CAPITOLO 1

Generalita sulle equazioni ellittiche

1 Introduzione

Sia  un aperto limitato di R™. Considereremo operatori del tipo:

Au — — HZ:l 5; (aij(gj) 5;9(;:)) , (detto in forma variazionale o di divergenza); (1)
oppure
n 92
Au = ijZ:1 ai;(z) (%:Léz)j7 (detto in forma non variazionale). (2)

Le due forme possono essere equivalenti se i coeflicienti sono sufficientemente regolari a meno di introdurre
termini contenenti derivate di ordine inferiore della .

Definizione 1.1. Diremo che 'operatore A ¢é ellittico nel punto x € Q se la matrice {aij}i’j:L...,n det
coefficienti verifica la sequente ipotesi: esiste v(x) > 0 tale che per ogni & = (&1, ,&,) € R®

Z 2) €& = v(@) [Ig][zn- (3)

Diremo che A ¢ ellittico in Q se é ellittico in ogni = € €.

Definizione 1.2. Diremo che l'operatore A é uniformemente ellittico in Q se la matrice {a;;}i j=1,... n dei

coefficienti verifica la sequente ipotesi: esiste v > 0 tale che per ogni x € Q e per ogni & = (&1, ,&,) € R™
n
> ai(@)&& = vllE]fe. (4)
i,j=1

Nel seguito quando considereremo equazioni differenziali del tipo

A== Y ai (“”‘(””) 8;?) t b 2L 4wy uta) = 7o), (5)

4,J=1

oppure del tipo

n

Ao = 3 (o) 505 Zb o) 4 e ute) = ) ()

i,j=1

diremo che sono uniformemente ellittiche se le loro parti principali, ovvero la parte che contiene le derivate
di ordine massimo, sono uniformemente ellittiche su §2.



2 Varie definizioni di soluzione un’equazione ellittica

Definizione 2.1. Si dice che u ¢ soluzione classica in Q dell’ equazioni differenziali (5) (o0 (6)) se f € C°(Q),
u € C*HQ)NCY(Q), a;j € CHQ), mentre b;, ¢ appartengono a C*(Q) e A1(u) = f(x) (0 se aij, b, c € CO(Q)
e risulta As(u) = f(x)) per ogni x € Q.

Definizione 2.2. Si dice che u € H>P(Q), p > 1 ¢ soluzione forte in Q dell’” equazione differenziale Aqu = f
con f € LP(Q) e aij, b;, c € L™(Q), se per quasi ogni © € Q si ha

Asu = f(x).

Definizione 2.3. Si dice che u € HYP(Q), p > 1 ¢ soluzione nel senso delle distribuzioni in Q dell’
equazione differenziale Ay (u) = f con f € D'(Q) e ai;, bi, c € L>(Q) , se per ogni ¢ € D() si ha

<Ai(u),p>=<f,p>.

Prima di chiarire il legame tra le varie definizioni di soluzioni premettiamo la seguente osservazione.
Sia  aperto limitato di R™ con frontiera 9 di classe C*. Se i coefficienti dell’operatore A definito in (1)
sono di classe L> () allora per ogni u € H?(Q), p > 1, ed ogni ¢ € D(Q), vale la formula

< Au,p >= Z /Q a;; Diu(z) Djp(z) dx. (7)

i,5=1

Infatti a;;D;u € LP(Q) & identificabile con una distribuzione per quanto osservato nel paragrafo sulle
distribuzioni del Capitolo 0. Quindi e derivabile e la sua derivata ¢ una distribuzione, ne segue che

n
0 Ou(z
Au) = — — | ai;(x) du(z) , puo essere considerato una distribuzione. Potremo allora scrivere
. J .
J

or ox;

i,j=1

<Au,p>=< — Z Dj (aij(z) Diu),p >=

ij=1
=< Z a;j(x) Dyu, Djp >= Z / a;j(z) Diu(z) Dip(x) de.
i,j=1 ig=1"%

Osservazione 2.4. Se a;; € C1(Q), b;,c € C°(Q) e u ¢ soluzione classica dell’equazione differenziale
Aq(u) = f allora u é soluzione nel senso delle distribuzioni.

Infatti, per ogni ¢ € D(Q), risulta

<A1u,<p>:/A1ug0dx :/f(a:)ga(x)d:c:<f,g0>
Q Q

Vale anche il viceversa:

Osservazione 2.5. Se a;; € C'(Q), b, c € C°(Q), f € C°(Q), u € C2(Q)NCQ) e u ¢ soluzione nel senso
delle distribuzioni dell’equazione differenziale A1(u) = f allora u é soluzione classica.

Infatti dalla Definizione 2.3 otteniamo per ogni ¢ € D(Q2)

0=<Aiu,p> — < fp>= /Q(Alu — Nx) p(z) dz.

Come conseguenza delle precedenti osservazioni possiamo affermare che



Proposizione 2.6. Siano a;; € L>(Q), u € H2(Q), 92 di classe C*, f € D'(Q). Allora u ¢ soluzione nel
senso delle distribuzioni di

se e solo se, per ogni v € D(Q), risulta

dove abbiamo posto

@
5
&

o) = [ | 2 a2 0+ D0 TG ot e X)) | )

3 1l problema di Dirichlet per operatori simmetrici.

Ci proponiamo di dimostrare 'esistenza di una soluzione (nel senso delle distribuzioni) dell’equazione:

in forma variazionale “semplificata”, ovvero sotto l'ipotesi b; = 0 su 2 per ogni ¢ = 1,--- ,n. Il problema
generale sara affrontato nei paragrafi successivi. L’operatore puo essere visto, anche se i coeflicienti b; non
sono necessariamente nulli (purché in L>(2)), come operatore tra lo spazio H'?, p > 1, e D’(2) (ricordiamo
che a;; € L>®(Q), u € HP(Q) e Q & limitato). Risulta evidente che a;; D;ju € LP(£2), quindi, per quanto
osservato nell’ultimo paragrafo del Capitolo 0, si ha che Aju € H —Lpf (©2). Da questa osservazione otteniamo
che Dequazione (10) avra soluzione u € H?(€2), nel senso delle distribuzioni, solo se f € H~1# (), inoltre
la stessa puo essere scritta anche nella forma

Aju =Y D fi, dove f; € L¥'(Q). (11)

i=1

Come vedremo il problema di provare esistenza di una soluzione € ben posto se si aggiunge un’ulteriore
condizione riguardante la traccia di u su 02, ovvero se si considera quello che si chiama problema di
Dirichlet:

Alu = Z le27 su Qa
i=1 (12)

u(z) = g(z), su 09,

dove g € un’opportuna funzione assegnata. Per risolvere questo problema considereremo la forma bilineare
associata all’equazione (vedi (9)) ed utilizzando teoremi di analisi funzionale quali il teorema di F. Riesz
(nel caso simmetrico) o il teorema di Lax-Milgram (nel caso non simmetrico). Il primo di questi ¢ di pit
immediata applicazione in quanto riguarda la forma bilineare legata all’equazione

awe) = [ 3 a2 00w M) o) | de = 3 [ ) Dty (09

4,j=1

Applichiamo a questa il teorema di F. Riesz sotto opportune ipotesi sui coefficienti e sugli spazi come si vede
dal seguente teorema.

Teorema 3.1. Sia Q aperto limitato di R™ con frontiera O di classe C*. Siano a;; € L*(Q), 4,5 =1,--- ,n,
simmetrici: a;; = a3, 4,5 = 1,--- ,n. Supponiamo inoltre che sia verificata lipotesi di uniforme ellitticita
su 0 della Definizione (1.2). Siano b; = 0, i = 1,--- ,n, AMx) > 0 qo. in Q. Se fi, -+, fn € L?(Q),



g € HY2(Q), allora esiste una ed una sola soluzione u € HY2(Q) del problema di Dirichlet (12) e vale la
maggiorazione

[ull iz < ¢ (Z I fillL2a + ||9||H112(Q)-> (14)

i=1

Dimostrazione. Come primo passo consideriamo il problema nel caso g = 0 e consideriamo i rappresentanti
fi,, fn € L3(Q) di f. Dimostriamo che, nelle ipotesi del teorema, la forma bilineare ay(,-) definisce su
H& 2(Q) un prodotto scalare rispetto al quale questo spazio risulta essere uno spazio di Hilbert. In questo
modo, applicando il teorema di rappresentazione di Riesz otteniamo ’esistenza ed uncita di soluzione del
problema di Dirichlet considerato nonché la maggiorazione

[[ul

12,0 < cf|fllae@ (15)

Infatti la forma ¢ simmetrica per l'ipotesi di simmetria sulla matrice {a;;}; j=1,... » dei coefficienti. Inoltre
n
(u, ’l})Hé,Q(Q) = Z /Q Dj;u(x) Dyv(x) dx
i=1

e ax(u,v) sono prodotti scalari equivalenti in H& 2 (€2), nel senso che le norme indotte da essi sono equivalenti.
Infatti per I'ipotesi di uniforme ellitticita (1.2) vale la maggiorazione

ax(u,u) = i ai; Diu(z) Dju(z) + Nz)u?(z) | de> v z": (IDsu(z)|* + Az)|u(z)|*) dz. (16)
; . Q

Q
Se A(z) > A > 0 q.o. in Q da (16) segue
ax(u,u) > min(v,A) [ullf 2 0.

