogni fibrato vettoriale $\xi = E \stackrel{p}{\to} X$ assegna una classe di coomologia $c(\xi) \in H^*(X; \mathbb{Z})$, che dipende solo dalla classe di isomorfismo di ξ , e tale che per un pullback $f^*(\xi)$ valga $c(f^*(\xi)) = f^*(c(\xi))$. (naturalità)

Esempio: l'associazione che a ogni fibrato $\xi: E \xrightarrow{p} X$ fa corrispondere l'identità $1 \in H^*(X; \mathbb{Z})$ è una classe caratteristica.

- Se ξ è un fibrato banale e c una classe caratteristica, si ha $c(\xi) \in H^0(X; \mathbb{Z})$. Infatti ξ è pullback di un fibrato con spazio base un punto, e $H^i(\{x_0\}; \mathbb{Z})$ è banale se $i \geq 1$.
- Ponendo

$$(c+d)(\xi) = c(\xi) + d(\xi)$$
$$(cd)(\xi) = c(\xi) \lor c(\xi)$$

si ottiene una struttura di anello sull'insieme delle classi caratteristiche di rango fissato.

- Se ξ è un fibrato banale e c una classe caratteristica, si ha $c(\xi) \in H^0(X; \mathbb{Z})$. Infatti ξ è pullback di un fibrato con spazio base un punto, e $H^i(\{x_0\}; \mathbb{Z})$ è banale se $i \geq 1$.
- Ponendo

$$(c+d)(\xi) = c(\xi) + d(\xi)$$
$$(cd)(\xi) = c(\xi) \lor c(\xi)$$

si ottiene una struttura di anello sull'insieme delle classi caratteristiche di rango fissato.

Classi di Chern

Le classi di Chern sono particolari classi caratteristiche c_i , che soddisfano anche i seguenti assiomi.

Assioma

- $c_i(\xi) \in H^{2i}(X; \mathbb{Z})$ (classi omogenee)
- $c_0(\xi) = 1$ e $c_i(\xi) = 0$ se i è maggiore del rango di ξ .

Se ξ ha rango n, $c(\xi) = 1 + c_1(\xi) + \cdots + c_n(\xi)$ è la classe di Chern totale di ξ .

Assioma

Se ξ ed η sono fibrati su X, allora $c(\xi \oplus \eta) = c(\xi) \lor c(\eta)$.

Classi di Chern

Le classi di Chern sono particolari classi caratteristiche c_i , che soddisfano anche i seguenti assiomi.

Assioma

- $c_i(\xi) \in H^{2i}(X; \mathbb{Z})$ (classi omogenee)
- $c_0(\xi) = 1$ e $c_i(\xi) = 0$ se i è maggiore del rango di ξ .

Se ξ ha rango n, $c(\xi) = 1 + c_1(\xi) + \cdots + c_n(\xi)$ è la classe di Chern totale di ξ .

Assioma

Se ξ ed η sono fibrati su X, allora $c(\xi \oplus \eta) = c(\xi) \smile c(\eta)$.

L'ultimo è un assioma di normalizzazione; scegliamo un generatore $\sigma \in H^2(\mathbb{P}^1; \mathbb{Z}) \cong \mathbb{Z}$.

Assioma

La classe di Chern totale del fibrato tautologico su \mathbb{P}^1 è $c(\gamma_1^1) = 1 + \sigma$.

Teorema

Esistono e sono uniche delle associazioni c_i che soddisfano tutti gli assiomi dati.

L'ultimo è un assioma di normalizzazione; scegliamo un generatore $\sigma \in H^2(\mathbb{P}^1; \mathbb{Z}) \cong \mathbb{Z}$.

Assioma

La classe di Chern totale del fibrato tautologico su \mathbb{P}^1 è $c(\gamma_1^1) = 1 + \sigma$.

<u>Te</u>orema

Esistono e sono uniche delle associazioni c_i che soddisfano tutti gli assiomi dati.

