
CAPITOLO 1

Generalità sulle equazioni ellittiche

1 Introduzione

Sia Ω un aperto limitato di R
n. Considereremo operatori del tipo:

Au = −
n
∑

i,j=1

∂

∂xj

(

aij(x)
∂u(x)

∂xi

)

, (detto in forma variazionale o di divergenza); (1)

oppure

Au =

n
∑

i,j=1

aij(x)
∂2u(x)

∂xi ∂xj
, (detto in forma non variazionale). (2)

Le due forme possono essere equivalenti se i coefficienti sono sufficientemente regolari a meno di introdurre
termini contenenti derivate di ordine inferiore della u.

Definizione 1.1. Diremo che l’operatore A è ellittico nel punto x ∈ Ω se la matrice {aij}i,j=1,··· ,n dei
coefficienti verifica la seguente ipotesi: esiste ν(x) > 0 tale che per ogni ξ = (ξ1, · · · , ξn) ∈ R

n

n
∑

i,j=1

aij(x) ξi ξj ≥ ν(x) ‖ξ‖2
Rn . (3)

Diremo che A è ellittico in Ω se è ellittico in ogni x ∈ Ω.

Definizione 1.2. Diremo che l’operatore A è uniformemente ellittico in Ω se la matrice {aij}i,j=1,··· ,n dei
coefficienti verifica la seguente ipotesi: esiste ν > 0 tale che per ogni x ∈ Ω e per ogni ξ = (ξ1, · · · , ξn) ∈ R

n

n
∑

i,j=1

aij(x) ξi ξj ≥ ν ‖ξ‖2
Rn . (4)

Nel seguito quando considereremo equazioni differenziali del tipo

A1u = −
n
∑

i,j=1

∂

∂xj

(

aij(x)
∂u(x)

∂xi

)

+

n
∑

i=1

bi
∂u(x)

∂xi
+ c(x)u(x) = f(x), (5)

oppure del tipo

A2u =
n
∑

i,j=1

aij(x)
∂2u(x)

∂xi∂xj
+

n
∑

i=1

bi
∂u(x)

∂xi
+ c(x)u(x) = f(x), (6)

diremo che sono uniformemente ellittiche se le loro parti principali, ovvero la parte che contiene le derivate
di ordine massimo, sono uniformemente ellittiche su Ω.
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2 Varie definizioni di soluzione un’equazione ellittica

Definizione 2.1. Si dice che u è soluzione classica in Ω dell’ equazioni differenziali (5) (o (6)) se f ∈ C0(Ω),
u ∈ C2(Ω)∩C0(Ω), aij ∈ C1(Ω), mentre bi, c appartengono a C0(Ω) e A1(u) = f(x) (o se aij , bi, c ∈ C0(Ω)
e risulta A2(u) = f(x)) per ogni x ∈ Ω.

Definizione 2.2. Si dice che u ∈ H2,p(Ω), p ≥ 1 è soluzione forte in Ω dell’ equazione differenziale A2u = f
con f ∈ Lp(Ω) e aij, bi, c ∈ L∞(Ω), se per quasi ogni x ∈ Ω si ha

A2u = f(x).

Definizione 2.3. Si dice che u ∈ H1,p(Ω), p ≥ 1 è soluzione nel senso delle distribuzioni in Ω dell’
equazione differenziale A1(u) = f con f ∈ D′(Ω) e aij, bi, c ∈ L∞(Ω) , se per ogni ϕ ∈ D(Ω) si ha

< A1(u), ϕ >=< f,ϕ > .

Prima di chiarire il legame tra le varie definizioni di soluzioni premettiamo la seguente osservazione.
Sia Ω aperto limitato di R

n con frontiera ∂Ω di classe C1. Se i coefficienti dell’operatore A definito in (1)
sono di classe L∞(Ω) allora per ogni u ∈ H1,p(Ω), p ≥ 1, ed ogni ϕ ∈ D(Ω), vale la formula

< Au,ϕ >=
n
∑

i,j=1

∫

Ω

aij Diu(x)Djϕ(x) dx. (7)

Infatti aijDiu ∈ Lp(Ω) è identificabile con una distribuzione per quanto osservato nel paragrafo sulle
distribuzioni del Capitolo 0. Quindi è derivabile e la sua derivata è una distribuzione, ne segue che

A(u) = −
n
∑

i,j=1

∂

∂xj

(

aij(x)
∂u(x)

∂xi

)

, può essere considerato una distribuzione. Potremo allora scrivere

< Au,ϕ >=< −
n
∑

i,j=1

Dj (aij(x)Diu) , ϕ >=

=<
n
∑

i,j=1

aij(x)Diu, Djϕ >=
n
∑

i,j=1

∫

Ω

aij(x)Diu(x)Diϕ(x) dx.

(8)

Osservazione 2.4. Se aij ∈ C1(Ω), bi, c ∈ C0(Ω) e u è soluzione classica dell’equazione differenziale
A1(u) = f allora u è soluzione nel senso delle distribuzioni.

Infatti, per ogni ϕ ∈ D(Ω), risulta

< A1u, ϕ >=

∫

Ω

A1uϕ dx =

∫

Ω

f(x)ϕ(x) dx =< f,ϕ >

Vale anche il viceversa:

Osservazione 2.5. Se aij ∈ C1(Ω), bi, c ∈ C0(Ω), f ∈ C0(Ω), u ∈ C2(Ω) ∩ C(Ω) e u è soluzione nel senso
delle distribuzioni dell’equazione differenziale A1(u) = f allora u è soluzione classica.

Infatti dalla Definizione 2.3 otteniamo per ogni ϕ ∈ D(Ω)

0 =< A1u, ϕ > − < f,ϕ >=

∫

Ω

(A1u − f)(x)ϕ(x) dx.

Come conseguenza delle precedenti osservazioni possiamo affermare che
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Proposizione 2.6. Siano aij ∈ L∞(Ω), u ∈ H1,2(Ω), ∂Ω di classe C1, f ∈ D′(Ω). Allora u è soluzione nel
senso delle distribuzioni di

A1u = f

se e solo se, per ogni ϕ ∈ D(Ω), risulta
a(u, ϕ) =< f,ϕ >,

dove abbiamo posto

a(u, ϕ) =

∫

Ω





n
∑

i,j=1

aij(x)
∂u(x)

∂xi

∂ϕ(x)

∂xj
+

n
∑

i=1

bi
∂u(x)

∂xi
ϕ(x) + λ(x)u(x)ϕ(x)



 dx. (9)

3 Il problema di Dirichlet per operatori simmetrici.

Ci proponiamo di dimostrare l’esistenza di una soluzione (nel senso delle distribuzioni) dell’equazione:

A1u = f. (10)

in forma variazionale “semplificata”, ovvero sotto l’ipotesi bi = 0 su Ω per ogni i = 1, · · · , n. Il problema
generale sarà affrontato nei paragrafi successivi. L’operatore può essere visto, anche se i coefficienti bi non
sono necessariamente nulli (purché in L∞(Ω)), come operatore tra lo spazio H1,p, p ≥ 1, e D′(Ω) (ricordiamo
che aij ∈ L∞(Ω), u ∈ H1,p(Ω) e Ω è limitato). Risulta evidente che aij Diju ∈ Lp(Ω), quindi, per quanto

osservato nell’ultimo paragrafo del Capitolo 0, si ha che A1u ∈ H−1,p′

(Ω). Da questa osservazione otteniamo
che l’equazione (10) avrà soluzione u ∈ H1,p(Ω), nel senso delle distribuzioni, solo se f ∈ H−1,p′

(Ω), inoltre
la stessa può essere scritta anche nella forma

A1u =

n
∑

i=1

Di fi, dove fi ∈ Lp′

(Ω). (11)

Come vedremo il problema di provare l’esistenza di una soluzione è ben posto se si aggiunge un’ulteriore
condizione riguardante la traccia di u su ∂Ω, ovvero se si considera quello che si chiama problema di

Dirichlet:


















A1u =

n
∑

i=1

Di fi, su Ω,

u(x) = g(x), su ∂Ω,

(12)

dove g è un’opportuna funzione assegnata. Per risolvere questo problema considereremo la forma bilineare
associata all’equazione (vedi (9)) ed utilizzando teoremi di analisi funzionale quali il teorema di F. Riesz
(nel caso simmetrico) o il teorema di Lax-Milgram (nel caso non simmetrico). Il primo di questi è di più
immediata applicazione in quanto riguarda la forma bilineare legata all’equazione

aλ(u, ϕ) =

∫

Ω





n
∑

i,j=1

aij(x)
∂u(x)

∂xi

∂ϕ(x)

∂xj
+ λ(x)u(x)ϕ(x)



 dx =

n
∑

i=1

∫

Ω

fi(x)Di ϕ(x) dx. (13)

Applichiamo a questa il teorema di F. Riesz sotto opportune ipotesi sui coefficienti e sugli spazi come si vede
dal seguente teorema.

Teorema 3.1. Sia Ω aperto limitato di R
n con frontiera ∂Ω di classe C1. Siano aij ∈ L∞(Ω), i, j = 1, · · · , n,

simmetrici: aij = aji, i, j = 1, · · · , n. Supponiamo inoltre che sia verificata l’ipotesi di uniforme ellitticità

su Ω della Definizione (1.2). Siano bi = 0, i = 1, · · · , n, λ(x) ≥ 0 q.o. in Ω. Se f1, · · · , fn ∈ L2(Ω),

3



g ∈ H1,2(Ω), allora esiste una ed una sola soluzione u ∈ H1,2(Ω) del problema di Dirichlet (12) e vale la
maggiorazione

‖u‖H1,2(Ω) ≤ c

(

n
∑

i=1

‖fi‖L2Ω + ‖g‖H1,2(Ω).

)

(14)

Dimostrazione. Come primo passo consideriamo il problema nel caso g = 0 e consideriamo i rappresentanti
f1, · · · , fn ∈ L2(Ω) di f . Dimostriamo che, nelle ipotesi del teorema, la forma bilineare aλ(·, ·) definisce su
H1,2

0 (Ω) un prodotto scalare rispetto al quale questo spazio risulta essere uno spazio di Hilbert. In questo
modo, applicando il teorema di rappresentazione di Riesz otteniamo l’esistenza ed uncità di soluzione del
problema di Dirichlet considerato nonché la maggiorazione

‖u‖1,2,Ω ≤ c‖f‖H1,2(Ω) (15)

Infatti la forma è simmetrica per l’ipotesi di simmetria sulla matrice {aij}i,j=1,··· ,n dei coefficienti. Inoltre

(u, v)H1,2
0 (Ω) =

n
∑

i=1

∫

Ω

Diu(x)Div(x) dx

e aλ(u, v) sono prodotti scalari equivalenti in H1,2
0 (Ω), nel senso che le norme indotte da essi sono equivalenti.