Se invece A(x) = 0 su un sottoinsieme di € di misura non nulla, allora da (16) e dalla diseguaglianza di
Poincaré

ax(u,u) > vlulf o0 > clullf g

In ogni caso, per A > 0 q.0. in (), esiste una costante c; tale che per ogni u € Hé’Q(Q), vale
ax(u,u) > i flull? ;0 (17)
Infine & evidente che, per ogni u € Hy'?(Q), vale
ax(u,u) < e ||U||%29

Osserviamo ora che risolvere I'equazione relativa la problema (12) in H(Q), con g = 0, equivale (per
definizione di soluzione nel senso delle distribuzioni) a risolvere, per ogni ¢ € D(2), la seguente equazione

n

ax(u, ) =< Z Difi,o>= — Z < fi,Dip>= — Z /Q fi(x) Dip(x) dx (18)
i=1 i=1 i=1
Dalla definizione di Hy?(2) sappiamo che D(2) & denso in Hy?(Q). Possiamo scrivere (18), per ogni

v € Hy(Q), come segue

ax(mv) = = 3 /Q fi(2) Dov() da (19)



11 secondo membro di (19) & quindi un funzionale lineare e continuo su Hé 2 () rispetto alla norma +/ay (u, w),
. . . 1,2 :
infatti, per ogni v € H,"(12), risulta

x) Div(x) dx

< Z/ fi(@)] Div(@)] de < (lelelm m) lollin <

per (17) (20)

1
n 2
< c3 (Z ||fi||2L2(Q)> ax(v,v).
1=1

Per il teorema di F. Riesz, in corrispondenza della n-pla fi,--- , f, € L?(£2), resta individuato univocamente
un elemento u = G(f1,--- , fn) € H2(Q), tale che, per ogni v € Hy?(Q) :

-> /in(x)Div(x) dz = ax(u,v). (21)
i=1

Quindi resta individuato un operatore G, lineare e continuo di H~2(Q) in Hy*(), relativo al problema di
Dirichlet 12, con g = 0, che chiamiamo operatore di Green. Per quanto dimostrato sopra G € un isomorfismo
tra H=12(Q) e Hy*().

Infatti, per ogni f € H~12(Q), esistono fi,--- , f,, € L*(2) tali che f = Z D; f; nel senso delle distribuzioni.

i=1
Da (21), per ogni v € Hy?(Q), si ha

—Z fi(x) Dyv(z) de = ax(Gf,v).
Q
i=1

Per il teroema di Riesz e per (20)

1>y Jq fi(®) Div z) da| _
(@D = sw 1o < Z £z
vEH2(Q) GA(%U)
v#0
Da questa tenuto conto di (17) otteniamo:
lull ey = 1GFlga@ < ¢ D Il

i=1

Poiché vale per ogni insieme di funzioni {f;}i=1,... » C L?(Q2) che individuano f si avrd infine che
lull o2y < ellfllrsaey. (22)

Consideriamo ora il caso che g # 0. La funzione u € H*?(£) & soluzione dell’equazione relativa al problema
(12), nel senso delle distribuzioni se e solo se w = u — g & soluzione del problema di Dirichlet

Ayw =Y Dif; — Axg, suQ,
i=0 (23)

w(z) =0, su I,



Osserviamo che ci siamo riportati al caso precedente, in particolare
n
Z D; fi — Axg € HV3(),
i=0

quindi esiste una ed una sola soluzione w € Hg 2 (€2) di (23). Di conseguenza esiste una ed una sola soluzione
u € H%(Q) di 12. Per quanto riguarda la maggiorazione (14) si ha, utilizzando (22)

[wlhzo < ¢y Ifi = aij DigllLe) <
3J

< ¢ (This Ifillzz@) + llaigle.a IDsglzae) <

n
<c max (1 laijlle.0) > fillzz@) + llgliz2e
RO i=1,2

4 Il problema di Dirichlet per operatori non simmetrici

Il problema dell’esistenza di soluzione per il problema di Dirichlet relativo ad un operatore con matrice della
parte principale non simmetrica puo essere affrontato utilizzando una generalizzazione del teorema di F.
Riesz, ovvero il Teorema di Lax-Milgram.

Quella che proponiamo & una versione piu generale di esso, ovvero una versione non lineare (la dimostrazione
¢ riportata nel paragrafo 7).

Teorema 4.1. (Laz-Milgram generalizzato).
Siano H uno spazio di Hilbert e a : H x H — R una funzione, con le proprieta:

(0)  a(0,v) =0, per ogni v € H

(1) v — a(u,v) ¢ lineare Vu € H,;

(2)  la(u1,v) = alug,v)| < Mluy —ug|ullvlla Vv e H,;

(3) Jv>0: a(ur,ur —uz) —aluz,us —uz) > v|lug — us||%, Yui,us € H.

(Se u—a(u,v) é lineare, la condizione (3) si riduce alla ben nota ipotesi di coercivitd ).
Allora per ogni F' € H* esiste uno ed un solo w € H tale che, per ogni v € H, sia verificata

a(u,v) = F(v). (25)
Inoltre vale la maggiorazione

c@)lula < [1F]a-- (26)

Utilizziamo questo risultato per provare il seguente Teorema.

Teorema 4.2. Sia ) aperto limitato di R™ con frontiera 0 di classe C*. Siano a;; € L>®(Q),4,5=1,--- ,n,
e sia verificata Uipotesi di uniforme ellitticita della Definizione (1.2). Siano b; =0,i=1,--- ,n, AM(z) >0
go. in Q. Se fi,--,fo € L*(Q), g € HY3(Q), allora esiste una ed una sola soluzione u € Hy”(Q) del

problema di Dirichlet (12) e vale la maggiorazione

lull g2y < e (Z 1fill 2o + ||g||H1,z<m.> (27)

=1



Dimostrazione. Basta provare il teorema nel caso g = 0 e poi riportarsi al caso g # 0 procedendo come &
stato fatto nel paragrafo precedente.
n

Sia Au = Z D;la;;(z) Dju(x)], dove {a;;(z)} & una matrice uniformemente ellittica su €2, costituita da

ij=1
funzioni di classe L>°(2). Osserviamo che la forma bilineare

n

a(u,v) :/Q Z a;j(z) Diu(z) Djv(z) + Mz)u(z)v(z) | dx

ij=1
verifica le ipotesi del Teorema 4.1 prendendo come spazio H = Hy*(Q) . Infatti:
(0) ¢ ovvia
(1) & ovvia.

12,0 .
(2) la(ur,v) — aluz, )l < Ml — vall gy ol 2y Von, wa, v € H2(9)

n

|a(u,v) = a(ug, v)] :/Q > aij(@) Difur(2) —ua()] Djv(z) + A@)[ui(2) — ua()]v(x) | do <

ij=1
(per la diseguaglianza di Schwarz-Holder)

< maxijot, v (0islloogs [\lloo) i = sll sy [0l sy, Vs, us, v € HEA(Q)

(3) I >0: alur,ur —ug) —aluz,us —ug) > c(v)||ur — ua||%, Yui,uz € H&’Q(Q) :

a(ur, ur — ug) — a(ug, uy — ug) =

= [ 3 ay(0) Do) Dfus(a) — ua(o)] s~
Q=1

n

— [ 3 aul@) Davata) Dyfus(w) = wala)] + Awlua(o) — ula) | do =

ij=1

n

Z/Q > aij(@) Difur (@) = us(@)] Dy [ur (x) — ua(@)] + Alur () —us(@)]* | dw >

ij=1

> cv) ur — , Yu, up € Hy*(Q).

wallizy 0

5 1l problema di Dirichlet per operatore completo

Consideriamo 'operatore in cui siano presenti anche le derivate di ordine inferiore a due, ed il coefficiente di
u sia di segno qualunque, ossia:

n

Byu = — Xn: Dj(aijDiu) + Z bi(x)Diu + /\(x)u, (28)

ij=1 i=1
dove la matrice {a;;}; j=1,... » ¢ uniformemente ellittica su Q e a;;, b;, A sono funzioni appartenti a L> ().

Consideriamo la forma bilineare

n

b(u,v) = /Q > aij(z) Diu(x) Djv(z) + Z a; Dyu(z)v(z) + Mz)u(z)v(z) | dr. (29)

i,j=1



Vediamo sotto quali ipotesi su € la forma b risulta coerciva su Hy*(Q) x Hy?(Q). Per ogni u € Hy*(Q) x
Hy%(Q) si ha

n

blu,u) = /Q Z

ij=1

a;j(z) Diyu(z) Dju(x) + Z b; Dyu(z)u(z) + Mz) [u(z)]?* | dx
(per l'uniforme ellitticita) (30)

wwmzuw@@+/<Xwﬁmwmw+Amwmw>m.
2 \i=1
D’altra parte, per ogni € > 0, si ha

/Q (Z b; Diu(z)u(z) + A(x) [u(m)]2> dx

< max|[billoc.o [ulr2.0 [lufloze + [IMocg llul§ 20 <

(31)
< maxlble (elult s + o llEsa) + [N alilBso
Da questa, posto ¢; = maz;||b;||c,0, € da (30)
bluuw) 2 (v = cro)ulfsn + (55 = ) lluloog 2
(per la diseguaglianza di Poincaré) (32)

C
> [v = ere = da (55 + IMlws) [ Tulf 2.0 = eldas 1, [Ao.0) uf} 5 0

Dove la costante c(dg, c1, | Al so,0) risultera positiva se € e dg sono sufficientemente piccoli.
Queste considerazioni unite a quelle fatte nei pragrafi precedenti ci permettono di enunciare il seguente
teorema

Teorema 5.1. Sia Q aperto limitato di R™ con frontiera O di classe C*. Siano a;; € L>®(Q), 4,5 =1,--- ,n,
verificanti ’ipotesi di uniforme ellitticita della Definizione (1.2), b; e A € L>®(). Se f1,---, fn € L?(Q),
g € HY2(Q), allora esiste una ed una sola soluzione u € H*(Q) del problema di Dirichlet (12) e vale la
maggiorazione

[ull 2@y < ¢ (Z I fill 2o + ||9||H1,2<Q)-> (33)

=1

6 Teoria degli operatori vicini: introduzione.

Il concetto di vicinanza tra operatori introdotto da Campanato ¢ contenuto nella seguente definizione

Definizione 6.1. Siano X un insieme e B uno spazio di Banach con norma ||-|| , A e B due operatori tali
che A, B : X—B. Diremo che A ¢ vicino a B, se esitono due costanti positive o, k, con 0 < k < 1, tali che
per ogni x1,x9 € X si abbia:

[B(x1) = B(x2) — a[A(z1) — A(z2)]|| < k[|B(21) = B(22)]|- (34)

Ovviamente: ogni operatore ¢ vicino a sé stesso. Infatti basta prendere nella diseguaglianza (34): 0 < a < 2
e K=|1-ql

Il punto di partenza della teoria degli operatori vicini ¢ il seguente teorema che & stato dimostrato da
Campanato, prima nel caso di due spazi di Hilbert, e poi nella forma seguente.