Grassmaniane

Definiamo insiemisticamente, per $n \ge k$,

$$\mathcal{G}(n,k) = \{ H \subseteq \mathbb{C}^n : H \text{ sottospazio di dimensione } k \}.$$

L'insieme V(n, k) delle k-uple ortonormali di vettori di \mathbb{C}^n (Varietà di Stiefel) ha una topologia naturale come sottoinsieme di $S^{2n-1} \times \cdots \times S^{2n-1}$, e c'è una funzione surgettiva $\Phi: V(n, k) \to G(n, k)$ data da $\Phi(v_0, \dots, v_n) = Span\{v_0, \dots, v_n\}$

Definizione

La Grassmaniana dei k-piani di \mathbb{C}^n è l'insieme $\mathcal{G}(n,k)$ dotato della topologia quoziente rispetto a Φ .

$$(A \subseteq \mathcal{G}(n,k)$$
 è aperto se e solo se $\Phi^{-1}(A)$ è aperto in $V(n,k)$

Grassmaniane

Definiamo insiemisticamente, per $n \ge k$,

$$\mathcal{G}(n,k) = \{ H \subseteq \mathbb{C}^n : H \text{ sottospazio di dimensione } k \}.$$

L'insieme V(n,k) delle k-uple ortonormali di vettori di \mathbb{C}^n (Varietà di Stiefel) ha una topologia naturale come sottoinsieme di $S^{2n-1} \times \cdots \times S^{2n-1}$, e c'è una funzione surgettiva $\Phi: V(n,k) \to \mathcal{G}(n,k)$, data da $\Phi(v_1,\ldots,v_k) = \operatorname{Span}\{v_1,\ldots,v_k\}$.

Definizione

La Grassmaniana dei k-piani di \mathbb{C}^n è l'insieme $\mathcal{G}(n,k)$ dotato della topologia quoziente rispetto a Φ .

 $(A\subseteq \mathcal{G}(n,k)$ è aperto se e solo se $\Phi^{-1}(A)$ è aperto in V(n,k)

Grassmaniane

Definiamo insiemisticamente, per $n \ge k$,

$$\mathcal{G}(n,k) = \{ H \subseteq \mathbb{C}^n : H \text{ sottospazio di dimensione } k \}.$$

L'insieme V(n,k) delle k-uple ortonormali di vettori di \mathbb{C}^n (Varietà di Stiefel) ha una topologia naturale come sottoinsieme di $S^{2n-1} \times \cdots \times S^{2n-1}$, e c'è una funzione surgettiva $\Phi: V(n,k) \to \mathcal{G}(n,k)$, data da $\Phi(v_1,\ldots,v_k) = \operatorname{Span}\{v_1,\ldots,v_k\}$.

Definizione

La Grassmaniana dei k-piani di \mathbb{C}^n è l'insieme $\mathcal{G}(n,k)$ dotato della topologia quoziente rispetto a Φ .

$$(A \subseteq \mathcal{G}(n,k)$$
 è aperto se e solo se $\Phi^{-1}(A)$ è aperto in $V(n,k)$

Le inclusioni naturali $\mathbb{C}^n \subseteq \mathbb{C}^{n+h}$ date da $(z_1, \ldots, z_n) \mapsto (z_1, \ldots, z_n, 0, \ldots, 0)$ inducono inclusioni $\mathcal{G}(n, k) \subseteq \mathcal{G}(n + h, k)$.

Definizione

La Grassmaniana infinita dei k-piani di \mathbb{C}^∞ è l'insieme

$$\mathcal{G}_k = \bigcup_{n \geq k} \mathcal{G}(n, k)$$

con la topologia di limite diretto.

(cioè $A \subseteq \mathcal{G}_k$ è aperto se e solo se $A \cap \mathcal{G}(n,k)$ è aperto in $\mathcal{G}(n,k)$ per ogni n > k)

Le inclusioni naturali $\mathbb{C}^n \subseteq \mathbb{C}^{n+h}$ date da $(z_1, \ldots, z_n) \mapsto (z_1, \ldots, z_n, 0, \ldots, 0)$ inducono inclusioni $\mathcal{G}(n,k) \subseteq \mathcal{G}(n+h,k)$.