Infatti per l’ipotesi di uniforme ellitticità (1.2) vale la maggiorazione

aλ(u, u) =

∫

Ω

(

n
∑

i=1

aij Di u(x)Dj u(x) + λ(x)u2(x)

)

dx ≥ ν

n
∑

i=1

∫

Ω

(

|Diu(x)|
2 + λ(x)|u(x)|2

)

dx. (16)

Se λ(x) ≥ λ > 0 q.o. in Ω da (16) segue

aλ(u, u) ≥ min(ν, λ) ‖u‖2
1,2,Ω.

Se invece λ(x) = 0 su un sottoinsieme di Ω di misura non nulla, allora da (16) e dalla diseguaglianza di
Poincaré

aλ(u, u) ≥ ν |u|21,2,Ω ≥ c ‖u‖2
1,2,Ω.

In ogni caso, per λ ≥ 0 q.o. in Ω, esiste una costante c1 tale che per ogni u ∈ H1,2
0 (Ω), vale

aλ(u, u) ≥ c1 ‖u‖
2
1,2,Ω. (17)

Infine è evidente che, per ogni u ∈ H1,2
0 (Ω), vale

aλ(u, u) ≤ c2 ‖u‖
2
1,2,Ω.

Osserviamo ora che risolvere l’equazione relativa la problema (12) in H1
0 (Ω), con g = 0, equivale (per

definizione di soluzione nel senso delle distribuzioni) a risolvere, per ogni ϕ ∈ D(Ω), la seguente equazione

aλ(u, ϕ) =<
n
∑

i=1

Difi, ϕ >= −
n
∑

i=1

< fi,Diϕ >= −
n
∑

i=1

∫

Ω

fi(x)Diϕ(x) dx (18)

Dalla definizione di H1,2
0 (Ω) sappiamo che D(Ω) è denso in H1,2

0 (Ω). Possiamo scrivere (18), per ogni
v ∈ H1,2

0 (Ω), come segue

aλ(u, v) = −
n
∑

i=1

∫

Ω

fi(x)Div(x) dx (19)
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Il secondo membro di (19) è quindi un funzionale lineare e continuo su H1,2
0 (Ω) rispetto alla norma

√

aλ(u, u),

infatti, per ogni v ∈ H1,2
0 (Ω), risulta

∣

∣

∣

∣

∣

n
∑

i=1

∫

Ω

fi(x)Div(x) dx

∣

∣

∣

∣

∣

≤
n
∑

i=1

∫

Ω

|fi(x)| |Div(x)| dx ≤

(

n
∑

i=1

‖fi‖
2
L2(Ω)

)
1
2

‖v‖1,2,Ω ≤

per (17)

≤ c3

(

n
∑

i=1

‖fi‖
2
L2(Ω)

)
1
2
√

aλ(v, v).

(20)

Per il teorema di F. Riesz, in corrispondenza della n-pla f1, · · · , fn ∈ L2(Ω), resta individuato univocamente
un elemento u = G(f1, · · · , fn) ∈ H1,2(Ω), tale che, per ogni v ∈ H1,2

0 (Ω) :

−
n
∑

i=1

∫

Ω

fi(x)Di v(x) dx = aλ(u, v). (21)

Quindi resta individuato un operatore G, lineare e continuo di H−1,2(Ω) in H1,2
0 (Ω), relativo al problema di

Dirichlet 12, con g = 0, che chiamiamo operatore di Green. Per quanto dimostrato sopra G è un isomorfismo
tra H−1,2(Ω) e H1,2

0 (Ω).

Infatti, per ogni f ∈ H−1,2(Ω), esistono f1, · · · , fn ∈ L2(Ω) tali che f =

n
∑

i=1

Di fi nel senso delle distribuzioni.

Da (21), per ogni v ∈ H1,2
0 (Ω), si ha

−
n
∑

i=1

∫

Ω

fi(x)Di v(x) dx = aλ(Gf, v).

Per il teroema di Riesz e per (20)

√

aλ(Gf,Gf) = sup
v∈H1,2

0 (Ω)
v 6=0

|
∑n

i=1

∫

Ω
fi(x)Div(x) dx|

√

aλ(v, v)
≤ c

n
∑

i=1

‖fi‖L2(Ω)

Da questa tenuto conto di (17) otteniamo:

‖u‖H1,2
0 (Ω) = ‖Gf‖H1,2

0 (Ω) ≤ c
n
∑

i=1

‖fi‖L2(Ω).

Poiché vale per ogni insieme di funzioni {fi}i=1,··· ,n ⊂ L2(Ω) che individuano f si avrá infine che

‖u‖H1,2
0 (Ω) ≤ c ‖f‖H−1,2(Ω). (22)

Consideriamo ora il caso che g 6= 0. La funzione u ∈ H1,2(Ω) è soluzione dell’equazione relativa al problema
(12), nel senso delle distribuzioni se e solo se w = u− g è soluzione del problema di Dirichlet



















Aλw =
n
∑

i=0

Di fi − Aλg, su Ω,

w(x) = 0, su ∂Ω,

(23)
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Osserviamo che ci siamo riportati al caso precedente, in particolare

n
∑

i=0

Di fi − Aλg ∈ H−1,2(Ω),

quindi esiste una ed una sola soluzione w ∈ H1,2
0 (Ω) di (23). Di conseguenza esiste una ed una sola soluzione

u ∈ H1,2(Ω) di 12. Per quanto riguarda la maggiorazione (14) si ha, utilizzando (22)

‖w‖1,2,Ω ≤ c
∑n

i,j=1 ‖fi − aij Djg‖L2(Ω) ≤

≤ c
(

∑n
i=1,2 ‖fi‖L2(Ω) + ‖aij‖∞,Ω ‖Djg‖L2(Ω)

)

≤

≤ c max
i,j=1,··· ,n

(1, ‖aij‖∞,Ω)





n
∑

i=1,2

‖fi‖L2(Ω) + ‖g‖1,2,Ω



 .

(24)

4 Il problema di Dirichlet per operatori non simmetrici

Il problema dell’esistenza di soluzione per il problema di Dirichlet relativo ad un operatore con matrice della
parte principale non simmetrica può essere affrontato utilizzando una generalizzazione del teorema di F.
Riesz, ovvero il Teorema di Lax-Milgram.
Quella che proponiamo è una versione più generale di esso, ovvero una versione non lineare (la dimostrazione
è riportata nel paragrafo 7).

Teorema 4.1. (Lax-Milgram generalizzato).
Siano H uno spazio di Hilbert e a : H ×H → R una funzione, con le proprietà:

(0) a(0, v) = 0, per ogni v ∈ H

(1) v → a(u, v) è lineare ∀u ∈ H,;

(2) |a(u1, v) − a(u2, v)| ≤M‖u1 − u2‖H‖v‖H ∀v ∈ H,;

(3) ∃ν > 0 : a(u1, u1 − u2) − a(u2, u1 − u2) ≥ ν‖u1 − u2‖
2
H , ∀u1, u2 ∈ H.

(Se u→a(u, v) è lineare, la condizione (3) si riduce alla ben nota ipotesi di coercività ).
Allora per ogni F ∈ H∗ esiste uno ed un solo u ∈ H tale che, per ogni v ∈ H, sia verificata

a(u, v) = F (v). (25)

Inoltre vale la maggiorazione

c(ν) ‖u‖H ≤ ‖F‖H∗ . (26)

Utilizziamo questo risultato per provare il seguente Teorema.

Teorema 4.2. Sia Ω aperto limitato di R
n con frontiera ∂Ω di classe C1. Siano aij ∈ L∞(Ω), i, j = 1, · · · , n,

e sia verificata l’ipotesi di uniforme ellitticità della Definizione (1.2). Siano bi = 0, i = 1, · · · , n, λ(x) ≥ 0
q.o. in Ω. Se f1, · · · , fn ∈ L2(Ω), g ∈ H1,2(Ω), allora esiste una ed una sola soluzione u ∈ H1,2

0 (Ω) del
problema di Dirichlet (12) e vale la maggiorazione

‖u‖H1,2
0 (Ω) ≤ c

(

n
∑

i=1

‖fi‖L2Ω + ‖g‖H1,2(Ω).

)

(27)
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Dimostrazione. Basta provare il teorema nel caso g = 0 e poi riportarsi al caso g 6= 0 procedendo come è
stato fatto nel paragrafo precedente.

Sia Au =
n
∑

i,j=1

Di[aij(x)Dju(x)], dove {aij(x)} è una matrice uniformemente ellittica su Ω, costituita da

funzioni di classe L∞(Ω). Osserviamo che la forma bilineare

aλ(u, v) =

∫

Ω





n
∑

ij=1

aij(x) Di u(x) Dj v(x) + λ(x)u(x) v(x)



 dx

verifica le ipotesi del Teorema 4.1 prendendo come spazio H = H1,2
0 (Ω) . Infatti:

(0) è ovvia
(1) è ovvia.
(2) |a(u1, v) − a(u2, v)| ≤M‖u1 − u2‖H1,2

0 (Ω) ‖v‖H1,2
0 (Ω) ∀u1, u2, v ∈ H1,2

0 (Ω) :

|a(u1, v) − a(u2, v)| =

∫

Ω





n
∑

ij=1

aij(x) Di[u1(x) − u2(x)] Dj v(x) + λ(x)[u1(x) − u2(x)] v(x)



 dx ≤

(per la diseguaglianza di Schwarz-Holder)

≤ maxij=1,···n(‖aij‖∞,Ω, ‖λ‖∞) ‖u1 − u2‖H1,2(Ω) ‖v‖H1,2(Ω), ∀u1, u2, v ∈ H1,2
0 (Ω)

(3) ∃ν > 0 : a(u1, u1 − u2) − a(u2, u1 − u2) ≥ c(ν)‖u1 − u2‖
2
H , ∀u1, u2 ∈ H1,2

0 (Ω) :

a(u1, u1 − u2) − a(u2, u1 − u2) =

=

∫

Ω

n
∑

ij=1

aij(x) Diu1(x) Dj [u1(x) − u2(x)] dx−

−

∫

Ω





n
∑

ij=1

aij(x) Diu2(x) Dj [u1(x) − u2(x)] + λ(x)[u1(x) − u(x2)]
2



 dx =

=

∫

Ω





n
∑

ij=1

aij(x) Di[u1(x) − u2(x)] Dj [u1(x) − u2(x)] + λ[u1(x) − u2(x)]
2



 dx ≥

≥ c(ν) ‖u1 − u2‖
2
H1,2

0 (Ω)
, ∀u1, u2 ∈ H1,2

0 (Ω).

5 Il problema di Dirichlet per l’operatore completo

Consideriamo l’operatore in cui siano presenti anche le derivate di ordine inferiore a due, ed il coefficiente di
u sia di segno qualunque, ossia:

Bλu = −
n
∑

i,j=1

Dj(aijDiu) +
n
∑

i=1

bi(x)Diu + λ(x)u, (28)

dove la matrice {aij}i,j=1,··· ,n è uniformemente ellittica su Ω e aij , bi, λ sono funzioni appartenti a L∞(Ω).
Consideriamo la forma bilineare

b(u, v) =

∫

Ω





n
∑

i,j=1

aij(x)Diu(x)Djv(x) +

n
∑

i=1

aiDiu(x)v(x) + λ(x)u(x) v(x)



 dx. (29)
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Vediamo sotto quali ipotesi su Ω la forma b risulta coerciva su H1,2
0 (Ω) ×H1,2

0 (Ω). Per ogni u ∈ H1,2
0 (Ω) ×

H1,2
0 (Ω) si ha

b(u, u) =

∫

Ω





n
∑

i,j=1

aij(x)Diu(x)Dju(x) +

n
∑

i=1

biDiu(x)u(x) + λ(x) [u(x)]2



 dx

(per l’uniforme ellitticità)

b(u, u) ≥ ν|u|21,2,Ω +

∫

Ω

(

n
∑

i=1

biDiu(x)u(x) + λ(x) [u(x)]2

)

dx.