Teorema 6.2. Sia X un insieme, B uno spazio di Banach con norma ||.||, A, B siano due operatori tali che:
A, B : X—B, inoltre sia A vicino a B . Sotto queste ipotesi, se B ¢ una bigezione tra X e B, A ¢ anche una
bigezione tra X e B.

Alla dimostrazione di questo teorema premettiamo i seguenti lemmi.
Siano X’ un insieme e B uno spazio di Banach con norma || - || , A e B due operatori tali che A, B : X—B.

Lemma 6.3. Sia A vicino a B. Valgono le sequenti maggiorazioni:

o
1-k

14 ~ Al < "B - Bl (36)

1B(x1) — B(z2)|| <

||A(331) - A(fﬂz)” (35)

La dimostrazione del Lemma ¢ una banale conseguenza della maggiorazione (34)

Teorema 6.4. Sia A vicino a B. L’operatore A ¢& iniettivo se e solo se & iniettivo l'operatore B

La dimostrazione segue dalle maggiorazioni (35) e (36) del Lemma 6.3.

Lemma 6.5. Sia B : X — B operatore iniettivo allora X & uno spazio metrico con la metrica indotta
dx(u,v) = ||B(u) — B(v)|lg, Yu,v € X. (37)

La dimostrazione di questo asserto € ovvia.

Lemma 6.6. Sia B : X — B operatore bigettivo allora X e uno spazio metrico completo con la metrica
indotta (37).

Dimostrazione. Sia {un}nen una successione di Cauchy in {X,dx}, ovvero { B(uy)}nep € una successione di
Cauchy in B, e quindi esiste Uy, € B tale che

[ B(un) = Uscllzs — 0.
Sia us tale che us = B™1(Us). Quindi
dx (tn,uoo) = || B(un) = Usolls — 0.

O
Dimostrazione. (Del Teorema 6.2).
L’iniettivita e conseguenza del Teorema 6.4. Vediamo la surgettivita.
Per ogni f € B dobbiamo dimostrare ’esistenza di soluzione u € X dell’equazione
Aw) = 7, (38)
OVVero
B(u) = B(u) — aA(u) + af = F(u).
Ma per ogni u € X abbiamo che F(u) € B e quindi esiste uno ed un solo U = Tu € X tale che
B(U) = F(u). (39)

In questo modo abbiamo costruito un applicazione 7 : X — X che & una contrazione di X’ in se. Infatti, se
u,v € X eU =T (u), V="7T() allora

dx(U.V) = |BU) — BV)|s = [F(u) ~ F(v)]5 = »
0
1B — B(v) - alA(w) — A@)lls < K [B(u) — B)|s = K dx(u,v)

D’altra parte per il Lemma 6.6, lo spazio {X, dx} & completo. Quindi, per il teorema delle contrazioni esiste
uno ed un solo U € X che risolve (39 ), e quindi esiste uno ed un solo u € X' che risolve (38). Abbiamo cosi
provato che A & anche bigettiva. O



Teorema 6.7. Sia A vicino a B. Se l'operatore B ¢ surgettivo allora anche l’operatore A é surgettivo.

Dimostrazione. Definiamo sull’insieme X la relazione di equivalenza Ry nel seguente modo
uRxv <= B(u) = B(v).

Indichiamo con [u]x la classe di equivalenza di u e sia X = X/Rx. Definiamo A* e B* le applicazioni da X
in B come segue

B(lulx) = B(u),  A*([ulx) = A(u)

A* & anch’essa vicina a B* con costanti a, K e B* & bigettiva. Quindi A* & anche bigettiva, ovvero A &
surgettiva. ]

Una delle conseguenze di questi risultati ¢ il seguente teorema

Teorema 6.8. (Metododi continuita).
Sia {At}iepo,1) uan famiglia di operatori di un’insieme X a valori in uno spazio di Banach B verificanti le
ipotesi

esiste r € [0,1] tale che A, é una bigezione; (41)

esiste ¢ > 0 tale che per ogni s,t € [0,1] e u,v € X vale
(42)
[Ae(u) — Ae(v) = [As(u) = As(v)]lls < cft — s[[|Ar(u) — A(v)]|s

allora per ogni s € [0,1] As € una bigezione.

Dimostrazione. poniamo I = {t € [0,1] : A; & una bigezione}. La tesi segue dopo aver provato le seguenti
proposizioni per il fatto che [0, 1] & un connesso:

(a) T #0;
(b) I & aperto;
(¢c) I & chiuso.
Dimostrazione di (a): I # () perché r € I.

Dimostrazione di (b): sia ¢t € I e § > 0 tali che per ogni s € [t — §,t + ] N[0,1] si abbia k = ¢|t — s| < 1. Per
(42) si ha che Ag ¢ vicina a Ay quindi per il Teorema 6.2 Ag & una bigezione.

Dimostrazione di (c): Sia {t,}nen C I uan successone convergente a to, € [0,1]. Osserviamo che definitiva-
mente risulta k = c|t, — teo| < 1. Anche in questo caso abbiamo che A, _ @ vicino a A, e quindi & una
bigezione, dunque t., € I. O

7 Una dimostrazione del teorema di Lax-Milgram generalizzato

Teorema 7.1. Siano H uno spazio di Hilbert e a : H x H — R una funzione, con le proprieta:
(0)  a(0,v) =0 per ogni v e V.
(1) v — a(u,v) é lineare Yu € H,;
() laur,v) — a(us, o) < Ml —uslalfv]s Vo € H,;

(8) w>0: a(ur,ur —uz) — alug,us —ug) > vljug — UQH%_I7 Yui,us € H.
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(Se u—a(u,v) é lineare, la condizione (3) si riduce alla ben nota ipotesi di coercivitd ).
Allora per ogni F' € H* esiste uno ed un solo u € H tale che, per ogni v € H, sia verificata

a(u,v) = F(v). (43)
Inoltre vale la maggiorazione

c@) llulla < [F|a-- (44)

Dimostrazione. Indichiamo con A l'applicazione tra H e H* defininita da: A(u)(v) = a(u,v). Dimostriamo
che A ¢ una bigezione tra H e H*, ovvero per ogni F' € H* esiste una ed una sola soluzione u € H tale che

A(u)(v) = F(v), YveH.
Questo equivale a provare la tesi del teorema, ovvero esiste una ed una sola soluzione u € H dell’equazione
a(u,v) = A(u)(v) = F(v), Vv e H.
Per il Teorema 6.2, ¢ sufficiente dimostrare che A & vicino all’operatore J : H— H™* definito da:

J(u)(v) = (u,v)H-

In particolare osserviamo che || J (u)|| g* = ||u||z . Inoltre, consideriamo I'operatore di Riesz

R : H*—H definito da R(F) = w, F € H*,w € H, dove F(v) = (w,v)g, Yv € H and ||w|g = ||F| z--
Allora, in particolare, (R(A(u)),v)g = A(u)(v) = a(u,v), e R = J !, cosi che J ¢ una bigezione tra H e
H*. Possimo quindi ottenere la tesi del teorema dimostrando la diseguaglianza (34), per gli operatori J e A,
ovvero dimostrando che esistono due costanti positive « e k € (0,1) tali che:

[T (u1) — T (u2) — alA(ur) — A(u2)]||m- < k[T (u1) — T (u2) ||+
Osserviamo che :

1T (u1) = T (u2) = aAlur) = Aug)]|[3- =
= [lur — uz — a[R(A(u1)) = R(A(u2))]|I % =
= [lur — w2} + @®|R(A(u1)) — R(A(u2))|[3 +
—2a(R(A(u1)) — R(A(uz2)),u; —u2)yg =
= lur — ua||f + @?|R(A(ur)) — R(A(u2)) |3 +

—2ala(uy, u; — uz) — alug, up — ug)] <
(per le ipotesi (2) e (3))

< lur = uallz + &M |Juy — ug |7 — 20w|juy — ug |3 =
= [1+a®M? = 200]|Juy — ua|; = K[| T (u1) — T (ua2)|| -

La maggiorazione segue dall’ipotesi (3) prendendo us = 0 e dal fatto che F' & un operatore lineare e continuo.
O

Un’altro esempio di applicazione di questo Teorema e il seguente.
Consideriamo un aperto limitato © in R", con bordo sufficientemente regolare e la forma

a(u,v) = Z/Qai(x,Du)Divdx
i=1

where Du = (Dqu, ..., Dyu) , u € H}(Q). On a(-,-) con le ipotesi seguenti:
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(a) a;i(x,0) =0 q.o. in Q, peri=1,--- n.(})
(b) a;(x,p) & misurabile e limitato in x, e continua in p € R* .
(¢) dv > 0 tale che Vp,p e R* ,Vz € Q :

[ai (. p) — ai(z,B)] (i — B;) = vllp — BIl7.
1

n
1=

(d) 3M > 0 tale che ¥p,p e R , Vo € QO :

[ai(2,p) — ai(z,B)]* < Mlp — Bl

n
=1

(2

sotto queste ipotesi, per ogni f € H~1(Q) esiste una ed una sola soluzione u € H}(Q) :

n
Z/ ai(x, Du)Dyvdr =< f,v > Vv € HE(Q),
=1 Q

ovvero, per ogni f € H~12(Q) esiste una ed una sola soluzione u € Hy*(2) del problema di Dirichlet
- ZDi(ai(x,Du)) = f(z) su{
i=1

u=~0 suof2.

8 Differenziabilita all’interno delle soluzioni di un’equazione in
forma di divergenza

Per affrontare il problema della differenziabilita delle soluzioni dobbiamo utilizzare i seguenti lemmi di
Nirenberg.