Definizione

La Grassmaniana infinita dei k-piani di \mathbb{C}^{∞} è l'insieme

$$\mathcal{G}_k = \bigcup_{n \geq k} \mathcal{G}(n,k)$$

con la topologia di limite diretto.

(cioè $A \subseteq \mathcal{G}_k$ è aperto se e solo se $A \cap \mathcal{G}(n,k)$ è aperto in $\mathcal{G}(n,k)$ per ogni $n \ge k$)

Fibrato tautologico

Generalizziamo il fibrato tautologico su \mathbb{P}^1 a un fibrato su $\mathcal{G}(n,k)$:

$$E_{n,k} = \{(v, H) \in \mathbb{C}^n \times \mathcal{G}(n, k) : v \in H\} \subseteq \mathbb{C}^n \times \mathcal{G}(n, k)$$
$$p_{n,k} = \pi_{\mathcal{G}(n,k)}$$

Il fibrato $\gamma_n^k = E_{n,k} \xrightarrow{P_{n,k}} \mathcal{G}(n,k)$ è detto fibrato tautologico su $\mathcal{G}(n,k)$. La sua fibra sopra un punto $H \in \mathcal{G}(n,k)$ è lo spazio vettoriale H stesso.

Allo stesso modo si definisce $\gamma^k = E_k \stackrel{p_k}{\to} \mathcal{G}_k$ sulla Grassmaniana infinita \mathcal{G}_k .

Fibrato tautologico

Generalizziamo il fibrato tautologico su \mathbb{P}^1 a un fibrato su $\mathcal{G}(n,k)$:

$$E_{n,k} = \{(v, H) \in \mathbb{C}^n \times \mathcal{G}(n, k) : v \in H\} \subseteq \mathbb{C}^n \times \mathcal{G}(n, k)$$
$$p_{n,k} = \pi_{\mathcal{G}(n,k)}$$

Il fibrato $\gamma_n^k = E_{n,k} \xrightarrow{p_{n,k}} \mathcal{G}(n,k)$ è detto fibrato tautologico su $\mathcal{G}(n,k)$. La sua fibra sopra un punto $H \in \mathcal{G}(n,k)$ è lo spazio vettoriale H stesso.

Allo stesso modo si definisce $\gamma^k = E_k \stackrel{p_k}{\to} \mathcal{G}_k$ sulla Grassmaniana infinita \mathcal{G}_k .

Il fibrato γ^n è anche detto fibrato universale, perchè vale il seguente risultato.

Teorema

Se $\xi = E \xrightarrow{p} X$ è un fibrato vettoriale di rango n, allora esiste una funzione continua $f: X \to \mathcal{G}_n$ (mappa classificante di ξ) tale che $\xi \cong f^*(\gamma^n)$. Inoltre f è unica a meno di omotopia.

Usando questo fatto si mostra che l'anello delle classi caratteristiche di rango n è isomorfo a $H^*(\mathcal{G}_n; \mathbb{Z})$: una classe caratteristica c è completamente determinata da $c(\gamma^n) \in H^*(\mathcal{G}_n; \mathbb{Z})$, perchè $c(\xi) = c(f^*(\gamma^n)) = f^*(c(\gamma^n))$.

Il fibrato γ^n è anche detto fibrato universale, perchè vale il seguente risultato.

Teorema

Se $\xi = E \xrightarrow{\rho} X$ è un fibrato vettoriale di rango n, allora esiste una funzione continua $f: X \to \mathcal{G}_n$ (mappa classificante di ξ) tale che $\xi \cong f^*(\gamma^n)$. Inoltre f è unica a meno di omotopia.

Usando questo fatto si mostra che l'anello delle classi caratteristiche di rango n è isomorfo a $H^*(\mathcal{G}_n; \mathbb{Z})$: una classe caratteristica c è completamente determinata da $c(\gamma^n) \in H^*(\mathcal{G}_n; \mathbb{Z})$, perchè $c(\xi) = c(f^*(\gamma^n)) = f^*(c(\gamma^n))$.

Coomologia della Grassmaniana

Teorema

Si ha $H^*(\mathcal{G}_n; \mathbb{Z}) \cong \mathbb{Z}[c_1, \ldots, c_n]$, dove $c_i = c_i(\gamma^n)$ sono le classi di Chern del fibrato tautologico γ^n .