(30)

D’altra parte, per ogni ε > 0, si ha
∣

∣

∣

∣

∣

∫

Ω

(

n
∑

i=1

biDiu(x)u(x) + λ(x) [u(x)]2

)

dx

∣

∣

∣

∣

∣

≤ max
i

‖bi‖∞,Ω |u|1,2,Ω ‖u‖0,2,Ω + ‖λ‖∞,Ω ‖u‖2
0,2,Ω ≤

≤ max
i

‖bi‖∞,Ω

(

ε|u|21,2,Ω +
1

2ε
‖u‖2

0,2,Ω

)

+ ‖λ‖∞,Ω‖u‖
2
0,2,Ω.

(31)

Da questa, posto c1 = maxi‖bi‖∞,Ω, e da (30)

b(u, u) ≥ (ν − c1 ε)|u|
2
1,2,Ω +

(

−
c1
2ε

− ‖λ‖∞,Ω

)

‖u‖0,2,Ω ≥

(per la diseguaglianza di Poincaré)

≥
[

ν − c1 ε − dΩ

( c1
2ε

+ ‖λ‖∞,Ω

)]

|u|21,2,Ω = c(dΩ, c1, ‖λ‖∞,Ω)|u|21,2,Ω.

(32)

Dove la costante c(dΩ, c1, ‖λ‖∞,Ω) risulterà positiva se ε e dΩ sono sufficientemente piccoli.
Queste considerazioni unite a quelle fatte nei pragrafi precedenti ci permettono di enunciare il seguente
teorema

Teorema 5.1. Sia Ω aperto limitato di R
n con frontiera ∂Ω di classe C1. Siano aij ∈ L∞(Ω), i, j = 1, · · · , n,

verificanti l’ipotesi di uniforme ellitticità della Definizione (1.2), bi e λ ∈ L∞(Ω). Se f1, · · · , fn ∈ L2(Ω),
g ∈ H1,2(Ω), allora esiste una ed una sola soluzione u ∈ H1,2(Ω) del problema di Dirichlet (12) e vale la
maggiorazione

‖u‖H1,2(Ω) ≤ c

(

n
∑

i=1

‖fi‖L2Ω + ‖g‖H1,2(Ω).

)

(33)

6 Teoria degli operatori vicini: introduzione.

Il concetto di vicinanza tra operatori introdotto da Campanato è contenuto nella seguente definizione

Definizione 6.1. Siano X un insieme e B uno spazio di Banach con norma ‖ · ‖ , A e B due operatori tali
che A,B : X→B. Diremo che A è vicino a B, se esitono due costanti positive α, k, con 0 < k < 1, tali che
per ogni x1, x2 ∈ X si abbia:

‖B(x1) −B(x2) − α[A(x1) −A(x2)]‖ ≤ k‖B(x1) −B(x2)‖ . (34)

Ovviamente: ogni operatore è vicino a sè stesso. Infatti basta prendere nella diseguaglianza (34): 0 < α < 2
e K = |1 − α|.
Il punto di partenza della teoria degli operatori vicini è il seguente teorema che è stato dimostrato da
Campanato, prima nel caso di due spazi di Hilbert, e poi nella forma seguente.
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Teorema 6.2. Sia X un insieme, B uno spazio di Banach con norma ‖.‖, A, B siano due operatori tali che:
A,B : X→B, inoltre sia A vicino a B . Sotto queste ipotesi, se B è una bigezione tra X e B, A è anche una
bigezione tra X e B.

Alla dimostrazione di questo teorema premettiamo i seguenti lemmi.
Siano X un insieme e B uno spazio di Banach con norma ‖ · ‖ , A e B due operatori tali che A,B : X→B.

Lemma 6.3. Sia A vicino a B. Valgono le seguenti maggiorazioni:

‖B(x1) −B(x2)‖ ≤
α

1 − k
‖A(x1) −A(x2)‖ (35)

‖A(x1) −A(x2)‖ ≤
k + 1

α
‖B(x1) −B(x2)‖ (36)

La dimostrazione del Lemma è una banale conseguenza della maggiorazione (34)

Teorema 6.4. Sia A vicino a B. L’operatore A è iniettivo se e solo se è iniettivo l’operatore B

La dimostrazione segue dalle maggiorazioni (35) e (36) del Lemma 6.3.

Lemma 6.5. Sia B : X → B operatore iniettivo allora X è uno spazio metrico con la metrica indotta

dX (u, v) = ‖B(u) − B(v)‖B, ∀u, v ∈ X . (37)

La dimostrazione di questo asserto è ovvia.

Lemma 6.6. Sia B : X → B operatore bigettivo allora X è uno spazio metrico completo con la metrica
indotta (37).

Dimostrazione. Sia {un}n∈N una successione di Cauchy in {X , dX }, ovvero {B(un)}n∈B è una successione di
Cauchy in B, e quindi esiste U∞ ∈ B tale che

‖B(un) − U∞‖B → 0.

Sia u∞ tale che u∞ = B−1(U∞). Quindi

dX (un, u∞) = ‖B(un) − U∞‖B → 0.

Dimostrazione. (Del Teorema 6.2).
L’iniettività è conseguenza del Teorema 6.4. Vediamo la surgettività.
Per ogni f ∈ B dobbiamo dimostrare l’esistenza di soluzione u ∈ X dell’equazione

A(u) = f, (38)

ovvero

B(u) = B(u) − αA(u) + αf = F (u).

Ma per ogni u ∈ X abbiamo che F (u) ∈ B e quindi esiste uno ed un solo U = T u ∈ X tale che

B(U) = F (u). (39)

In questo modo abbiamo costruito un applicazione T : X → X che è una contrazione di X in sè. Infatti, se
u, v ∈ X e U = T (u), V = T (v) allora

dX (U, V ) = ‖B(U) − B(V )‖B = ‖F (u) − F (v)‖B =

‖B(u) − B(v) − α [A(u) − A(v)]‖B ≤ K ‖B(u) − B(v)‖B = K dX (u, v)
(40)

D’altra parte per il Lemma 6.6, lo spazio {X , dX } è completo. Quindi, per il teorema delle contrazioni esiste
uno ed un solo U ∈ X che risolve (39 ), e quindi esiste uno ed un solo u ∈ X che risolve (38). Abbiamo cos̀ı
provato che A è anche bigettiva.
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Teorema 6.7. Sia A vicino a B. Se l’operatore B è surgettivo allora anche l’operatore A è surgettivo.

Dimostrazione. Definiamo sull’insieme X la relazione di equivalenza RX nel seguente modo

uRX v ⇐⇒ B(u) = B(v).

Indichiamo con [u]X la classe di equivalenza di u e sia X = X/RX . Definiamo A∗ e B∗ le applicazioni da X
in B come segue

B∗([u]X ) = B(u), A∗([u]X ) = A(u)

A∗ è anch’essa vicina a B∗ con costanti α, K e B∗ è bigettiva. Quindi A∗ è anche bigettiva, ovvero A è
surgettiva.

Una delle conseguenze di questi risultati è il seguente teorema

Teorema 6.8. (Metododi continuità).
Sia {At}t∈[0,1] uan famiglia di operatori di un’insieme X a valori in uno spazio di Banach B verificanti le
ipotesi

esiste r ∈ [0, 1] tale che Ar è una bigezione; (41)

esiste c > 0 tale che per ogni s, t ∈ [0, 1] e u, v ∈ X vale

‖At(u) − At(v) − [As(u) − As(v)]‖B ≤ c |t− s| ‖At(u) − At(v)‖B

(42)

allora per ogni s ∈ [0, 1] As è una bigezione.

Dimostrazione. poniamo I = {t ∈ [0, 1] : At è una bigezione}. La tesi segue dopo aver provato le seguenti
proposizioni per il fatto che [0, 1] è un connesso:

(a) I 6= ∅;

(b) I è aperto;

(c) I è chiuso.

Dimostrazione di (a): I 6= ∅ perché r ∈ I.

Dimostrazione di (b): sia t ∈ I e δ > 0 tali che per ogni s ∈ [t− δ, t+ δ]∩ [0, 1] si abbia k = c|t− s| < 1. Per
(42) si ha che As è vicina a At quindi per il Teorema 6.2 As è una bigezione.

Dimostrazione di (c): Sia {tn}n∈N ⊂ I uan successone convergente a t∞ ∈ [0, 1]. Osserviamo che definitiva-
mente risulta k = c |tn − t∞| < 1. Anche in questo caso abbiamo che At∞ è vicino a Atn

e quindi è una
bigezione, dunque t∞ ∈ I.

7 Una dimostrazione del teorema di Lax-Milgram generalizzato

Teorema 7.1. Siano H uno spazio di Hilbert e a : H ×H → R una funzione, con le proprietà:

(0) a(0, v) = 0 per ogni v ∈ V .

(1) v → a(u, v) è lineare ∀u ∈ H,;

(2) |a(u1, v) − a(u2, v)| ≤M‖u1 − u2‖H‖v‖H ∀v ∈ H,;

(3) ∃ν > 0 : a(u1, u1 − u2) − a(u2, u1 − u2) ≥ ν‖u1 − u2‖
2
H , ∀u1, u2 ∈ H.
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(Se u→a(u, v) è lineare, la condizione (3) si riduce alla ben nota ipotesi di coercività ).
Allora per ogni F ∈ H∗ esiste uno ed un solo u ∈ H tale che, per ogni v ∈ H, sia verificata

a(u, v) = F (v). (43)

Inoltre vale la maggiorazione

c(ν) ‖u‖H ≤ ‖F‖H∗ . (44)

Dimostrazione. Indichiamo con A l’applicazione tra H e H∗ defininita da: A(u)(v) = a(u, v). Dimostriamo
che A è una bigezione tra H e H∗, ovvero per ogni F ∈ H∗ esiste una ed una sola soluzione u ∈ H tale che

A(u)(v) = F (v) , ∀v ∈ H.

Questo equivale a provare la tesi del teorema, ovvero esiste una ed una sola soluzione u ∈ H dell’equazione

a(u, v) = A(u)(v) = F (v) , ∀v ∈ H.

Per il Teorema 6.2, è sufficiente dimostrare che A è vicino all’operatore J : H→H∗ definito da:

J (u)(v) = (u, v)H .