Lemma 8.1. Sia u € W44(B(0,0)), ¢ >1,t € (0,1) e |h| < (1 —t)o allora

ou
al’i

[17i,nullLa(B(0,t0)) < ‘
La(B(0,0))

1Questa ipotesi non & restrittiva. Infatti dal problema

n
Z/ ai(xz, Du)Divde =< f,v > Yo € H(Q).
i=17%

Ci possiamo ricondurre al seguente
n n
Z/ [ai(z, Du) — ai(z,0)]Dyvde =< f,v > + < Y Diai(z,0),v> Vv e Hj(Q).
i=179 i

n
Quindi si pone a;(z, Du) = a;(z, Du) — a;(z,0) e FF = f — ZDiai(x, Du) ottenendo
i=1

n
Z/ a;(z, Du)Djvde =< F,v > Yov € HY(Q).
i=1 Q

12



dove

u(x + he;) — u(x)

() = e (47)
essendo {e;};=1.... » la base canonica di R™.
Dimostrazione.
1 [t/d )
Tipu(z) = 7 /0 (ds u(a:+shei)) ds = /0 <8xi u(a:—&-shei)) ds.
1 q
/ |75 pu(z)]|? de < / [/ u(x + she;) ds} de =
B(0,to) B(Oto) LJo 0T
1 b q
= / / u(x + she;)| dx| ds =
0 B(0,to) Ox;
posto y = x + she;
1 q 1 q
= u(y)| dy| ds < / / u(y)| dy| ds = ||D;ul/4 o
/0 /B(shei,to—) y; o |/B0,o) 0y La(B(0,0))
Abbiamo utilizzato il fatto che, essendo s € (0,1), si ha
to +slh| <to+|h| <toc+ (1 —t)o <o. O
Lemma 8.2. Siano u € LI(B(0,0)), 1 < ¢ < +oo, M > 0, tali che per ogni |h| < (1 —t)o si abbia
||Ti,h||Lq(O,t0') S M7 1= 17 N, (48)
allora u € WH4(B(0,0))
|Diullpao,e) < M, i=1,---,n. (49)

Dimostrazione. Fissiamo i, 0 < i < n. Dato che u € L4(B(0,0)) & riflessivo, essendo 1 < ¢ < 400, sappiamo
che esistono {hy, }nen successione infinitesima e v; € LY(B(0,0)) tali che

Ton,v 50y, debole in LY(B(0, 7).

In particolare, per ogni ¢ € C§°(B(0,t0)), risulta

lim Tih, W) p(z)dr = / vi(z) p(z) dx.
n—=+° JpB(0,to) B(0,t0)

Da cui, per ogni ¢ € C5°(B(0,t0)), otteniamo
lim w(x) 1i,—p, p(x)de = — / vi(x) () dx. (50)
n—+o0 Jp(0,to) B(0,0)

Infatti, per ogni ¢ € C5°(B(0,t0)), vale

/ mwwwwm:—/ (@) 75—, () da,
B(0,to) B(0,0)
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perché

u(z + he;) — u(x) _ 1 w4 he) o(z) de — o) ol da| =
»/B(O,ta) h pla) do = h [/B(O’w) (@ + hei) p(x) d /B(o,w) () p(z) d ]

nel primo integrale efffettuiamo il cambio di variabile y = x 4 he;, nel secondo y = x,

= % ngei,w)u(y)ﬂyhei) dy — / u(y) p(y) dy| =

B(0,to)

essendo supp ¢ C B(0,to), quindi supp ¢(y — he;) C B(he;, to) C B(0,0), risulta

V u(y) p(y — he;) dy — / u(y) e(y) dy
B(0,0)

B(0,to)

__ u(yy P —he) —ely)
= /B o) (y) — dy

S| =

= —/ w(y) Ti,—ne(y) dy.
B(0,0)

Possiamo applicare il Teorema della convergenza dominata di Lebesgue in quanto, per q.o. = € B(0,0),
risulta

(@) Ti,—n, ()] < clu(@)| [|Dip(@)]l00,B0.0)

di conseguenza, tenuto conto del fatto che suppp C B(0,0), possiamo scrivere

lim u(z) 7, —p, p(x)dx :/ lim (u(z) 7 —pn,e(z)) =
B(0,0) B(0,0)

n—-+o0o n——+oo

_ / w22 g — / (o) 220 g,
B(0,0) O B(0,to) Ox;

Da questa e da (50), per ogni ¢ € C§°(B(0,t0)), otteniamo

/ u(z) Dip(x) = —/ v; p(x) dx.
B(0,to) B(0,0)

Cid assicura che u € WP (B(0,t0)) e D;u = v; in senso debole in B(0,to), per ogni t € (0,1), e quindi anche
in B(0,0).
Dimostriamo la maggiorazione (49). Dall’ipotesi (48), per ogni ¢ € L? (B(0,t0)), si ha

< M |[YllLe (Bo,to)):

/ 73 () () dz
B(0,to)

Per quanto visto in precedenza, passando al limite

/ Diu(z)y(z) de| < M ||¢||Lq’(B(0,ta))'
B(0,to)

Quindi la tesi. O

Siano Q aperto limitato di R", n > 2 e u € H'(Q) soluzione (nel senso delle distribuzioni) dell’equazione

— Y Djlay(x) Dju(@)] = f(x), © €. (51)

i,j=1
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Teorema 8.3. Supponiamo che la matrice {a;;}i j=1.... n sia uniformemente ellitica su 2, a;; € C*(Q) ed
f € L2(Q). Allora per ogni coppia di aperti ' C Q" C Q si ha che uw € H*(Y') e vale la maggiorazione

luli200 < e{llfle2@ry + lulliz.or} (52)

Dimostrazione. Presi ', Q" tali che ' C Q" C Q, posto &6 = dist (O, 00"), Q, = {x : z € Q" A
dist(x,0Q") > o}, consideriamo la funzione 6 € C*°(R™) cosl definita

1, su®y
0(z) = (53)
0, fuori di Q5.
3
L’equazione (51) pud essere scritta, per ogni ¢ € H}(Q2), nella forma seguente
n

> [ aii@) D) D (@) da = [ f(a) (o) . (54)
ij=1

In questa equazione possiamo prendere come funzione test ¢ = 61), con 1 € H(Q):

> /Qaij(z) Diu(x) [D;0(x)p(x) + 0(x) Djy(x)] de = /Q f(@)0(x) P(x) dr, (55)

iJZ_I/Qaij(x)Diu(x)H(a:)Djw(x) dx = /Qf(gj)@(x)w(m) dr +
(56)
- Z-;l /Q aij(z) Diu(x) D;6(x) ¢(z) dx
Poniamo

n

F(z) = f(z)0(x) — Z a;j(z) Diu(z) D;f(x), U(z) =0u.

ij=1
Da (56) segue

> / aij(z) Di(x) Djp(z) do = / F(z) ¢(x) do + / > aij(x) Dib(x) Djib(x) u(x) da.  (57)
ij=179 @ @ ij=1
Questa relazione vale in particolare per ogni 1 € HE (%) prolungata a zero fuori di €. Consideriamo per
2 2
questa funzione test il seguente rapporto incrementale

w(xla"' s Tp 1, T — Dy gy, axn) - 7/}(50)

Tr,—hw(x) = “h )

)
dove 0 < |h| < 3 Dato che 7, _p1 € Hi(Q"), possiamo prendere questa funzione in (57) come funzione test

ottenendo
(58)
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Valutiamo ciascuno dei termini che compaiono nell’equazione a partire dal primo membro che puo essere
trasformato come segue(?)

> / el () DU D) e = [ 3 faglo+ hey) 7o (D0 D) +
i,j=1 2 i,j=1 (59)

+7rn(ai(z)) Ditd () Dy ()] da

Sostituendo in (58) e (59) ricaviamo

Z / , 0@ her) 1 [DUE) Dy(e) do = — | {FE)7ow(e) +
n 60
- Z aij(x) Dib(x) D1y _p[(z)] u(z) + (50
ij=1

—Tr.plaij(2)] Did(x) Djyp(x)} de = I + I + Is.
Maggioriamo ciascuno dei termini al secondo membro di(60), tenendo conto della definizione della funzione

6.

1= [ F@) i) da| < [Pl In-nlioe,

(per il Lemma 8.1)

< [Pl z2 o |1/’|1,2,Q'§' < (1)
< 2| I flz2@n + || Y aij DiuD;o [h2,0y <
,j=1 L2(Q”) 2
< c(llaijlloos ms 6) (I[fllojr + lulr20) [¥]i 207
2
12| = Z / Tronlai (2) w(x) D;if(z)] Dyt da | <
i,j=1
< / a;j(z + hey) [t pu(z)] Dj0(z + he,) Djy dx | +
=1 Q'
(62)
25 / el () D0 u(w) Dy di | <
ig=1 //
<

- max lagjlloc,0 ¢(8) ITrpullo,oy [Yh2or +  max ||Draijllec,c(0) [[ulloq [¥]12,07 <
i 1 n 1,7=1 n 5

W=y 2 2 sJ =4y

< c(0) , max aijlloo g [ul 2o [¥h20y +e0) | max [[Draijlleoq llullog [tl20q-
2

sJ=Ly 9 sJ=Ls0

2Utilizziamo l'identita 7., [f(z) g(z)] = f(z + her) Trp g(2) + [1rn f(2)]9(2)

16



3| < max [[Dyaijllcc, U207 [W]12,04-
1,5=1,---,n $ s

NES

Da (60), tenuto conto di (61), (62), (63), ricaviamo le seguenti diseguaglianze

Z /// aij(z + he )T n[Dild(2)] Djyp(z) do| <

e

|ijlloo,0: 1, 0) ([ fllo,r + [ul1,2,07) [¥]1,2,07 +
2
+ c([[Draijlso,2,n 0) |lullo,0r) [¥]1,2,07 +
2
+  max |laijlleo,0 Ul12.0y) [Y]120; <
i =1, n s

c(llaijlloo,, [ Draijlln, 6) [l fllo,or + [lulli 2.0 [$l 2.0
2

Sostituiamo in quest’ultima diseguaglianza ¢ = 7, ,U:

Z / aij(x + her) Di[r wlUd (2)] D[y nld] dr| <

i,5=1

c(llaijlloo,0s [|Draijll, n, 6) [[| fllo.0m

J 7 nlh 12,07 -
2

Tenendo conto della coercivita possiamo dedurre

v m (@) 2.0n < clllaijllco.n 1Draijlln, 8) [l fllogr + llullz.er] [7rnll1,2,0r -
5 2

Ovvero

v T id(@)12.0p < elllaijlloc,0; [1Draijlls s 0) ([ fllo.or + llullz.00]-
2

Da questa utilizziamo il Lemma 8.2 ottenendo:

vIDU) 120y < clllaijlloo,os [[Drasll, n, 6) [l flloor + llulli,z.00]-
2

La tesi segue in quanto U = u su .