In particolare segue che le classi caratteristiche sono tutte polinomi a coefficienti interi nelle classi di Chern.

Infatti se f è la mappa classificante di ξ , si ha

$$c(\xi) = f^*(c(\gamma^n)) = f^*(p(c_1, \dots, c_n)) = p(f^*(c_1), \dots, f^*(c_n))$$

= $p(c_1(\xi), \dots, c_n(\xi)).$

Coomologia della Grassmaniana

Teorema

Si ha $H^*(\mathcal{G}_n; \mathbb{Z}) \cong \mathbb{Z}[c_1, \ldots, c_n]$, dove $c_i = c_i(\gamma^n)$ sono le classi di Chern del fibrato tautologico γ^n .

In particolare segue che le classi caratteristiche sono tutte polinomi a coefficienti interi nelle classi di Chern.

Infatti se f è la mappa classificante di ξ , si ha

$$c(\xi) = f^*(c(\gamma^n)) = f^*(p(c_1, \dots, c_n)) = p(f^*(c_1), \dots, f^*(c_n))$$

= $p(c_1(\xi), \dots, c_n(\xi)).$

Sketch della dimostrazione:

- Considerando il fibrato $\xi = \pi_1^*(\gamma^1) \oplus \cdots \oplus \pi_n^*(\gamma^1)$ su $(\mathbb{P}^{\infty})^n$, si dimostra che $H^*(\mathcal{G}_n; \mathbb{Z})$ contiene una sottoalgebra isomorfa a $\mathbb{Z}[c_1, \ldots, c_n]$. (cioè tra le classi $c_1, \ldots, c_n \in H^*(\mathcal{G}_n; \mathbb{Z})$ non ci sono relazioni algebriche a coefficienti in \mathbb{Z})
- Se f è la mappa classificante di ξ , si mostra che $f^*(H^*(\mathcal{G}_n;\mathbb{Z})) = f^*(\mathbb{Z}[c_1,\ldots,c_n])$, e si prova che f^* è iniettiva, utilizzando una certa struttura di CW-complesso su \mathcal{G}_n .

Segue dunque la tesi, $\mathsf{H}^*(\mathcal{G}_n;\mathbb{Z})\cong\mathbb{Z}[c_1,\ldots,c_n]$

Sketch della dimostrazione:

- Considerando il fibrato $\xi = \pi_1^*(\gamma^1) \oplus \cdots \oplus \pi_n^*(\gamma^1)$ su $(\mathbb{P}^{\infty})^n$, si dimostra che $H^*(\mathcal{G}_n; \mathbb{Z})$ contiene una sottoalgebra isomorfa a $\mathbb{Z}[c_1, \ldots, c_n]$. (cioè tra le classi $c_1, \ldots, c_n \in H^*(\mathcal{G}_n; \mathbb{Z})$ non ci sono relazioni algebriche a coefficienti in \mathbb{Z})
- Se f è la mappa classificante di ξ , si mostra che $f^*(H^*(\mathcal{G}_n;\mathbb{Z})) = f^*(\mathbb{Z}[c_1,\ldots,c_n])$, e si prova che f^* è iniettiva, utilizzando una certa struttura di CW-complesso su \mathcal{G}_n .

Segue dunque la tesi, $\mathsf{H}^*({\mathcal{G}}_n;{\mathbb{Z}})\cong{\mathbb{Z}}[c_1,\ldots,c_n]$

Sketch della dimostrazione:

- Considerando il fibrato $\xi = \pi_1^*(\gamma^1) \oplus \cdots \oplus \pi_n^*(\gamma^1)$ su $(\mathbb{P}^{\infty})^n$, si dimostra che $H^*(\mathcal{G}_n; \mathbb{Z})$ contiene una sottoalgebra isomorfa a $\mathbb{Z}[c_1, \ldots, c_n]$. (cioè tra le classi $c_1, \ldots, c_n \in H^*(\mathcal{G}_n; \mathbb{Z})$ non ci sono relazioni algebriche a coefficienti in \mathbb{Z})
- Se f è la mappa classificante di ξ , si mostra che $f^*(H^*(\mathcal{G}_n;\mathbb{Z})) = f^*(\mathbb{Z}[c_1,\ldots,c_n])$, e si prova che f^* è iniettiva, utilizzando una certa struttura di CW-complesso su \mathcal{G}_n .