In particolare osserviamo che ‖J (u)‖H∗ = ‖u‖H . Inoltre, consideriamo l’operatore di Riesz
R : H∗→H definito da R(F ) = w, F ∈ H∗, w ∈ H, dove F (v) = (w, v)H , ∀v ∈ H and ‖w‖H = ‖F‖H∗ .
Allora, in particolare, (R(A(u)), v)H = A(u)(v) = a(u, v), e R = J−1, cos̀ı che J è una bigezione tra H e
H∗. Possimo quindi ottenere la tesi del teorema dimostrando la diseguaglianza (34), per gli operatori J e A,
ovvero dimostrando che esistono due costanti positive α e k ∈ (0, 1) tali che:

‖J (u1) − J (u2) − α[A(u1) −A(u2)]‖H∗ ≤ k‖J (u1) − J (u2)‖H∗ .

Osserviamo che :

‖J (u1) − J (u2) − α[A(u1) −A(u2)]‖
2
H∗ =

= ‖u1 − u2 − α[R(A(u1)) −R(A(u2))]‖
2
H =

= ‖u1 − u2‖
2
H + α2‖R(A(u1)) −R(A(u2))‖

2
H +

−2α(R(A(u1)) −R(A(u2)), u1 − u2)H =

= ‖u1 − u2‖
2
H + α2‖R(A(u1)) −R(A(u2))‖

2
H +

−2α[a(u1, u1 − u2) − a(u2, u1 − u2)] ≤

(per le ipotesi (2) e (3))

≤ ‖u1 − u2‖
2
H + α2M2‖u1 − u2‖

2
H − 2αν‖u1 − u2‖

2
H =

= [1 + α2M2 − 2αν]‖u1 − u2‖
2
H = k‖J (u1) − J (u2)‖

2
H∗

La maggiorazione segue dall’ipotesi (3) prendendo u2 = 0 e dal fatto che F è un operatore lineare e continuo.

Un’altro esempio di applicazione di questo Teorema è il seguente.
Consideriamo un aperto limitato Ω in Rn, con bordo sufficientemente regolare e la forma

a(u, v) =

n
∑

i=1

∫

Ω

ai(x,Du)Div dx

where Du = (D1u, . . . ,Dnu) , u ∈ H1
0 (Ω). On a(·, ·) con le ipotesi seguenti:
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(a) ai(x, 0) = 0 q.o. in Ω, per i = 1, · · · , n.(1)
(b) ai(x, p) è misurabile e limitato in x, e continua in p ∈ Rn .
(c) ∃ν > 0 tale che ∀p, p ∈ Rn , ∀x ∈ Ω :

n
∑

i=1

[ai(x, p) − ai(x, p)] (pi − pi) ≥ ν‖p− p‖2
n.

(d) ∃M > 0 tale che ∀p, p ∈ Rn , ∀x ∈ Ω :

n
∑

i=1

[ai(x, p) − ai(x, p)]
2 ≤M‖p− p‖2

n.

sotto queste ipotesi, per ogni f ∈ H−1(Ω) esiste una ed una sola soluzione u ∈ H1
0 (Ω) :

n
∑

i=1

∫

Ω

ai(x,Du)Div dx =< f, v > ∀v ∈ H1
0 (Ω),

ovvero, per ogni f ∈ H−1,2(Ω) esiste una ed una sola soluzione u ∈ H1,2
0 (Ω) del problema di Dirichlet



















−
n
∑

i=1

Di(ai(x,Du)) = f(x) su Ω

u = 0 su∂Ω.

(45)

8 Differenziabilità all’interno delle soluzioni di un’equazione in

forma di divergenza

Per affrontare il problema della differenziabilità delle soluzioni dobbiamo utilizzare i seguenti lemmi di
Nirenberg.

Lemma 8.1. Sia u ∈W 1,q(B(0, σ)), q ≥ 1, t ∈ (0, 1) e |h| < (1 − t)σ allora

‖τi,h u‖Lq(B(0,tσ)) ≤

∥

∥

∥

∥

∂u

∂xi

∥

∥

∥

∥

Lq(B(0,σ))

, i = 1, · · · , n, (46)

1Questa ipotesi non è restrittiva. Infatti dal problema

n
X

i=1

Z

Ω
ai(x, Du)Div dx =< f, v > ∀v ∈ H1

0 (Ω).

Ci possiamo ricondurre al seguente

n
X

i=1

Z

Ω
[ai(x, Du) − ai(x, 0)]Div dx =< f, v > + <

n
X

i

Di ai(x, 0), v > ∀v ∈ H1
0 (Ω).

Quindi si pone ãi(x, Du) = ai(x, Du) − ai(x, 0) e F = f −

n
X

i=1

Diai(x, Du) ottenendo

n
X

i=1

Z

Ω
ãi(x, Du)Div dx =< F, v > ∀v ∈ H1

0 (Ω).
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dove

τi,hu(x) =
u(x+ hei) − u(x)

h
, (47)

essendo {ei}i=1,··· ,n la base canonica di R
n.

Dimostrazione.

τi,hu(x) =
1

h

∫ 1

0

(

d

ds
u(x+ shei)

)

ds =

∫ 1

0

(

∂

∂xi
u(x+ shei)

)

ds.

∫

B(0,tσ)

|τi,hu(x)|
q dx ≤

∫

B(0,tσ)

[∫ 1

0

∣

∣

∣

∣

∂

∂xi
u(x+ shei)

∣

∣

∣

∣

q

ds

]

dx =

=

∫ 1

0

[

∫

B(0,tσ)

∣

∣

∣

∣

∂

∂xi
u(x+ shei)

∣

∣

∣

∣

q

dx

]

ds =

posto y = x+ shei

=

∫ 1

0

[

∫

B(shei,tσ)

∣

∣

∣

∣

∂

∂yi
u(y)

∣

∣

∣

∣

q

dy

]

ds ≤

∫ 1

0

[

∫

B(0,σ)

∣

∣

∣

∣

∂

∂yi
u(y)

∣

∣

∣

∣

q

dy

]

ds = ‖Diu‖
q
Lq(B(0,σ)).

Abbiamo utilizzato il fatto che, essendo s ∈ (0, 1), si ha
tσ + s|h| ≤ tσ + |h| ≤ tσ + (1 − t)σ ≤ σ.

Lemma 8.2. Siano u ∈ Lq(B(0, σ)), 1 < q < +∞, M > 0, tali che per ogni |h| < (1 − t)σ si abbia

‖τi,h‖Lq(0,tσ) ≤ M, i = 1, · · · , n, (48)

allora u ∈W 1,q(B(0, σ))

‖Diu‖Lq(0,σ) ≤ M, i = 1, · · · , n. (49)

Dimostrazione. Fissiamo i, 0 < i ≤ n. Dato che u ∈ Lq(B(0, σ)) è riflessivo, essendo 1 < q < +∞, sappiamo
che esistono {hn}n∈N successione infinitesima e vi ∈ Lq(B(0, σ)) tali che

τi,hn
v

n→+∞
−→ vi, debole in Lq(B(0, σ)).

In particolare, per ogni ϕ ∈ C∞
0 (B(0, tσ)), risulta

lim
n→+∞

∫

B(0,tσ)

τi,hn
u(x)ϕ(x) dx =

∫

B(0,tσ)

vi(x)ϕ(x) dx.

Da cui, per ogni ϕ ∈ C∞
0 (B(0, tσ)), otteniamo

lim
n→+∞

∫

B(0,tσ)

u(x) τi,−hn
ϕ(x) dx = −

∫

B(0,σ)

vi(x)ϕ(x) dx. (50)

Infatti, per ogni ϕ ∈ C∞
0 (B(0, tσ)), vale

∫

B(0,tσ)

τi,hn
u(x)ϕ(x) dx = −

∫

B(0,σ)

u(x) τi,−hn
ϕ(x) dx,

13



perché

∫

B(0,tσ)

u(x+ hei) − u(x)

h
ϕ(x) dx =

1

h

[

∫

B(0,tσ)

u(x+ hei)ϕ(x) dx −

∫

B(0,tσ)

u(x)ϕ(x) dx

]

=

nel primo integrale efffettuiamo il cambio di variabile y = x+ hei, nel secondo y = x,

=
1

h

[

∫

B(hei,tσ)

u(y)ϕ(y − hei) dy −

∫

B(0,tσ)

u(y)ϕ(y) dy

]

=

essendo suppϕ ⊂ B(0, tσ), quindi suppϕ(y − hei) ⊂ B(hei, tσ) ⊂ B(0, σ), risulta

1

h

[

∫

B(0,σ)

u(y)ϕ(y − hei) dy −

∫

B(0,tσ)

u(y)ϕ(y) dy

]

= −

∫

B(0,σ)

u(y)
ϕ(y − hei) − ϕ(y)

−h
dy =

= −

∫

B(0,σ)

u(y) τi,−hϕ(y) dy.

Possiamo applicare il Teorema della convergenza dominata di Lebesgue in quanto, per q.o. x ∈ B(0, σ),
risulta

|u(x) τi,−hn
ϕ(x)| < c|u(x)| ‖Diϕ(x)‖∞,B(0,σ),

di conseguenza, tenuto conto del fatto che suppϕ ⊂ B(0, σ), possiamo scrivere

lim
n→+∞

∫

B(0,σ)

u(x) τi,−hn
ϕ(x) dx =

∫

B(0,σ)

lim
n→+∞

(u(x) τi,−hn
ϕ(x)) =

=

∫

B(0,σ)

u(x)
∂ϕ(x)

∂xi
dx =

∫

B(0,tσ)

u(x)
∂ϕ(x)

∂xi
dx.

Da questa e da (50), per ogni ϕ ∈ C∞
0 (B(0, tσ)), otteniamo

∫

B(0,tσ)

u(x)Diϕ(x) = −

∫

B(0,σ)

vi ϕ(x) dx.

Ciò assicura che u ∈W 1,p(B(0, tσ)) e Diu = vi in senso debole in B(0, tσ), per ogni t ∈ (0, 1), e quindi anche
in B(0, σ).
Dimostriamo la maggiorazione (49). Dall’ipotesi (48), per ogni ψ ∈ Lq′

(B(0, tσ)), si ha
∣

∣

∣

∣

∣

∫

B(0,tσ)

τi,hn
u(x)ψ(x) dx

∣

∣

∣

∣

∣

≤ M ‖ψ‖Lq′ (B(0,tσ)).

Per quanto visto in precedenza, passando al limite
∣

∣

∣

∣

∣

∫

B(0,tσ)

Di u(x)ψ(x) dx

∣

∣

∣

∣

∣

≤ M ‖ψ‖Lq′ (B(0,tσ)).

Quindi la tesi.