Sia ora u € H' () soluzione (nel senso delle distribuzioni) dell’equazione completa

—Z laij(z +Zaz z) + a(z)u(z) = f(z) z €

1,7=1

(63)

(65)

(69)

Teorema 8.4. Supponiamo che la matrice {a;;}ij=1,...n Sia uniformemente ellitica su Q, a;; € C*(Q)
mentre a; e a appartengono a L>®(Q) ed f € L?(Q). Allora per ogni coppia di aperti ' C Q" C Q si ha che

u € H?(Q') e vale la maggiorazione

lulr2.00 < e(aij, aiya,v) {IIfllz2n + llullizor}
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Dimostrazione. Basta considerare l’equazione

n

— > Djlaij(x) Dju(x)] = — Y ai(z) Diu(x) — a(z)u(z) + f(z) = € Q. (71)

i,j=1 i=1
Il secondo membro, per le ipotesi fatte appartiene a L?(€2), applicando il Teorema 8.3 otteniamo la tesi. [J

Aumentando le ipotesi di regolarita dei dati aumenta anche la regolarita della soluzione come si vede dal
seguente teorema.

Teorema 8.5. Supponiamo che la matrice {a;j}i j=1,... n sia uniformemente ellitica su §, a;; € CHFHL(Q)
mentre a; e a appartengono a C*(Q) ed f € H*(Q). Allora per ogni coppia di aperti ' C Q" C Q si ha che
se u & soluzione in H(Q) risulta u € H**2(Q) e vale la maggiorazione

[ulky2.2.0 < claij, aiya,v) {[| fllk2.00 + llulli2.00} (72)

Dimostrazione. Procediamo per induzione. Se k = 0 ¢ verificato per il Teorema 8.4. Dimostriamo l'induttivita
della proposizione. Derivando a—volte, con |a| = k, primo e secondo membro dell’equazione (69), otteniamo
la seguente

— > Djlaij(x) D;Du(x)] = — Y > <Z>Dj[pﬁaij(x) D P Dyu(z)] +
i1 ij=1 B<a,80 (73)
— 3", D%a;(z) Dyu(z)] — D*a(z)u(z)] + D*f(z) = € Q.

La tesi segue dal Teorema 8.4 applicato alla funzione w = D%u, ed osservando che per le ipotesi fatte il
secondo membro dell’equazione (73) appartiene a L?((2). O

9 Differenziabilita al bordo delle soluzioni di un’equazione in for-
ma di divergenza

Consideriamo B;" = {z: o = (21, ,2,) ER*"V (|z| <7)V (z, >0)}, [ = BFfn{z: z, =0}, esiau
appartenente a H'(B;") soluzione (in senso debole) del problema

n

— Y Djlaij(z) Diu(@)] = f(x), = € B,
v (74)

u(z) =0, zel).

Teorema 9.1. Supponiamo che la matrice {aij}i,jzl,...}n sia uniformemente ellitica su B;“, a;j € Cl(ﬁ)
ed f € L*(B}Y). Allora per ogni p € (0,7) si ha che w € H*(B}) e vale la maggiorazione

|“|1,2,B;r < c(v, p, 1,0, ai05) {”fHL?(B,T) + ||u||1,2,Bj'} (75)

18



Dimostrazione. Indichiamo con Wvlo(B;“ ) la chiusura nella norma di W!(B;) dello spazio delle funzioni

Cl(Bif) che si annullano in un intorno di T'.. Scriviamo il problema (74) nella forma
u € W;O (B),

(76)
3 / ai; (@) Diu(@) D o) do = | f()pla) do, Vi € Wi(BY).

+
Q=1 B/

Consideriamo ora la funzione smussante § € C3°(R™) definita in maniera analoga a quella vista nella dimo-
strazione del Teorema 8.3: 0 < ¢ < 1,0 =1su B,, § =0 fuori di B'r‘+p . Consideriamo funzioni test del tipo

= 04, con 1) appartenente a W, (B;") (quindi ¢ € W (B})). Sost1tu1am0 nell’equazione, procedendo in
maniera simile a quella vista all’interno ponendo

n

F(z) = f(x)0(z) = Y ai(x) Diu(@)D;0(z), U(x) = () u(z),

4,7=0

Z [, as@) Datta) Do) e = [ (@) via) dos

Bt

/B+ Z a;j(z) Dif(z) Djp(z) u(x) dx.

Questa equazione vale in particolare per le funzioni v appartenenti a W;O (B;F) che sono nulle fuori di B%

. . . . .. . T+ Lo
Possiamo quindi considerare i rapporti incrementali 7, _p, ¢ (z) perr =1,---,(n—1), ed |h| < ?p Poiché
Y appartiene a Wi (BY,,) puo essere scelta come funzione test in (77). Procedendo nello stesso modo visto

2
nel paragrafo precedente per la regolarita all'interno otteniamo la diseguaglianza

n n—1

ZZ / |D Du d.’E S C(Vﬂpﬂzn?a‘ij){”ng,B’fr + ||u||1,Bj'} (78)

=1 r=1

Resta da maggiorare il termine D,,,,u. Dall’equazione (77) ricaviamo

/Bwnn() U(x) Dy t(x dx—/F ) dot

r

Z /BT aij(v) Dif(x) Dj () u(z) dx +

o (79)
zz/ () DU(x) DD () do =
=1 j=1
= /. H(z)y(x) dz, Yy € Wy (B]).
n n n—1 §($)
Dove H(z) = f(x) — Z a;j(x)D; Z Z a;j(x . Prendiamo (3) ¢(z) = (1)’ dove

£e C’g"(B:j). Ovviamente, per le ipotesi fatte sui coefﬁcienti NS Wol(B;r)

3Dall’ipotesi di uniforme ellitticita si ricava che ann > v.
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Per le ipotesi fatte e per quanto dimostrato sopra risulta H € L? (B;j‘).
Sostituendo in (79) ricaviamo la seguente equazione

/ Dyou(z) Dpé(z) do = /B . [H(m) aiix(i) + Dnu(x)W dr, V¢ € C&(BY).  (80)
Posto
Gla) = H(x) — Dpu(x)Dyann ()

A ()

osserviamo che per quanto visto in precedenza G € L? (B ). Quindi 'equazione (80) pud essere scritta nella
forma

/ D n&(x) de = /B+ G(x)&(x) dx, VE € CF°(B)). (81)

P

Da questa si deduce che esite D, u in B;r, che appartiene a LZ(B;r) e Dypu = G e quindi la tesi. O

Teorema 9.2. Sia u € H} (B) soluzione del Problema (74) con ai; € C*(Bf) e f; € H¥(B}). Se
uw e H*(B) allora w € H**Y(BF), con p <r, e si ha

[ellpsr o5y < @i ) {llug, el + [1fllo 5y - (82)

Dimostrazione. Si procede per induzione, ma a differenza della dimosrazione del Teorema 73 si opera su «,.
Derivado ’equazione 74 e posto

Z > () [Da;(x) D*" Dju(x)) (83)

i,7=1 B<a,B8#0
(84)
g(x) = D*f(x) = € Q. (85)
Se |a| = k—1. Dimostriamo che D*D;;u € LQ(B ), 4,7 =1,--+,n. La funzione w = D%u verifica I’equazione

74 con g, G appartenenti a L?(B;").

Per k = 0 segue dal Teorema 9.1.

Supponiamo di aver dimostrato per «,, = h verifichiamo per o, = h+1. Se |a| = k+1 & tale che oo, = h+1
possiamo scrivere per i # n:

DaDiju = DﬁDnjuy Za] = ]-7 y 1, ﬂ: (alv"' , OG—1, 0 +]-70‘1'—}-17"' 70511—17h)~ (86)

La tesi ¢ valida per i # n. Resta da provare per D*D,,,,u. Dall’equazione ricaviamo

/+ G () Dpyw Dy (x) da = /+ G(z) p(x) dx+
B By

+ 3 [ aul@) Diute) Dy (o) dot
o (87)
n—1 n—1

_ Z /B+ ain(x) Dyw(x) Dy, D Y(z) dx — Z /B+ anj(x) Dpyw(z) Dj(z) do =

= H(z)y(x) dz, Vi€ Wy(B).

Bt
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Da cui

£(2) Dynann(z)
Cln”(l‘)

Dyw(z) Dy&(x) de = / + Dyw(x)

By

[H(ﬁ) &)

ann(x) dm’ Vg € CgO(B:_) (88)

By

Posto
H(z) — Dyu(x)Dpan, ()

Ay ()

osserviamo che per quanto visto in precedenza © € L? (B;‘). Quindi 'equazione (80) puo essere scritta nella
forma

o(z) =

Dyw(z) Dpé(x) de = O(z)&(x) dx, VE € CF°(B]). (89)

BF BY

Da questa si deduce che esite D,,,w in B,,Jj, che appartiene a LQ(B;) e Dypw = 0 e quindi la tesi.