Segue dunque la tesi, $H^*(\mathcal{G}_n; \mathbb{Z}) \cong \mathbb{Z}[c_1, \dots, c_n]$.

- A. Hatcher, *Algebraic Topology*, Cambridge University Press, 2002.
- D. Husemoller, Fibre Bundles, Springer, 1966.
- J. W. Milnor, J. D. Stasheff, *Characteristic Classes*, Princeton University Press and University of Tokyo Press, 1974.

Lemma

 \mathcal{G}_n ha una struttura di CW-complesso, in cui le 2i-celle sono in corrispondenza con le n-uple di naturali $(\sigma_1, \ldots, \sigma_n)$ tali che $0 < \sigma_1 < \cdots < \sigma_n$ e $i = (\sigma_1 - 1) + \cdots + (\sigma_n - n)$, e non sono presenti celle di dimensione dispari.

Lemma

Se $g:A\to B$ è un omomorfismo surgettivo tra gruppi abeliani di rango finito, e $\operatorname{rk}(A)\leq\operatorname{rk}(B)$, allora g è iniettivo.

Lemma

 \mathcal{G}_n ha una struttura di CW-complesso, in cui le 2i-celle sono in corrispondenza con le n-uple di naturali $(\sigma_1, \ldots, \sigma_n)$ tali che $0 < \sigma_1 < \cdots < \sigma_n$ e $i = (\sigma_1 - 1) + \cdots + (\sigma_n - n)$, e non sono presenti celle di dimensione dispari.

Lemma

Se $g: A \to B$ è un omomorfismo surgettivo tra gruppi abeliani di rango finito, e $rk(A) \le rk(B)$, allora g è iniettivo.

Dimostrazione del teorema:

Consideriamo $\xi = \pi_1^*(\gamma^1) \oplus \cdots \oplus \pi_n^*(\gamma^1)$ su $(\mathbb{P}^{\infty})^n$ (dove $\pi_i : (\mathbb{P}^{\infty})^n \to \mathbb{P}^{\infty}$ è la proiezione sulla *i*-esima coordinata).

$$c(\xi) = \prod_{i=1}^{n} c(\pi_{i}^{*}(\gamma^{1})) = \prod_{i=1}^{n} \pi_{i}^{*}(c(\gamma^{1})) = \prod_{i=1}^{n} \pi_{i}^{*}(1 + c_{1}(\gamma^{1}))$$
$$= \prod_{i=1}^{n} (1 + \alpha_{i}) \in \mathbb{Z}[\alpha_{1}, \dots, \alpha_{n}] \cong H^{*}((\mathbb{P}^{\infty})^{n}; \mathbb{Z})$$

Dunque $c_i(\xi)$ è l'*i*-esimo polinomio simmetrico elementare nelle α_i .

Dimostrazione del teorema:

Consideriamo $\xi = \pi_1^*(\gamma^1) \oplus \cdots \oplus \pi_n^*(\gamma^1)$ su $(\mathbb{P}^{\infty})^n$ (dove $\pi_i : (\mathbb{P}^{\infty})^n \to \mathbb{P}^{\infty}$ è la proiezione sulla *i*-esima coordinata).

$$egin{aligned} c(\xi) &= \prod_{i=1}^n c(\pi_i^*(\gamma^1)) = \prod_{i=1}^n \pi_i^*(c(\gamma^1)) = \prod_{i=1}^n \pi_i^*(1+c_1(\gamma^1)) \ &= \prod_{i=1}^n (1+lpha_i) \in \mathbb{Z}[lpha_1,\ldots,lpha_n] \cong \mathsf{H}^*((\mathbb{P}^\infty)^n;\mathbb{Z}) \end{aligned}$$

Dunque $c_i(\xi)$ è l'*i*-esimo polinomio simmetrico elementare nelle α_j .