Siano Ω aperto limitato di R
n, n ≥ 2 e u ∈ H1(Ω) soluzione (nel senso delle distribuzioni) dell’equazione

−
n
∑

i,j=1

Dj [aij(x)Dju(x)] = f(x), x ∈ Ω. (51)
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Teorema 8.3. Supponiamo che la matrice {aij}i,j=1,··· ,n sia uniformemente ellitica su Ω, aij ∈ C1(Ω) ed
f ∈ L2(Ω). Allora per ogni coppia di aperti Ω′ ⊂ Ω′′ ⊂ Ω si ha che u ∈ H2(Ω′) e vale la maggiorazione

|u|1,2,Ω′ ≤ c
{

‖f‖L2(Ω′′) + ‖u‖1,2,Ω′′

}

(52)

Dimostrazione. Presi Ω′, Ω′′ tali che Ω′ ⊂ Ω′′ ⊂ Ω, posto δ = dist (∂Ω′, ∂Ω′′), Ωσ = {x : x ∈ Ω′′ ∧
dist(x, ∂Ω′′) ≥ σ}, consideriamo la funzione θ ∈ C∞(Rn) cos̀ı definita

θ(x) =







1, su Ω′′
δ

0, fuori di Ω′′
2
3 δ
.

(53)

L’equazione (51) può essere scritta, per ogni ϕ ∈ H1
0 (Ω), nella forma seguente

n
∑

i,j=1

∫

Ω

aij(x)Diu(x)Dj ϕ(x) dx =

∫

Ω

f(x)ϕ(x) dx. (54)

In questa equazione possiamo prendere come funzione test ϕ = θ ψ, con ψ ∈ H1(Ω):

n
∑

i,j=1

∫

Ω

aij(x)Diu(x) [Djθ(x)ψ(x) + θ(x)Djψ(x)] dx =

∫

Ω

f(x) θ(x)ψ(x) dx, (55)

ovvero

n
∑

i,j=1

∫

Ω

aij(x)Diu(x) θ(x)Djψ(x) dx =

∫

Ω

f(x) θ(x)ψ(x) dx+

−
n
∑

i,j=1

∫

Ω

aij(x)Diu(x)Djθ(x)ψ(x) dx

(56)

Poniamo

F (x) = f(x) θ(x) −
n
∑

i,j=1

aij(x)Diu(x)Djθ(x), U(x) = θ u.

Da (56) segue

n
∑

i,j=1

∫

Ω

aij(x)DiU(x) Djψ(x) dx =

∫

Ω

F (x) ψ(x) dx +

∫

Ω

n
∑

i,j=1

aij(x)Diθ(x)Djψ(x) u(x) dx. (57)

Questa relazione vale in particolare per ogni ψ ∈ H1
0 (Ω′′

δ
2

) prolungata a zero fuori di Ω′′
δ
2

. Consideriamo per

questa funzione test il seguente rapporto incrementale

τr,−hψ(x) =
ψ(x1, · · · , xr−1, xr − h, xr+1, · · · , xn) − ψ(x)

−h
,

dove 0 < |h| <
δ

2
. Dato che τr,−hψ ∈ H1

0 (Ω′′), possiamo prendere questa funzione in (57) come funzione test

ottenendo

n
∑

i,j=1

∫

Ω′′

δ
2

aij(x)DiU(x) Dj [τr,−hψ(x)] dx =

∫

Ω′′

δ
2

F (x) τr,−hψ(x) dx+

+

∫

Ω′′

δ
2

n
∑

i,j=1

aij(x)Diθ(x)Dj [τr,−hψ(x)] u(x) dx.

(58)
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Valutiamo ciascuno dei termini che compaiono nell’equazione a partire dal primo membro che può essere
trasformato come segue(2)

n
∑

i,j=1

∫

Ω′′

δ
2

τr,h[aij(x)DiU(x)] Djψ(x) dx =

∫

Ω′′

δ
2

n
∑

i,j=1

[aij(x+ her) τr,h(Diθ(x))Djψ(x)+

+ τr,h(aij(x))DiU(x)Djψ(x)] dx.

(59)

Sostituendo in (58) e (59) ricaviamo

n
∑

i,j=1

∫

Ω′′

δ
2

aij(x+ her) τr,h[DiU(x)] Djψ(x) dx = −

∫

Ω′′

δ
2

{F (x) τr,−hψ(x) +

−
n
∑

i,j=1

aij(x)Diθ(x)Djτr,−h[ψ(x)]u(x)+

− τr,h[aij(x)]DiU(x)Djψ(x)} dx = I1 + I2 + I3.

(60)

Maggioriamo ciascuno dei termini al secondo membro di(60), tenendo conto della definizione della funzione
θ.

|I1| =

∣

∣

∣

∣

∣

∣

∫

Ω′′

2
3

δ

F (x) τr,−hψ(x) dx

∣

∣

∣

∣

∣

∣

≤ ‖F‖L2(Ω′′) ‖τr,−hψ‖L2(Ω′′

2
3

δ
)

(per il Lemma 8.1)

≤ ‖F‖L2(Ω′′) |ψ|1,2,Ω′′

δ
2

≤

≤ 2






‖f‖L2(Ω′′) +

∥

∥

∥

∥

∥

∥

n
∑

i,j=1

aij DiuDjθ

∥

∥

∥

∥

∥

∥

L2(Ω′′)






|ψ|1,2,Ω′′

δ
2

≤

≤ c(‖aij‖∞, n, δ) (‖f‖0,Ω′′ + |u|1,2,Ω) |ψ|1,2,Ω′′

δ
2

.

(61)

|I2| =

∣

∣

∣

∣

∣

∣

n
∑

i,j=1

∫

Ω′′

δ
2

τr,h[aij(x)u(x)Diθ(x)]Djψ dx

∣

∣

∣

∣

∣

∣

≤

≤

∣

∣

∣

∣

∣

∣

n
∑

i,j=1

∫

Ω′′

δ
2

aij(x+ her) [τr,hu(x)]Djθ(x+ her)Djψ dx

∣

∣

∣

∣

∣

∣

+

≤

∣

∣

∣

∣

∣

∣

n
∑

i,j=1

∫

Ω′′

δ
2

τr,h[aij(x)Djθ(x)]u(x)Djψ dx

∣

∣

∣

∣

∣

∣

≤

≤ max
i,j=1,··· ,n

‖aij‖∞,Ω c(δ) ‖τr,hu‖0,Ω′′

δ
2

|ψ|1,2,Ω′′

δ
2

+ max
i,j=1,··· ,n

‖Draij‖∞,Ω c(δ) ‖u‖0,Ω |ψ|1,2,Ω′′

δ
2

≤

≤ c(δ) max
i,j=1,··· ,n

‖aij‖∞,Ω |u|1,2,Ω′′ |ψ|1,2,Ω′′

δ
2

+ c(δ) max
i,j=1,··· ,n

‖Draij‖∞,Ω ‖u‖0,Ω |ψ|1,2,Ω′′

δ
2

.

(62)

2Utilizziamo l’identità τr,h[f(x) g(x)] = f(x + her) τr,h g(x) + [τr,hf(x)]g(x)
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|I3| ≤ max
1,j=1,··· ,n

‖Draij‖∞,Ω |U|1,2,Ω′′

δ
2

|ψ|1,2,Ω′′

δ
2

. (63)

Da (60), tenuto conto di (61), (62), (63), ricaviamo le seguenti diseguaglianze

∣

∣

∣

∣

∣

∣

n
∑

i,j=1

∫

Ω′′

δ
2

aij(x+ her)τr,h[DiU(x)]Djψ(x) dx

∣

∣

∣

∣

∣

∣

≤

≤ c(‖aij‖∞,Ω, n, δ) (‖f‖0,Ω′′ + |u|1,2,Ω′′) |ψ|1,2,Ω′′

δ
2

+

+ c(‖Draij‖∞,Ω, n, δ) ‖u‖0,Ω′′) |ψ|1,2,Ω′′

δ
2

+

+ max
i,j=1,··· ,n

‖aij‖∞,Ω |U|1,2,Ω′′

δ
) |ψ|1,2,Ω′′

δ
2

≤

≤ c(‖aij‖∞,Ω, ‖Draij‖, n, δ) [‖f‖0,Ω′′ + ‖u‖1,2,Ω′′ ] |ψ|1,2,Ω′′

δ
2

.

(64)

Sostituiamo in quest’ultima diseguaglianza ψ = τr,hU :

∣

∣

∣

∣

∣

∣

n
∑

i,j=1

∫

Ω′′

δ
2

aij(x+ her)Di[τr,hU(x)]Dj [τr,hU ] dx

∣

∣

∣

∣

∣

∣

≤

≤ c(‖aij‖∞,Ω, ‖Draij‖, n, δ) [‖f‖0,Ω′′ + ‖u‖1,2,Ω′′ ] |τr,hU|1,2,Ω′′

δ
2

.

(65)

Tenendo conto della coercività possiamo dedurre

ν |τr,hU(x)|21,2,Ω′′

δ
2

≤ c(‖aij‖∞,Ω, ‖Draij‖, n, δ) [‖f‖0,Ω′′ + ‖u‖1,2,Ω′′ ] |τr,hU|1,2,Ω′′

δ
2

. (66)

Ovvero

ν |τr,hU(x)|1,2,Ω′′

δ
2

≤ c(‖aij‖∞,Ω, ‖Draij‖, n, δ) [‖f‖0,Ω′′ + ‖u‖1,2,Ω′′ ]. (67)

Da questa utilizziamo il Lemma 8.2 ottenendo:

ν |DrU(x)|1,2,Ω′′

δ
2

≤ c(‖aij‖∞,Ω, ‖Draij‖, n, δ) [‖f‖0,Ω′′ + ‖u‖1,2,Ω′′ ]. (68)

La tesi segue in quanto U = u su Ω′.

Sia ora u ∈ H1(Ω) soluzione (nel senso delle distribuzioni) dell’equazione completa

−
n
∑

i,j=1

Dj [aij(x)Dju(x)] +

n
∑

i=1

ai(x)Diu(x) + a(x)u(x) = f(x) x ∈ Ω. (69)

Teorema 8.4. Supponiamo che la matrice {aij}i,j=1,··· ,n sia uniformemente ellitica su Ω, aij ∈ C1(Ω)
mentre ai e a appartengono a L∞(Ω) ed f ∈ L2(Ω). Allora per ogni coppia di aperti Ω′ ⊂ Ω′′ ⊂ Ω si ha che
u ∈ H2(Ω′) e vale la maggiorazione

|u|1,2,Ω′ ≤ c(aij , ai, a, ν)
{

‖f‖L2(Ω′′) + ‖u‖1,2,Ω′′

}

(70)
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Dimostrazione. Basta considerare l’equazione

−
n
∑

i,j=1

Dj [aij(x)Dju(x)] = −
n
∑

i=1

ai(x)Diu(x) − a(x)u(x) + f(x) x ∈ Ω. (71)

Il secondo membro, per le ipotesi fatte appartiene a L2(Ω), applicando il Teorema 8.3 otteniamo la tesi.

Aumentando le ipotesi di regolarità dei dati aumenta anche la regolarità della soluzione come si vede dal
seguente teorema.