10 Differenziabilita globale della soluzione.

Teorema 10.1. Siano Q aperto limitato di R™ con bordo OQ) di classe gl, fer?Q),
la matrice {a;;}i j=1,.. n uniformemente ellittica su Q con a;; € CY(Q). Allora la soluzione debole u €

HY2(Q), del problema di Dirichlet

— Y Djlaij(x) Dju(x)] = f(x), z €,
i,j=1 (90)

u(z) = 0, x € 09,

appartiene a H*2(2) e vale la maggiorazione

lul2,2,0 < clai;,n, Q) {[[fllo.o + llulliz0}- (91)
Dimostrazione. Ricopriamo ) con una famiglia di aperti Q', Q”, Uy,--- ,U,, V1,---,V, scelti nel modo che
segue:
(1) c' ccy
) U;, V; sono intorni di centro z; € 9Q, con t = 1,--- ,n;

(2
B)V,cU,coni=1,---,n
(4) Ui, V; D 0%;

(5) QC UL, Vi NQY.

Dal Teorema 8.3 sappiamo che u € H?(£)') e vale la maggiorazione

uli2.00 < c{llfllzz@r + llullizor}- (92)
Resta da stabilire la regolarita al bordo della soluzione. A questo scopo, fissato i € {1,---,n}, su ogni U;
possiamo considerare il diffeomorfismo ®(z) = (®1(z), -, P,(x)) che manda U; N Q in un aperto di R
definito da

S;(z)=x;, i=1,--- ,n—1;
(93)
D, (x) = Y(a') — xy,, essendo &’ = (z1, -+, Tp-1),
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dove 1 & la funzione di R"~! — R di classe C! il cui grafico coincide con 052 in U;. ® & tale che tale che
U, NQ) C{yeR™: y, >0}, edU;NIN) C{yeR": y, =0}

Si vede facilmente che |det Jac®| =1 -
Sia @ tale che u(z) = (@ o ®)(x), x € U; N Q.
L’equazione (90) pud essere scritta, per ogni ¢ € H}(2), nella forma seguente

> [ (@) Do) Dy ota) do = [ fa)ola) do (94)

i,j=1

che vale anche per tutte le funzioni test ¢ € Hy*(Q N Uj).

ou(z) <= Ou(®(z)) 0P ()
ox; Z Oyn ox; » d

otteniamo (*) per ogni @ € Hy?(Q)

Tenuto conto del fatto che a (94) con il cambio di variabile z = ®~1(y)

h=1

Poniamo

ij=1
e sostituiamo in (94) ottenendo per ogni @ € Hy*(Q)
3 | An0) Duity) Dugtw) dy = [ ) o(w) d. (97)
1@ Q

Per poter applicare i risultati del paragrafo precedente dobbiamo verificare che la matrice dei coefficienti
{Ahk}nk=1, n ¢ uniformemente ellittica su 2. Infatti, per ogni £ € R", abbiamo

Z Ank(y) €n & = Z Zaz_] )1 (y) i (y) én &, =

h,k=1 h,k=1 i,5=1
;Y ai(y) <Z ®ni(y) fh) <Z ékj(Q)fk:) >
inj=1 i=1 k=1 (98)

(per Dellitticita di {a};;)

n n 2
>y Z (Z éhi§h> > cz/||§H2, c> 0.

i=1 \h=1
Infatti la funzione

¥ (z 'y gh)

=1

ammette minimo sulla palla unitaria di R™. Questo minimo & necessariamente positivo per il fatto che ® &
un isomorfismo.

0%y (2~ (y)) )

41 pone a(y) = a(@~1 (), f(y) = F(@71(Y)), $y) = P(®~ (), Pnily) = 5o

=®(U; NQ).
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Possiamo quindi considerare una semipalla B, contenuta in Q dove applicare i teoremi di regolarita dimostrati
nel paragrafo precedente. e quindi si ha che 4@ € H? (B,j‘), per p € (0,r). Prendendo il ricoprimento introdotto
all'inizio con U; = ®~1(B}}) e V; = @' B} otteniamo che u € H*(V;).

O

Teorema 10.2. Siano Q) aperto limitato di R™ con bordo 02 di classgCl, fe L),
la matrice {@ij}ij=1,.. n uniformemente ellittica su Q con a;; € Cl(Q), a;, i = 0,1,--- ,n, appartenenti a
C°(Q). Allora la soluzione debole u € HY2(Q), del problema di Dirichlet

n

— Y Djlay() Dyu(@)] + Y ai(x) Diu(z) + agu(x) = f(z), z €9,
1=0

i,j=1 (99)
u(z) = 0, x €99,
appartiene a H*2(2) e vale la maggiorazione
ull2.2.0 < clai, ai;n, Q) {{[flloe + llulli2.0}- (100)
Dimostrazione. Basta osservare che 'equazione (90) puo essere scritta nella forma
- Z Djla;j(z) Dju(z)] = — Z a;(z) Dyu(z) — apu(z) + f(z), = €9,
ij=1 i=0 (101)

u(z) = 0, x €09,
ed applicare il Teorema 10.1 osservando che il secondo membro dell’equazione (101) appartiene a L?(Q). O

Corollario 10.3. Nelle ipotesi del teorema precedente per la soluzione debole del Problema di Dirichlet 90
vale la maggiorazione

lull2,2,0 < c(aij, ai,n, Q) || fllo,a- (102)

Dimostrazione. Segue dalla diseguaglianza (100) e dalla (27) con g = 0. O
11 Sull’esistenza globale di soluzione per 1’equazione completa

Consideriamo il Problema di Dirichlet 90. Nel paragrafo 5 abbiamo dimostrato che se f appartiene a H~1(Q)
il problema ammette una ed una sola soluzione in Hg (£2) purché il diametro di €2 sia sufficientemente piccolo.
Utilizzando le maggiorazioni a priori stabilite nel paragrafo precedente e ponendo delle ipotesi piu forti sui
dati si dimostra che il problema puo avere soluzione anche se il dominio non ha diametro piccolo. Il seguente
risultato € un primo passo in questa direzione. Indichiamo con

Au = = > Djlay;(x) Dju(x)] + Y ai(x) Diu(e) + aou(z),
=0

ij=1

(103)
Pu = Au.

Teorema 11.1. Siano Q aperto limitato di R™ con bordo OQ di classe C*, f € L?(Q), la matrice
{aij}ij=1,...n uniformemente ellittica su Q con a;; € Cl(ﬁ). Allora Uapplicazione lineare P che ad ogni
w e H*2 N Hy*(Q) associa la sua immagine Pu appartenente a L*(Q) ha nucleo di dimensione finita e
immagine chiusa.
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Alla dimostrazione del teorema premettiamo il seguente lemma di Peetre.

Lemma 11.2. Siano E, F, G tre spazi di Banach riflessivi, tali che E C F con immersione compatta e sia
C un operatore lineare e continuo di E in G. Allora le sequenti proposizioni sono equivalenti:

(1) Vimmagine di C in G é chiusa ed il nucleo di C ha dimensione finita

(II) esiste una costante positiva c tale che per ogni u € E sia verificata

[ulle < c{llCulle + [lulle}- (104)

Dimostrazione. (del Teorema)
La tesi segue dal Lemma di Peetre ponendo

E = H*?2NHy?(Q)

F = Hy*(Q)
(105)
G = L*(Q)
Cu = Pu,
osservando che:
(1) Pimmersione di H*2(Q) in NH12(Q2) & compatta per il Teorema di Rellich.
(2) la maggiorazione (104) segue dalla (100).
O

Dimostrazione. (del Lemma di Peetre)

(1) Proviamo che la condizione (II) implica la (I).

Poniamo Ey = ker C. Si ha che la palla unitaria in Ey ¢ compatta in F' dunque, per (104) & compatta anche
in E, quindi Ey & di dimensione finita.(®)

Scomponiamo FE nella somma diretta £ = Ey @ Ej. La restrizione di C a EFj ¢ inettiva e quindi si pud
dimostrare che per ogni u € F; vale

Julez < ClCullc- (106)

Infatti se per assurdo non fosse vera esisterebbe una successone C,, tendente ad infinito ed una successione
u,, in B tali che

[unlle > Cnl[Cunlc- (107)
Un
Ovvero, posto v, = —,
([t
= > [[Cun| (108)
— Unlla.
Ch ¢

Dato che la successione {v,}nen € limitata in E, dato che ha norma uguale a uno, possiamo estrarre una
sottosuccessione (che indicheremo ancora con {v,}nen), che in F' converge a v. Per (104) e (108) {vp }nen
¢ di Cauchy in E; e quindi converge necessariamente a v. Ma per (108) deve essere v = 0 (v,, appartiene a
E1). Questo ¢ in contraddizione con quanto si ottiene passando al limite nella (104), ossia

1 < c{l[Cunlle + llvallr}- (109)

5Uno spazio di Banach nel quale ogni sottoinsieme limitato sia relativamente sequenzialmente compatto & necessariamente
di dimensione finita. Per la dimostrazione si veda ad esempio [8], vol L.
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Per dimostrare che ImC & chiuso in G, prendiamo una succesione {wy, }nen che converge a w in G. Allora
esiste u, in E tale che Cu,, = wy,. Posto u, = v, + 2, con v, € Ey e z, € Ey, risulta T'(z,,) = T(uy) = wy,.
Possiamo scrivere per (104)

Iznlle < cf{liCznll + [lznll#}- (110)

Se {zp }nen € limitata in E possiamo estrarre una successione convergente in F a z, che per (110) & di Cauchy
in F, e quindi converge a z anche in E. Per la continuita di C si ha che Cz = w. Cio prova che C(E) & chiuso.
Resta da far vedere che {z, }nen € limitata in E. Se cosi non fosse esisterebbe una sottosuccessione {zp, }nen
tale che lim ||zp, ||z = +o0. Posto

n—-+o0o 2

n

’Uhn = )
| B

|2h,,
si ha

T(zn,)
=1, T(vw,)= s
(B

Da cui si otterrebbe 'esistenza di una sottosuccessione {vg, }nen tale che (si deduce che ¢ di Cauchy in E da
(104))

vn,,

lim v, = v, ||k, lle=1, Um |z, || = 400
n—-+oo n—-+4oo

Ma poiché T'(z,) tende a w la successione {T'(z,)}nen € limitata. Allora T'(vp, ) tende 0 e quindi T'(v) = 0,
ossia v € Eg N By, cioe v = 0. Assurdo perché ||v||g = 1.