Dimostrazione del teorema:

Consideriamo $\xi = \pi_1^*(\gamma^1) \oplus \cdots \oplus \pi_n^*(\gamma^1)$ su $(\mathbb{P}^{\infty})^n$ (dove $\pi_i : (\mathbb{P}^{\infty})^n \to \mathbb{P}^{\infty}$ è la proiezione sulla *i*-esima coordinata).

$$egin{aligned} c(\xi) &= \prod_{i=1}^n c(\pi_i^*(\gamma^1)) = \prod_{i=1}^n \pi_i^*(c(\gamma^1)) = \prod_{i=1}^n \pi_i^*(1+c_1(\gamma^1)) \ &= \prod_{i=1}^n (1+lpha_i) \in \mathbb{Z}[lpha_1,\ldots,lpha_n] \cong \mathsf{H}^*((\mathbb{P}^\infty)^n;\mathbb{Z}) \end{aligned}$$

Dunque $c_i(\xi)$ è l'*i*-esimo polinomio simmetrico elementare nelle α_j .

Se $f:(\mathbb{P}^\infty)^n \to \mathcal{G}_n$ è una mappa classificante per ξ , per naturalità l'applicazione

$$\mathbb{Z}[x_1,\ldots,x_n] \to \mathsf{H}^*(\mathcal{G}_n;\mathbb{Z}) \xrightarrow{f^*} \mathsf{H}^*((\mathbb{P}^{\infty})^n;\mathbb{Z}) \cong \mathbb{Z}[\alpha_1,\ldots,\alpha_n]$$

manda x_i nell'i-esimo polinomio simmetrico elementare; segue che la composizione è iniettiva.

In particolare è iniettiva $\mathbb{Z}[x_1,\ldots,x_n]\to H^*(\mathcal{G}_n;\mathbb{Z})$, la cui immagine è una sottoalgebra di $H^*(\mathcal{G}_n;\mathbb{Z})$ isomorfa a $\mathbb{Z}[c_1,\ldots,c_n]$.

Se $f:(\mathbb{P}^\infty)^n \to \mathcal{G}_n$ è una mappa classificante per ξ , per naturalità l'applicazione

$$\mathbb{Z}[x_1,\ldots,x_n] \to \mathsf{H}^*(\mathcal{G}_n;\mathbb{Z}) \xrightarrow{f^*} \mathsf{H}^*((\mathbb{P}^\infty)^n;\mathbb{Z}) \cong \mathbb{Z}[\alpha_1,\ldots,\alpha_n]$$

manda x_i nell'i-esimo polinomio simmetrico elementare; segue che la composizione è iniettiva.

In particolare è iniettiva $\mathbb{Z}[x_1,\ldots,x_n] \to H^*(\mathcal{G}_n;\mathbb{Z})$, la cui immagine è una sottoalgebra di $H^*(\mathcal{G}_n;\mathbb{Z})$ isomorfa a $\mathbb{Z}[c_1,\ldots,c_n]$.

Se $\pi: (\mathbb{P}^{\infty})^n \to (\mathbb{P}^{\infty})^n$ è una permutazione dei fattori, si ha $f^*(\gamma^n) \cong \pi^*(f^*(\gamma^n))$. Dunque $f \in f \circ \pi$ sono omotope, e in particolare si ha $f^* = \pi^* \circ f^*$.

L'immagine di f^* coincide quindi con i polinomi simmetrici nelle α_j . Visto che $f^*(H^*(\mathcal{G}_n;\mathbb{Z})) = f^*(\mathbb{Z}[c_1,\ldots,c_n])$ per concludere basta mostrare che f^* è iniettiva.

Poichè $H^{2i+1}(\mathcal{G}_n; \mathbb{Z})$ è banale per ogni i, basta vedere che f^* è iniettiva da $H^{2i}(\mathcal{G}_n; \mathbb{Z})$ a $H^{2i}((\mathbb{P}^{\infty})^n; \mathbb{Z})$.