Teorema 8.5. Supponiamo che la matrice {aij}i,j=1,··· ,n sia uniformemente ellitica su Ω, aij ∈ Ck+1(Ω)
mentre ai e a appartengono a Ck(Ω) ed f ∈ Hk(Ω). Allora per ogni coppia di aperti Ω′ ⊂ Ω′′ ⊂ Ω si ha che
se u è soluzione in H1

0 (Ω) risulta u ∈ Hk+2(Ω′) e vale la maggiorazione

|u|k+2,2,Ω′ ≤ c(aij , ai, a, ν) {‖f‖k,2,Ω′′ + ‖u‖1,2,Ω′′} (72)

Dimostrazione. Procediamo per induzione. Se k = 0 è verificato per il Teorema 8.4. Dimostriamo l’induttività
della proposizione. Derivando α−volte, con |α| = k, primo e secondo membro dell’equazione (69), otteniamo
la seguente

−
n
∑

i,j=1

Dj [aij(x)DiD
αu(x)] = −

n
∑

i,j=1

∑

β≤α,β 6=0

(

α

β

)

Dj [D
βaij(x)D

α−βDiu(x)]+

−
∑n

i=1 D
α[ai(x)Diu(x)] − Dα[a(x)u(x)] + Dαf(x) x ∈ Ω.

(73)

La tesi segue dal Teorema 8.4 applicato alla funzione w = Dαu, ed osservando che per le ipotesi fatte il
secondo membro dell’equazione (73) appartiene a L2(Ω).

9 Differenziabilità al bordo delle soluzioni di un’equazione in for-

ma di divergenza

Consideriamo B+
r = {x : x = (x1, · · · , xn) ∈ R

n ∨ (‖x‖ < r) ∨ (xn > 0)}, Γ = B+
r ∩ {x : xn = 0}, e sia u

appartenente a H1(B+
r ) soluzione (in senso debole) del problema



















−
n
∑

i,j=1

Dj [aij(x)Diu(x)] = f(x), x ∈ B+
r ,

u(x) = 0, x ∈ Γr.

(74)

Teorema 9.1. Supponiamo che la matrice {aij}i,j=1,··· ,n sia uniformemente ellitica su B+
r , aij ∈ C1(B+

r )
ed f ∈ L2(B+

r ). Allora per ogni ρ ∈ (0, r) si ha che u ∈ H2(B+
ρ ) e vale la maggiorazione

|u|1,2,B+
ρ

≤ c(ν, ρ, r, n, aij)
{

‖f‖L2(B+
r ) + ‖u‖1,2,B+

r

}

(75)
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Dimostrazione. Indichiamo con W 1
γ0

(B+
r ) la chiusura nella norma di W 1(B+

r ) dello spazio delle funzioni

C1(B+
r ) che si annullano in un intorno di Γr. Scriviamo il problema (74) nella forma



















u ∈W 1
γ0

(B+
r ),

n
∑

i,j=1

∫

B+
r

aij(x)Diu(x)Dj ϕ(x) dx =

∫

B+
r

f(x)ϕ(x) dx, ∀ϕ ∈W 1
0 (B+

r ).
(76)

Consideriamo ora la funzione smussante θ ∈ C∞
0 (Rn) definita in maniera analoga a quella vista nella dimo-

strazione del Teorema 8.3: 0 ≤ θ ≤ 1, θ = 1 su Bρ, θ = 0 fuori di B r+ρ
2

. Consideriamo funzioni test del tipo

ϕ = θψ, con ψ appartenente a W 1
γ0

(B+
r ) (quindi ϕ ∈ W 1

0 (B+
r )). Sostituiamo nell’equazione, procedendo in

maniera simile a quella vista all’interno ponendo

F (x) = f(x) θ(x) −
n
∑

i,j=0

aij(x)Diu(x)Djθ(x), U(x) = θ(x)u(x),

n
∑

i,j=1

∫

B+
r

aij(x)DiU(x) Djψ(x) dx =

∫

B+
r

F (x) ψ(x) dx+

+

∫

B+
r

n
∑

i,j=1

aij(x)Diθ(x)Djψ(x) u(x) dx.

(77)

Questa equazione vale in particolare per le funzioni ψ appartenenti a W 1
γ0

(B+
r ) che sono nulle fuori di B+

r+ρ
2

.

Possiamo quindi considerare i rapporti incrementali τr,−h ψ(x) per r = 1, · · · , (n− 1), ed |h| <
r + ρ

2
. Poiché

ψ appartiene a W 1
0 (B+

r+ρ
2

) può essere scelta come funzione test in (77). Procedendo nello stesso modo visto

nel paragrafo precedente per la regolarità all’interno otteniamo la diseguaglianza

n
∑

i=1

n−1
∑

r=1

∫

B+
ρ

|DrDiu(x)|
2 dx ≤ c(ν, ρ, r, n, aij) {‖f‖

2
0,B+

r
+ ‖u‖1,B+

r
}. (78)

Resta da maggiorare il termine Dnnu. Dall’equazione (77) ricaviamo
∫

B+
r

ann(x)DnU(x)Dn ψ(x) dx =

∫

B+
r

F (x)ϕ(x) dx+

n
∑

i,j=1

∫

B+
r

aij(x)Diθ(x)Dj ψ(x)u(x) dx+

−
n
∑

i=1

n−1
∑

j=1

∫

B+
r

aij(x)DiU(x)DnDj ψ(x) dx =

=

∫

B+
r

H(x)ψ(x) dx, ∀ψ ∈W 1
0 (B+

r ).

(79)

Dove H(x) = f(x) −
n
∑

i,j=1

aij(x)Diθ(x)u(x) −
n
∑

i=1

n−1
∑

j=1

aij(x)Diu(x). Prendiamo (3) ψ(x) =
ξ(x)

ann(x)
, dove

ξ ∈ C∞
0 (B+

ρ ). Ovviamente, per le ipotesi fatte sui coefficienti ψ ∈W 1
0 (B+

ρ ).

3Dall’ipotesi di uniforme ellitticità si ricava che ann ≥ ν.
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Per le ipotesi fatte e per quanto dimostrato sopra risulta H ∈ L2(B+
ρ ).

Sostituendo in (79) ricaviamo la seguente equazione

∫

B+
ρ

Dnu(x)Dnξ(x) dx =

∫

B+
ρ

[

H(x)
ξ(x)

ann(x)
+ Dnu(x)

ξ(x)Dnnann(x)

ann(x)

]

dx, ∀ξ ∈ C∞
0 (B+

ρ ). (80)

Posto

G(x) =
H(x) −Dnu(x)Dnann(x)

ann(x)

osserviamo che per quanto visto in precedenza G ∈ L2(B+
ρ ). Quindi l’equazione (80) può essere scritta nella

forma
∫

B+
ρ

Dnu(x)Dnξ(x) dx =

∫

B+
ρ

G(x) ξ(x) dx, ∀ξ ∈ C∞
0 (B+

ρ ). (81)

Da questa si deduce che esite Dnnu in B+
ρ , che appartiene a L2(B+

ρ ) e Dnnu = G e quindi la tesi.

Teorema 9.2. Sia u ∈ H1
γ0

(B+
r ) soluzione del Problema (74) con aij ∈ Ck(B+

r ) e fi ∈ Hk(B+
r ). Se

u ∈ Hk(B+
r ) allora u ∈ Hk+1(B+

ρ ), con ρ < r, e si ha

‖u‖k+1,2,B+
r

≤ c(aij , n, r) {‖uk,2,B+
r
‖ + ‖f‖0,B+

r
}. (82)

Dimostrazione. Si procede per induzione, ma a differenza della dimosrazione del Teorema 73 si opera su αn.
Derivado l’equazione 74 e posto

G(x) = −
n
∑

i,j=1

∑

β≤α,β 6=0

(

α

β

)

Dj [D
βaij(x)D

α−βDiu(x)] (83)

(84)

g(x) = Dαf(x) x ∈ Ω. (85)

Se |α| = k−1. Dimostriamo che DαDiju ∈ L2(B+
ρ ), i, j = 1, · · · , n. La funzione w = Dαu verifica l’equazione

74 con g, G appartenenti a L2(B+
r ).

Per k = 0 segue dal Teorema 9.1.
Supponiamo di aver dimostrato per αn = h verifichiamo per αn = h+1. Se |α| = k+1 è tale che αn = h+1
possiamo scrivere per i 6= n:

DαDiju = DβDnju, i, j = 1, · · · , n, β = (α1, · · · , αi−1, αi + 1, αi+1, · · · , αn−1, h). (86)

La tesi è valida per i 6= n. Resta da provare per DαDnnu. Dall’equazione ricaviamo

∫

B+
r

ann(x)DnwDn ψ(x) dx =

∫

B+
r

G(x)ϕ(x) dx+

+

n−1
∑

i,j=1

∫

B+
r

aij(x)Diw(x)Dj ψ(x) dx+

−
n−1
∑

i=1

∫

B+
r

ain(x)Diw(x)DnDj ψ(x) dx −
n−1
∑

j=1

∫

B+
r

anj(x)Dnw(x) Dj ψ(x) dx =

=

∫

B+
r

H(x)ψ(x) dx, ∀ψ ∈W 1
0 (B+

r ).

(87)
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Da cui
∫

B+
ρ

Dnw(x)Dnξ(x) dx =

∫

B+
ρ

[

H(x)
ξ(x)

ann(x)
+ Dnw(x)

ξ(x)Dnnann(x)

ann(x)

]

dx, ∀ξ ∈ C∞
0 (B+

ρ ). (88)

Posto

Θ(x) =
H(x) −Dnu(x)Dnann(x)

ann(x)

osserviamo che per quanto visto in precedenza Θ ∈ L2(B+
ρ ). Quindi l’equazione (80) può essere scritta nella

forma
∫

B+
ρ

Dnw(x)Dnξ(x) dx =

∫

B+
ρ

Θ(x) ξ(x) dx, ∀ξ ∈ C∞
0 (B+

ρ ). (89)

Da questa si deduce che esite Dnnw in B+
ρ , che appartiene a L2(B+

ρ ) e Dnnw = Θ e quindi la tesi.

10 Differenziabilità globale della soluzione.

Teorema 10.1. Siano Ω aperto limitato di R
n con bordo ∂Ω di classe C1, f ∈ L2(Ω),

la matrice {aij}i,j=1,··· ,n uniformemente ellittica su Ω con aij ∈ C1(Ω). Allora la soluzione debole u ∈
H1,2(Ω), del problema di Dirichlet



















−
n
∑

i,j=1

Dj [aij(x)Dju(x)] = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(90)

appartiene a H2,2(Ω) e vale la maggiorazione

|u|2,2,Ω ≤ c(aij , n,Ω) {‖f‖0,Ω + ‖u‖1,2,Ω} . (91)

Dimostrazione. Ricopriamo Ω con una famiglia di aperti Ω′, Ω′′, U1, · · · , Un, V1, · · · , Vn scelti nel modo che
segue:

(1) Ω′ ⊂ Ω′′ ⊂⊂ Ω;

(2) Ui, Vi sono intorni di centro xi ∈ ∂Ω, con i = 1, · · · , n;

(3) Vi ⊂ Ui, con i = 1, · · · , n;

(4) ∪n
i=1Vi ⊃ ∂Ω;

(5) Ω ⊂ ∪n
i=1Vi ∩ Ω′.