(2) Proviamo che la condizione (I) implica la (II). Consideriamo la scomposizione dello spazio E vista in
precedenza, ossia E = Fy @ Ej.

La restrizione di C' a E € una applicazione chiusa e quindi per il Teorema del grafico chiuso possiamo scrivere
per ogni v € E}

o]z < CillCvl|g. (111)

Si dimostra poi che per ogni w € Ey vale(®)

[wlle < Cafwlr. (112)

Per ogni u € F si ottiene (104) da (111), (112), in quanto u = v + w, con v € Eq, w € Ey e Cu = Cv.
O

12 Teoria degli operatori vicini ed equazioni non variazionali:
breve storia.

L’idea di introdurre il concetto di wicinanza tra operatori trova la sua origine nel problema di dimostrare
I'esistenza ed unicita di soluzioni di problemi non variazionali del tipo seguente.

u € H*N H(Q)

Y (113)
Z aij(z) Diju(xz) = f(x), in Q.

i,j=1

6Per assurdo. Se esistessero due successioni {Ch, }nen € {wn }nentali che

lim Cn = to0, |wnlg 2 Cnllwnllr
n— oo

Wn

lwnlle’

si avrebbe che, ponendo y, =

L > iyl
Cn_ Yn||F

Quindi yn tende a zero in F. Ma la successione {yn}ncn, appartenendo allo spazio Eg di dimensione finita ammette una
successione convergente a y che ha norma 1 in E. Assurdo.
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dove: f € L%(Q) ,, Q & un insieme limitato di R™, che per semplicita supporremo, in questa parte, convesso,
mentre a;; € L>°(Q) e la matrice {a;j}; j—1,... » ¢ uniformemente ellittica su Q e simmetrica.(”)

Se n > 2, il Problema (113) non & ben posto in generale sotto le sole ipotesi di ellitticita uniforme sulla
matrice dei coefficienti (vedi esempio alla fine del paragrafo), ovvero esiste v > 0 tale che

Sono dunque necessarie delle ipotesi piu restrittive sui coefficienti per provare lesistenza ed unicita delle
soluzioni del Problema (113). Ovvero ipotesi di maggiore regolarita dei coefficienti, ad esempio a;; € C°(€2),
oppure di tipo algebrico sulla matrice come ad esempio la Condizione di Cordes e la Condizione A,.

Condizione 1. (Condizione di Cordes)
Sia A(x) = {a;j(x)}ij=1,... n una matrice tale che HA(.’L‘)Han #0, q.o.. in Q. Diciamo che A(zx) soddisfa la
Condizione di Cordes se esite € € (0,1) tale che

(2, aiil@)?

>n—1 .e. in Q. 114
Znu 1aj(37) =" Teoae (114)

Condizione 2. (Condizione A;) (%)
Esistono tre costanti reali o,7,0 ed una funzione a(x) € L*(Q), cono >0 ,~v >0, >0, v+ < 1,
a(x) > o >0, tale che

1/2

> &i—a Z )i <7 Z & 51> &l (117)

i=1 j=1 ij=1 i=1
VS = {fij}i’jzlﬁm’n € Rn27 a.e. in €.
Si dimostra che queste due condizioni sono equivalenti,
Vediamo l’idea che ha portato alla formulazione della Condizione A per risolvere il Problema 113.
Consideriamo

Au=af + Aw—« Z a;;(z) Dijw(z) (118)

i,j=1

e definiamo un’applicazione 7 : H*> N HJ (Q)—H? N H} () che associa ad ogni w € H% N H{ () la soluzione
u € H? N HL(Q) dell’equazione (118).

7"Questa non & un’ipotesi restrittiva, in quanto possiamo scrivere:

aij + aij Gij — Qji + g
a;; = + =a'.+a 17,
J 2 2 17
a;."j sono i coefficienti di una matrice simmetrica, mentre ai_j sono i coefficienti di una matrice antisimmetrica. Risulta
=~ " a4 —a " a " a; " a " a
- ig — %gi ij qji ij i
g a;; Diju = E 2 = E 2 Diju — E 2 Diju = E 5 Diju — g 2 ——Djiu = 0.
ij=1 i,j=1 i,j=1 i,j=1 i,5=1 3,j=1

8La condizione Condizione A, implica 'uniforme ellitticita su Q. Infatti in (117) prendiamo la matrice £ = {&;;}; =1, .n
del tipo & = {n; n; }i,j=1,.-. ,;n. Sostituendosi ha

n

D oni—alz) Y ai(@)min;
i=1

4,j=1 i,j=1

1/2 .
S’Y(Z mm) +5Zm =+ n (115)
i=1

Da cui segue

i=1

M= +0]> n < a(@)) ay@)nin = % > on? <> ai(@)ming. (116)
i=1 i=1 i=1

Dove p = sup a(z).
Q
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Si puo provare che 7 & una contrazione dello spazio H? N H () in sé se A(z) verifica la Condizione A,.
Infatti:”

w1) — w2 )| g2.2(qQ) > Uy — U2 xr =
17 (wi) — T(w2)ll3p2 () < A A Aupl? d
= /Q [Aw; — « Z a;j(x) Dijjwi(z) — [Aws — Z aij(w) Dijwa(z) |* do =

4,j=1 4,j=1

= [ |Aw; — Aws — Z ai;j () Dij[wi () — wa(z)][*dr <
Q

ij=1

(per la Condizione A)

2
< [Yllwr = well g22(q) + 6 |A(wr —ws)|]” <

(per la maggiorazione di Miranda — Talenti)

< (7 +0)? lwr — walF2 g

Da questa si deduce che 7 € una contrazione e quindi si ottiene il risultato desiderato. Le dimostrazione del
Teorema 6.2 ripercorre in sostanza questa strada, la cui astrazione si fa nel modo che segue:

Bu = Au

Au = Z a;;(z) Diju(x)
ij=1

X = H*nH;(Q)

B = L*Q)

Ovvero si puo dedurre che l'operatore u +— Z?jzl a;j(z) Diju(z) & una bigezione tra H? N H () ed L?()
come conseguenza dei seguenti fatti:

1. szzl a;;(z) D;ju(x) € in una certa relazione algebrica con A
2. Au & un bigezione tra H> N HE () ed L?(Q).

Le precedenti osservazioni sono sostanzialmente il metodo di appplicazione della teoria degli operatori vicini:
in pratica dalla Condizione A, abbiamo ottenuto che A ¢ vicino a B , mentre dal Teorema 6.2, poiche B ¢
una bigezione tra gli spazi considerati anche A & una bigezione tra di essi.

Vediamo ora il seguente controesempio
Sia 2 = S(0,7). Consideriamo equazione

n

Au) = Z a;j(z) Diju(xz) =0, (119)

4,5=1

9Si tenga presente la seguente maggiorazione Miranda-Talenti: se 2 & convesso, allora per ogni u € H?2(Q) N Hé’z(Q) risulta

lull g2 < lAullL2q)-

27



dove
ZT; l‘j

[/

La matrice ¢ uniformemente ellittica su €2 :

b=—14 2=

A<, zeR" (120)

n

T4 - - TiTiGiSq
> (s ofife) s =2 & + 3 oS -
i=1

ij=1 ij=1

e (140 Mffﬁf” > el (e > 0)

ij=1

perche b > —1e

zn: ;7565 (> $i5i)2

= <1.
2 2 2|[cl2 =
o= el il (eI
La funzione
u(x) = [|=[1* (121)
E una soluzione di (119), perché:
Diu(z) = Az|*?
Dyju(z) = Ma|** (A = 2)z; 25 + 65 [|2]?].
Inoltre "
D;u € Lq(S(O,T)) if qg < ﬁ
mentre

Dyu € LP(S(0,r)) if p< %
Se A — 17 allora p — n e ¢ — +o00. Cosi che per valori di A vicini ad 1 abbiamo che u € H*2(Q2), purché
n > 2.
Ricordiamo anche che la funzione v(z) = r
soluzione.

A & una soluzione di (119). Il problema non ha quindi unicita di

Vediamo ora come si prova l'esistenza ed unicita di soluzione del Problema 113 nel caso di dimensione n = 2.
Il primo passo consiste nel provare che nel caso bidimensionale I'uniforme ellitticita e la Condizione A,
sono equivalenti. Che la Condizone A, implichi 'uniforme ellitticita ¢ gia stato osservato in precedenza.
Verifichiamo che ogni matrice A(x) uniformemente ellittica su 2 verifica (2). Poiche A(x) ¢ simmetrica,
possiamo determinare gli autovalori reali Aj(x), A2(z) e considerare la matrice

)\1(%) 0
I(z) =
0 )\2 (x)
Per l'ipotesi di ellitticita risulta inoltre che esite v > 0 tale che, per q.o. = € Q, A\i(z) > v, Aa2(z) > v.

Osserviamo che le matrici I — a(2)I'(z) e I — a(z)A(z) hanno gli stessi autovalori e quindi le loro norme
sono uguali:

I = a(@)l(2)|lrs = I — a(z)A(z)[rs = [(1,1) = a(z)(M(2), A2(2))[[r>-

Si tratta quindi di provare che esite una funzione a(x) € L*(f2), a(xz) > o > 0 q.o. in © tale che per ogni
matrice £, 2 x 2, si abbia

D oGi—al@) Y ay()éy| = (I — a(@)A@)[¢) <
i=1 i.3=1 (122)

< 1 = a(@)A(@)[|rs [€llrs = [I(1,1) = a(@)(Ar(2), A2(@)) [ [Ellrs < lIE]Rs
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con p € (0,1). Ovvero
1(,1) = a(@) (@), @)l < p <= @(@)P3) + X)) — 2a(@) () + @) +2 - 5 <0.