Se $\pi: (\mathbb{P}^{\infty})^n \to (\mathbb{P}^{\infty})^n$ è una permutazione dei fattori, si ha $f^*(\gamma^n) \cong \pi^*(f^*(\gamma^n))$. Dunque f e $f \circ \pi$ sono omotope, e in particolare si ha $f^* = \pi^* \circ f^*$.

L'immagine di f^* coincide quindi con i polinomi simmetrici nelle α_j . Visto che $f^*(H^*(\mathcal{G}_n;\mathbb{Z})) = f^*(\mathbb{Z}[c_1,\ldots,c_n])$ per concludere basta mostrare che f^* è iniettiva.

Poichè $H^{2i+1}(\mathcal{G}_n; \mathbb{Z})$ è banale per ogni i, basta vedere che f^* è iniettiva da $H^{2i}(\mathcal{G}_n; \mathbb{Z})$ a $H^{2i}((\mathbb{P}^{\infty})^n; \mathbb{Z})$.

Se $\pi: (\mathbb{P}^{\infty})^n \to (\mathbb{P}^{\infty})^n$ è una permutazione dei fattori, si ha $f^*(\gamma^n) \cong \pi^*(f^*(\gamma^n))$. Dunque f e $f \circ \pi$ sono omotope, e in particolare si ha $f^* = \pi^* \circ f^*$.

L'immagine di f^* coincide quindi con i polinomi simmetrici nelle α_j . Visto che $f^*(H^*(\mathcal{G}_n;\mathbb{Z})) = f^*(\mathbb{Z}[c_1,\ldots,c_n])$ per concludere basta mostrare che f^* è iniettiva.

Poichè $H^{2i+1}(\mathcal{G}_n; \mathbb{Z})$ è banale per ogni i, basta vedere che f^* è iniettiva da $H^{2i}(\mathcal{G}_n; \mathbb{Z})$ a $H^{2i}((\mathbb{P}^{\infty})^n; \mathbb{Z})$.

Il rango di $f^*(H^{2i}(\mathcal{G}_n; \mathbb{Z}))$ conicide con il numero di monomi $c_1^{r_1} \cdots c_n^{r_n}$ tali che $2i = 2r_1 + \cdots + 2nr_n$. Le *n*-uple di questa forma sono in bigezione con le partizioni di *i* in al più *n* naturali tramite

$$(r_1,\ldots,r_n)\longrightarrow r_n\leq r_n+r_{n-1}\leq \cdots \leq r_n+r_{n-1}+\cdots+r_1$$

e queste ultime con le n-uple $(\sigma_1, \ldots, \sigma_n)$ con $0 < \sigma_1 < \cdots < \sigma_n$ e $i = (\sigma_1 - 1) + \cdots + (\sigma_n - n)$, ponendo $\sigma_i = r_n + \cdots + r_{n-i+1} + i$. Queste n-uple sono in corrispondenza biunivoca con le 2i-celle di \mathcal{G}_n , e il numero di tali celle è una limitazione superiore per il rango di $H^{2i}(\mathcal{G}_n; \mathbb{Z})$. In confusione, per il lemma f^* è iniettiva.

Il rango di $f^*(H^{2i}(\mathcal{G}_n; \mathbb{Z}))$ conicide con il numero di monomi $c_1^{r_1} \cdots c_n^{r_n}$ tali che $2i = 2r_1 + \cdots + 2nr_n$. Le *n*-uple di questa forma sono in bigezione con le partizioni di i in al più n naturali tramite

$$(r_1,\ldots,r_n)\longrightarrow r_n\leq r_n+r_{n-1}\leq \cdots \leq r_n+r_{n-1}+\cdots+r_1$$

e queste ultime con le n-uple $(\sigma_1, \ldots, \sigma_n)$ con $0 < \sigma_1 < \cdots < \sigma_n$ e $i = (\sigma_1 - 1) + \cdots + (\sigma_n - n)$, ponendo $\sigma_i = r_n + \cdots + r_{n-i+1} + i$. Queste n-uple sono in corrispondenza biunivoca con le 2i-celle di \mathcal{G}_n , e il numero di tali celle è una limitazione superiore per il rango di $H^{2i}(\mathcal{G}_n; \mathbb{Z})$. In conlusione, per il lemma f^* è iniettiva.