Dal Teorema 8.3 sappiamo che u ∈ H2(Ω′) e vale la maggiorazione

|u|1,2,Ω′ ≤ c
{

‖f‖L2(Ω′′) + ‖u‖1,2,Ω′′

}

. (92)

Resta da stabilire la regolarità al bordo della soluzione. A questo scopo, fissato i ∈ {1, · · · , n}, su ogni Ui

possiamo considerare il diffeomorfismo Φ(x) = (Φ1(x), · · · ,Φn(x)) che manda Ui ∩ Ω in un aperto di R
n

definito da

Φi(x) = xi, i = 1, · · · , n− 1;

Φn(x) = ψ(x′) − xn, essendo x′ = (x1, · · · , xn−1),
(93)
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dove ψ è la funzione di R
n−1 → R di classe C1 il cui grafico coincide con ∂Ω in Ui. Φ è tale che tale che

Φ(Ui ∩ Ω) ⊂ {y ∈ R
n : yn > 0}, e Φ(Ui ∩ ∂Ω) ⊂ {y ∈ R

n : yn = 0}

Si vede facilmente che |det JacΦ| = 1
Sia ũ tale che u(x) = (ũ ◦ Φ)(x), x ∈ Ui ∩ Ω.
L’equazione (90) può essere scritta, per ogni ϕ ∈ H1

0 (Ω), nella forma seguente

n
∑

i,j=1

∫

Ω

aij(x)Diu(x)Dj ϕ(x) dx =

∫

Ω

f(x)ϕ(x) dx, (94)

che vale anche per tutte le funzioni test ϕ ∈ H1,2
0 (Ω ∩ Ui).

Tenuto conto del fatto che
∂u(x)

∂xi
=

n
∑

h=1

∂ũ(Φ(x))

∂yh

∂Φh(x)

∂xi
, da (94) con il cambio di variabile x = Φ−1(y)

otteniamo (4) per ogni ϕ̃ ∈ H1,2
0 (Ω̃)

n
∑

i,j=1

n
∑

h,k=1

∫

Ω

ãij(y)Dhũ(y) Φ̃hi(y)Dkϕ̃(y) Φ̃kj(y) dy =

∫

Ω

˜f(y) ϕ̃(y) dy, (95)

Poniamo

Ahk =

n
∑

i,j=1

ã(y) Φ̃hi(y) Φ̃kj(y), (96)

e sostituiamo in (94) ottenendo per ogni ϕ̃ ∈ H1,2
0 (Ω̃)

n
∑

h,k=1

∫

Ω̃

Ahk(y)Dhũ(y)Dkϕ̃(y) dy =

∫

Ω̃

˜f(y) ϕ̃(y) dy, (97)

Per poter applicare i risultati del paragrafo precedente dobbiamo verificare che la matrice dei coefficienti
{Ahk}hk=1,··· ,n è uniformemente ellittica su Ω̃. Infatti, per ogni ξ ∈ R

n, abbiamo

n
∑

h,k=1

Ahk(y) ξh ξk =
n
∑

h,k=1

n
∑

i,j=1

ãij(y)Φ̃hi(y) Φ̃kj(y) ξh ξk =

,

n
∑

i,j=1

ãij(y)

(

n
∑

i=1

Φ̃hi(y) ξh

)(

n
∑

k=1

Φ̃kj(y)ξk

)

≥

(per l’ellitticità di {ã}ij)

≥ ν

n
∑

i=1

(

n
∑

h=1

Φ̃hiξh

)2

≥ c ν‖ξ‖2, c > 0.

(98)

Infatti la funzione

T (x) =
n
∑

i=1

(

n
∑

h=1

Φ̃hi ξh

)2

ammette minimo sulla palla unitaria di R
n. Questo minimo è necessariamente positivo per il fatto che Φ̃ è

un isomorfismo.

4Si pone ã(y) = a(Φ−1(y)), f̃(y) = f(Φ−1(y)), ϕ̃(y) = ϕ(Φ−1(y)), Φ̃hi(y) =
∂Φh(Φ−1(y))

∂xi
, Ω̃ = Φ(Ui ∩ Ω).
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Possiamo quindi considerare una semipalla B+
r contenuta in Ω̃ dove applicare i teoremi di regolarità dimostrati

nel paragrafo precedente. e quindi si ha che ũ ∈ H2(B+
ρ ), per ρ ∈ (0, r). Prendendo il ricoprimento introdotto

all’inizio con Ui = Φ−1(B+
r ) e Vi = Φ−1B+

ρ otteniamo che u ∈ H2(Vi).

Teorema 10.2. Siano Ω aperto limitato di R
n con bordo ∂Ω di classe C1, f ∈ L2(Ω),

la matrice {aij}i,j=1,··· ,n uniformemente ellittica su Ω con aij ∈ C1(Ω), ai, i = 0, 1, · · · , n, appartenenti a
C0(Ω). Allora la soluzione debole u ∈ H1,2(Ω), del problema di Dirichlet



















−
n
∑

i,j=1

Dj [aij(x)Dju(x)] +

n
∑

i=0

ai(x)Diu(x) + a0 u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(99)

appartiene a H2,2(Ω) e vale la maggiorazione

‖u‖2,2,Ω ≤ c(aij , ai, n,Ω) {‖f‖0,Ω + ‖u‖1,2,Ω} . (100)

Dimostrazione. Basta osservare che l’equazione (90) può essere scritta nella forma



















−
n
∑

i,j=1

Dj [aij(x)Dju(x)] = −
n
∑

i=0

ai(x)Diu(x) − a0 u(x) + f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(101)

ed applicare il Teorema 10.1 osservando che il secondo membro dell’equazione (101) appartiene a L2(Ω).

Corollario 10.3. Nelle ipotesi del teorema precedente per la soluzione debole del Problema di Dirichlet 90
vale la maggiorazione

‖u‖2,2,Ω ≤ c(aij , ai, n,Ω) ‖f‖0,Ω. (102)

Dimostrazione. Segue dalla diseguaglianza (100) e dalla (27) con g = 0.

11 Sull’esistenza globale di soluzione per l’equazione completa

Consideriamo il Problema di Dirichlet 90. Nel paragrafo 5 abbiamo dimostrato che se f appartiene a H−1(Ω)
il problema ammette una ed una sola soluzione in H1

0 (Ω) purché il diametro di Ω sia sufficientemente piccolo.
Utilizzando le maggiorazioni a priori stabilite nel paragrafo precedente e ponendo delle ipotesi più forti sui
dati si dimostra che il problema può avere soluzione anche se il dominio non ha diametro piccolo. Il seguente
risultato è un primo passo in questa direzione. Indichiamo con

Au = −
n
∑

i,j=1

Dj [aij(x)Dju(x)] +
n
∑

i=0

ai(x)Diu(x) + a0 u(x),

Pu = Au.

(103)

Teorema 11.1. Siano Ω aperto limitato di R
n con bordo ∂Ω di classe C1, f ∈ L2(Ω), la matrice

{aij}i,j=1,··· ,n uniformemente ellittica su Ω con aij ∈ C1(Ω). Allora l’applicazione lineare P che ad ogni

u ∈ H2,2 ∩ H1,2
0 (Ω) associa la sua immagine Pu appartenente a L2(Ω) ha nucleo di dimensione finita e

immagine chiusa.
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Alla dimostrazione del teorema premettiamo il seguente lemma di Peetre.

Lemma 11.2. Siano E, F , G tre spazi di Banach riflessivi, tali che E ⊂ F con immersione compatta e sia
C un operatore lineare e continuo di E in G. Allora le seguenti proposizioni sono equivalenti:

(I) l’immagine di C in G è chiusa ed il nucleo di C ha dimensione finita

(II) esiste una costante positiva c tale che per ogni u ∈ E sia verificata

‖u‖E ≤ c {‖Cu‖G + ‖u‖F }. (104)

Dimostrazione. (del Teorema)
La tesi segue dal Lemma di Peetre ponendo

E = H2,2 ∩H1,2
0 (Ω)

F = H1,2
0 (Ω)

G = L2(Ω)

Cu = Pu,

(105)

osservando che:

(1) l’immersione di H2,2(Ω) in ∩H1,2(Ω) è compatta per il Teorema di Rellich.

(2) la maggiorazione (104) segue dalla (100).

Dimostrazione. (del Lemma di Peetre)
(1) Proviamo che la condizione (II) implica la (I).
Poniamo E0 = ker C. Si ha che la palla unitaria in E0 è compatta in F dunque, per (104) è compatta anche
in E, quindi E0 è di dimensione finita.(5)
Scomponiamo E nella somma diretta E = E0 ⊕ E1. La restrizione di C a E1 è inettiva e quindi si puó
dimostrare che per ogni u ∈ E1 vale

‖u‖E ≤ C ‖Cu‖G. (106)

Infatti se per assurdo non fosse vera esisterebbe una successone Cn tendente ad infinito ed una successione
un in E1 tali che

‖un‖E > Cn ‖Cun‖G. (107)

Ovvero, posto vn =
un

‖un‖
,

1

Cn
> ‖Cvn‖G. (108)

Dato che la successione {vn}n∈N è limitata in E, dato che ha norma uguale a uno, possiamo estrarre una
sottosuccessione (che indicheremo ancora con {vn}n∈N), che in F converge a v. Per (104) e (108) {vn}n∈N

è di Cauchy in E1 e quindi converge necessariamente a v. Ma per (108) deve essere v = 0 (vn appartiene a
E1). Questo è in contraddizione con quanto si ottiene passando al limite nella (104), ossia

1 ≤ c {‖Cvn‖G + ‖vn‖F }. (109)

5Uno spazio di Banach nel quale ogni sottoinsieme limitato sia relativamente sequenzialmente compatto è necessariamente
di dimensione finita. Per la dimostrazione si veda ad esempio [8], vol I.
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Per dimostrare che Im C è chiuso in G, prendiamo una succesione {wn}n∈N che converge a w in G. Allora
esiste un in E tale che Cun = wn. Posto un = vn + zn, con vn ∈ E0 e zn ∈ E1, risulta T (zn) = T (un) = wn.
Possiamo scrivere per (104)

‖zn‖E ≤ c {‖Czn‖G + ‖zn‖F }. (110)

Se {zn}n∈N è limitata in E possiamo estrarre una successione convergente in F a z, che per (110) è di Cauchy
in E, e quindi converge a z anche in E. Per la continuità di C si ha che Cz = w. Ciò prova che C(E) è chiuso.
Resta da far vedere che {zn}n∈N è limitata in E. Se cos̀ı non fosse esisterebbe una sottosuccessione {zhn

}n∈N

tale che lim
n→+∞

‖zhn
‖E = +∞. Posto

vhn
=

zhn

‖zhn
‖E
,

si ha

‖vhn
‖E = 1, T (vhn

) =
T (zhn

)

‖zhn
‖
.

Da cui si otterrebbe l’esistenza di una sottosuccessione {vkn
}n∈N tale che (si deduce che è di Cauchy in E da

(104))
lim

n→+∞
vkn

= v, ‖vkn
‖E = 1, lim

n→+∞
‖zkn

‖ = +∞

Ma poiché T (zn) tende a w la successione {T (zn)}n∈N è limitata. Allora T (vhn
) tende 0 e quindi T (v) = 0,

ossia v ∈ E0 ∩ E1, cioè v = 0. Assurdo perché ‖v‖E = 1.