Che ammette una soluzione reale a(x) se e solo se
(@) + A2(@)? = A (2) + X3(2)](2 - p*) 2 0 =

Da cui posto, M = max sup a;; (z), deduciamo
i,j=1,2

2)\1($))\2($) >V72
A2(x) + A\3(z) = M?

Si ha la tesi scegliendo

{1 (1/)2]2§p<1ea(x) - m

13 Esistenza di soluzione per il problema non variazionale con
coefficienti regolari

In questa parte illustriamo il metodo di N. S. Bernstein con il quale si dimostra l'esistenza di soluzione per
il problema di Cauchy relativo ad un’equazione non variazionale con coefficienti regolari.

Questo metodo parte da maggiorazioni a priori (ossia maggiorazioni che riguardano soluzioni delle quali non
si conosce ancora l’esistenza) e arriva a rpovare l'esistenza delle medesime. Il primo passo di questa tecnica
¢ il seguente principio di massimo.

Teorema 13.1. (Principio di Massimo o di minimo)
Sia u € C?(Q) N C°(Q) una sottosoluzione (soprasoluzione) dell’equazione

27‘: aij(x) Diju(z) > 0, (< 0) in Q, (123)

ij=1
dove a;; € C°(Q) e la matrice A(x) = {a;j(x)}i j=1,... n & uniformemente ellittica su 2. Allora

max ¢ = maxu, (minu = min u). (124)
o Iy a ET)

Dimostrazione. Supponiamo come primo passo che in (123) si abbia

i aij(x) Diju(x) > 0, (< 0) in Q, (125)

Se x( fosse un punto di massimo relativo (minimo relativo) interno ad Q la matrice hessiana H(zg) =
{D;ju(xg)}i j=1,. n sarebbe semidefinita negativa (positiva). D’altra parte A(x() ¢ definita positiva (nega-
tiva) e dunque (1°)

n

Z aij(xo) Diju(xo) S 0, (Z O) n Q, (126)

1,j=1

0Tnfatti se poniamo A = A(zo), H = H(zo) e consideriamo le matrici unitarie U, V che riducono rispettivamente A, H in
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Ma questo contraddice (125). Supponiamo ora che in (123) valga “>" (“<”). Consideriamo per ogni ¢ > 0
la funzione
us(w) = u(x) + el (ue(e) = u(@) — ellz[),

che soddisfa (125) e quindi risulta

Max ue = MAXUe, (mﬁin U = Hgsl)n Ue). (127)

Passando al limite per € che tende a zero si ha la tesi. O
Corollario 13.2. Se u € C?(Q) N C%(Q) ¢ soluzione dell’equazione omogenea
n
Z a;j(z) Dijju(x) = 0, in Q, (128)
ij=1
allora w assume su O sia il valore massimo che il valore minimo.

Come conseguenza di questo fatto otteniamo il seguente risultato

Teorema 13.3. Se u € C?(2) N C°(Q) ¢ soluzione del Problema di Dirichlet

n

Z a;j(z) Diju(z) = f(z), inQ,
i,j=1 (129)

u(@) = g(x), su 00,
allora ¢ unica.

Dimostrazione. Per asurdo, se u; e ug allora v = u; — ug risolverebbe il Problema di Dirichlet omogeneo

n

Z a;j(z) Diju(z) = 0, in Q,
i,j=1 (130)

v(xz) =0, su 0,
da cui per il Corollario 13.2 v = 0 e dunque v; = vs. O

Il passo successivo nella dimostrazione dell’esistenza di soluzioni per il Problema di Dirichlet e la seguente
maggiorazione a priori

Teorema 13.4. Se 0N ¢ di classe C’j eu€ H*?N H&’Q(Q)ié soluzione del Problema di Dirichlet 129, con
g =0, dove a;; € C¥*(Q), f € C®*(Q), allora D;ju € C**(Q) e si ha

n n
S Dl < ¢ [ 1 1Boe + O IDyuldg | - (131)

ij=1 ij=1

forma diagonale, ciot U*AU = A s, V*HV = Ag, dove Ay = {@; 0;5}i=1,... ,n, Ag = {Bi dij}i=1,... ,n, POSsiamo scrivere

> aij(z)) Diju(zo) = (A|H) = (UU*AUU*|VV*HVV*) =
ij=1

= (UAAU*|VARV*) = (AMU*V|U*VAR) = (AuQ|QAR) =
(dove U*V = Q = {qij }i,j=1,-,n ),

= > ol = D o <O0.

ij=1 i,j=1
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Conseguenza di questo teorema e il seguente.

Teorema 13.5. Sia Q aperto limitato di R™ con 08 di classe C°, se f appartiene a C**(Q) allora esiste
una costante positiva ¢ che dipende da 2, dalla costante di ellitticita dei coefficienti a;j, dalla norma di essi
in C%%(Q), tale che se u ¢ una soluzione H*%(Q)) del problema

n

S aya) Digu(z) = f(z), in Q
i,j=1 (132)
u(z) =0, su 09,

allora vale la maggiorazione

Zw%wnﬂ_(mbmﬁ (133)

17=1
Dimostrazione. Se la tesi fosse falsa esisterebbero

(k)(

(1) una successione di coefficienti a;; x) verificanti

(la) per ogni £ e R", ke N, x € O Z )& & > v,

1,7=1

(1b) esite M > 0 tale che per ogni k € N valga ||a2(-;-€)||co,a(9) <M

(2) una successione di funzioni in C%%(Q) tali che

k—
Ifillcoag =270 (134)

(3) una successione di soluzioni del problema di Dirichlet

n

> 0l (@) Dijur(z) = filz), in Q,
i.j=1 (135)
ug(z) =0, su 99,

con
urll2.2,0 = 1. (136)

Per il teorema di Ascoli-Arzela esiste una successione estratta da a( ) che converge a a;; unifomemente in Q,
inoltre {a;; }i j=1,.. ,n verifica (1a) e (1b). Dalla maggiorazione a priori (129) ricaviamo per k sufﬁc1entemente
grande

n

> IDijurlZo.e < ¢ | IfellEon@ + > IDsuklgo | < e, (137)

ij=1 i,j=1

k—-+o00
perché per (134) risulta || fx||co.o@ — 0, mentre per il punto (3) si ha [[uk||2,2,0 = 1. Da questo deduciamo

che essendo {u}ren equilimitata in C% (Q) possimo estrarre una sottosuccessione che converge uniforme-
mente ad u in C%() (per Ascoli-Arzeld), il che implica la convergenza forte in H?2({2) ad u. Passando al
limite in (135) si ottiene che u & soluzione del problema

n

Z a;j(z) Diju(xz) = 0, in Q,
i,j=1 (138)

u(z) =0, su 9.

Per il principio di massimo si ha che u = 0 su 2, ma questo ¢ in contraddizione con
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Da questi due teoremi deduciamo il seguente corollario

Corollario 13.6. Nelle ipotesi dei teoremi precedenti per la soluzione u del Problema di Dirichlet (13.3) vale
la maggiorazione

||U||00-n(ﬁ) <c ||f|\cova(§)- (139)

Siamo ora in grado di provare il seguente teorema

Teorema 13.7. Sia 2 un aperto limitato di R™ con frontiera 0Q di classe C* e siano a;; € C%*(Q) per i
quali esiste v > 0 tale che per ogni £ € R™, per ogni x € Q) si abbia

n

Y ay(@) &€ 2 VIR, (140)

ij=1

allora per ogni f appartente a C%() il problema di Dirichlet

n

Z a;j(z) Dijju(xz) = f(z), in Q,
i,j=1 (141)

u(z) =0, su oS
ammette una ed una soluzione appartenente a C%®(2) e per essa vale la maggiorazione

[ullgo.a@) < ellfllon@): (142)

Dimostrazione. Per dimostrare il teorema utilizziamo il Metodo di continuita considerando la famiglia di
operatori A;(u) cosi definita

A = (1—t)vAu +t Y a;; Dyu, t€0,1]. (143)
ij=1
I coefficienti di ciascun operatore A¢, ovvero ag-)(:n) = (1—-t)vd;; + ta,;;j(z) verifica (140). Come conseguenza
del Corollario 13.6 si ha che per ogni u € C%(2) vale(!!)
||“Hcova(§) < CHAtU”cO-,a(ﬁ)v (144)

dove la costante non dipende da t. Verifichiamo quindi le ipotesi del Teorema 6.8 considerando come spazi
X = C?*%(Q), B= C%(Q). Lipotesi (41) ¢ verificata per t = 0 perché l'operatore A & un isomorfismo tra
X e B. Per la verifica di (42) possiamo scrivere

[Arw — Asull oy = [t — 8| |[vAu — Z a;j Diju <

ig=1 o @@
§ C|t - 5‘ Hu||00>0(ﬁ) (145)
(per il Corollario 13.6)

<cclt = s||Awl oo )

O
Hnfatti posto A¢u = f; possiamo applicare il corollario al problema di Dirichlet
n n
Z (1—-t)vAu + t Z a;j Diju = fi(x), in Q,
3,j=1 3,j=1

u(z) =0, su ON.
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14 Commento bibliografico

I testi che trattano la problematica relativa alle equazioni ellittiche sono numerosi. Mi limito a segnalare
quelli che a mio giudizio sono i piu utili per un primo approccio all’argomento. Alcuni degli argomenti esposti
1i ho tratti dai libri di Giusti [3] e di Michajlov [7]. Ovviamente non si pud omettere di citare il anche il testo
della Ladyzhenskaya [5]. Per le equazioni non variazionali un testo abbastanza completo & il classico Gilbarg-
Trudinger [4] (nell’edizione pil recente del 1998). E interessante anche il testo di Maugeri-Plagachev-Softova
[9]. Per un primo approfondimento relativo alle equazioni e/o ai sistemi di ordine superiore si possono vedere
i libri di Campanato [1], di Miranda [8], vol II, Giaquinta-Martinazzi [2], o il classico Lions-Magenes [6].
Infine non si puo non citare come testo di base, non solo per le equazioni ellittiche ma per tutte le equazioni
alle derivate parziali il monumentale libro di Salsa [10]
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