(2) Proviamo che la condizione (I) implica la (II). Consideriamo la scomposizione dello spazio E vista in
precedenza, ossia E = E0 ⊕ E1.
La restrizione di C a E1 è una applicazione chiusa e quindi per il Teorema del grafico chiuso possiamo scrivere
per ogni v ∈ E1

‖v‖E ≤ C1‖Cv‖G. (111)

Si dimostra poi che per ogni w ∈ E0 vale(6)

‖w‖E ≤ C2‖w‖F . (112)

Per ogni u ∈ E si ottiene (104) da (111), (112), in quanto u = v + w, con v ∈ E1, w ∈ E0 e Cu = Cv.

12 Teoria degli operatori vicini ed equazioni non variazionali:

breve storia.

L’idea di introdurre il concetto di vicinanza tra operatori trova la sua origine nel problema di dimostrare
l’esistenza ed unicità di soluzioni di problemi non variazionali del tipo seguente.



















u ∈ H2 ∩H1
0 (Ω)

n
∑

i,j=1

aij(x)Diju(x) = f(x), in Ω.
(113)

6Per assurdo. Se esistessero due successioni {Cn}n∈N e {wn}n∈Ntali che

lim
n→+∞

Cn = +∞, ‖wn‖E ≥ Cn ‖wn‖F

si avrebbe che, ponendo yn =
wn

‖wn‖E
,

1

Cn
≥ ‖yn‖F

Quindi yn tende a zero in F . Ma la successione {yn}n∈N, appartenendo allo spazio E0 di dimensione finita ammette una
successione convergente a y che ha norma 1 in E. Assurdo.
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dove: f ∈ L2(Ω) , , Ω è un insieme limitato di R
n, che per semplicità supporremo, in questa parte, convesso,

mentre aij ∈ L∞(Ω) e la matrice {aij}i,j=1,··· ,n è uniformemente ellittica su Ω e simmetrica.(7)
Se n > 2, il Problema (113) non è ben posto in generale sotto le sole ipotesi di ellitticità uniforme sulla
matrice dei coefficienti (vedi esempio alla fine del paragrafo), ovvero esiste ν > 0 tale che
Sono dunque necessarie delle ipotesi più restrittive sui coefficienti per provare l’esistenza ed unicità delle
soluzioni del Problema (113). Ovvero ipotesi di maggiore regolarità dei coefficienti, ad esempio aij ∈ C0(Ω),
oppure di tipo algebrico sulla matrice come ad esempio la Condizione di Cordes e la Condizione Ax.

Condizione 1. (Condizione di Cordes)
Sia A(x) = {aij(x)}i,j=1,··· ,n una matrice tale che ‖A(x)‖

Rn2 6= 0 , q.o.. in Ω. Diciamo che A(x) soddisfa la

Condizione di Cordes se esite ε ∈ (0, 1) tale che

(
∑n

i=1 aii(x))
2

∑n
i,j=1 a

2
ij(x)

≥ n− 1 + ε, a.e. in Ω. (114)

Condizione 2. (Condizione Ax) (8)
Esistono tre costanti reali σ, γ, δ ed una funzione a(x) ∈ L∞(Ω), con σ > 0 , γ > 0, δ ≥ 0, γ + δ < 1,
a(x) ≥ σ > 0 , tale che

∣

∣

∣

∣

∣

∣

n
∑

i=1

ξii − a(x)
n
∑

i,j=1

aij(x)ξij

∣

∣

∣

∣

∣

∣

≤ γ





n
∑

i,j=1

ξ2ij





1/2

+ δ

∣

∣

∣

∣

∣

n
∑

i=1

ξii

∣

∣

∣

∣

∣

, (117)

∀ξ = {ξij}i,j=1,··· ,n ∈ R
n2

, a.e. in Ω.

Si dimostra che queste due condizioni sono equivalenti,
Vediamo l’idea che ha portato alla formulazione della Condizione A per risolvere il Problema 113.
Consideriamo

∆u = αf + ∆w − α
n
∑

i,j=1

aij(x)Dijw(x) (118)

e definiamo un’applicazione T : H2 ∩H1
0 (Ω)→H2 ∩H1

0 (Ω) che associa ad ogni w ∈ H2 ∩H1
0 (Ω) la soluzione

u ∈ H2 ∩H1
0 (Ω) dell’equazione (118).

7Questa non è un’ipotesi restrittiva, in quanto possiamo scrivere:

aij =
aij + aij

2
+

aij − aji

2
= a+

ij + a−ij,

a+
ij sono i coefficienti di una matrice simmetrica, mentre a−

ij sono i coefficienti di una matrice antisimmetrica. Risulta

n
X

i,j=1

a−

ij Diju =
n

X

i,j=1

aij − aji

2
=

n
X

i,j=1

aij

2
Diju −

n
X

i,j=1

aji

2
Diju =

n
X

i,j=1

aij

2
Diju −

n
X

i,j=1

aji

2
Djiu = 0.

8La condizione Condizione Ax implica l’uniforme ellitticità su Ω. Infatti in (117) prendiamo la matrice ξ = {ξij}i,j=1,··· ,n

del tipo ξ = {ηi ηj}i,j=1,··· ,n. Sostituendosi ha

˛

˛

˛

˛

˛

˛

n
X

i=1

η2
i − a(x)

n
X

i,j=1

aij(x)ηiηj

˛

˛

˛

˛

˛

˛

≤ γ

0

@

n
X

i,j=1

η2
i η2

j

1

A

1/2

+ δ

n
X

i=1

η2
i = (γ + δ)

n
X

i=1

η2
i . (115)

Da cui segue

[1 − (γ + δ)]
n

X

i=1

η2
i ≤ a(x)

n
X

i=1

aij(x) ηi ηj =⇒
1 − (γ + δ)

µ

n
X

i=1

η2
i ≤

n
X

i=1

aij(x)ηiηj . (116)

Dove µ = sup
Ω

a(x).
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Si può provare che T è una contrazione dello spazio H2 ∩ H1
0 (Ω) in sè se A(x) verifica la Condizione Ax.

Infatti:9

‖T (w1) − T (w2)‖
2
H2,2(Ω) ≤

∫

Ω

|∆u1 − ∆u2|
2 dx =

=

∫

Ω

|∆w1 − α
n
∑

i,j=1

aij(x)Dijw1(x) − [∆w2 − α
n
∑

i,j=1

aij(x)Dijw2(x) ]|2 dx =

=

∫

Ω

|∆w1 − ∆w2 − α
n
∑

i,j=1

aij(x)Dij [w1(x) − w2(x)]|
2 dx ≤

(per la Condizione A)

≤
[

γ‖w1 − w2‖H2,2(Ω) + δ |∆(w1 − w2)|
]2

≤

(per la maggiorazione di Miranda − Talenti)

≤ (γ + δ)2 ‖w1 − w2‖
2
H2,2(Ω)

Da questa si deduce che T è una contrazione e quindi si ottiene il risultato desiderato. Le dimostrazione del
Teorema 6.2 ripercorre in sostanza questa strada, la cui astrazione si fa nel modo che segue:

Bu = ∆u

Au =

n
∑

i,j=1

aij(x)Diju(x)

X = H2 ∩H1
0 (Ω)

B = L2(Ω)

Ovvero si può dedurre che l’operatore u 7→
∑n

i,j=1 aij(x)Diju(x) è una bigezione tra H2 ∩H1
0 (Ω) ed L2(Ω)

come conseguenza dei seguenti fatti:

1.
∑n

i,j=1 aij(x)Diju(x) è in una certa relazione algebrica con ∆

2. ∆u è un bigezione tra H2 ∩H1
0 (Ω) ed L2(Ω).

Le precedenti osservazioni sono sostanzialmente il metodo di appplicazione della teoria degli operatori vicini:
in pratica dalla CondizioneAx abbiamo ottenuto che A è vicino a B , mentre dal Teorema 6.2, poichè B è
una bigezione tra gli spazi considerati anche A è una bigezione tra di essi.

Vediamo ora il seguente controesempio
Sia Ω = S(0, r). Consideriamo l’equazione

A(u) =
n
∑

i,j=1

aij(x)Diju(x) = 0, (119)

9Si tenga presente la seguente maggiorazione Miranda-Talenti: se Ω è convesso, allora per ogni u ∈ H2,2(Ω)∩H
1,2
0 (Ω) risulta

‖u‖H2,2(Ω) ≤ ‖∆u‖L2(Ω).
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dove

aij(x) = δij + b
xi xj

‖x‖2
, b = −1 +

n− 1

1 − λ
, λ < 1, x ∈ R

n. (120)

La matrice è uniformemente ellittica su Ω :

n
∑

ij=1

(

δij + b
xixj

‖x‖2

)

ξiξj =

n
∑

i=1

ξ2i +

n
∑

i,j=1

b
xixjξiξj
‖x‖2

=

= ‖ξ‖2



1 + b

n
∑

ij=1

xixjξiξj
‖x‖2 ‖ξ‖2



 > c‖ξ‖2, (c > 0)

perchè b > −1 e
n
∑

ij=1

xixjξiξj
‖x‖2 ‖ξ‖2

=
(
∑n

i=1 xiξi)
2

‖x‖2‖ξ‖2
≤ 1.

La funzione
u(x) = ‖x‖λ (121)

È una soluzione di (119), perché:

Diu(x) = λ ‖x‖λ−2 xi

Diju(x) = λ ‖x‖λ−4 [(λ− 2)xi xj + δij ‖x‖
2].

Inoltre
Diu ∈ Lq(S(0, r)) if q <

n

1 − λ

mentre
Diju ∈ Lp(S(0, r)) if p <

n

2 − λ
.

Se λ −→ 1− allora p −→ n e q −→ +∞. Cos̀ı che per valori di λ vicini ad 1 abbiamo che u ∈ H2,2(Ω), purché
n > 2.
Ricordiamo anche che la funzione v(x) = rλ è una soluzione di (119). Il problema non ha quindi unicità di
soluzione.

Vediamo ora come si prova l’esistenza ed unicità di soluzione del Problema 113 nel caso di dimensione n = 2.
Il primo passo consiste nel provare che nel caso bidimensionale l’uniforme ellitticità e la Condizione Ax

sono equivalenti. Che la Condizone Ax implichi l’uniforme ellitticità è gia stato osservato in precedenza.
Verifichiamo che ogni matrice A(x) uniformemente ellittica su Ω verifica (2). Poichè A(x) è simmetrica,
possiamo determinare gli autovalori reali λ1(x), λ2(x) e considerare la matrice

Γ(x) =





λ1(x) 0

0 λ2(x)



 .

Per l’ipotesi di ellitticità risulta inoltre che esite ν > 0 tale che, per q.o. x ∈ Ω, λ1(x) ≥ ν, λ2(x) ≥ ν.
Osserviamo che le matrici I − a(x)Γ(x) e I − a(x)A(x) hanno gli stessi autovalori e quindi le loro norme
sono uguali:

‖I − a(x)Γ(x)‖R4 = ‖I − a(x)A(x)‖R4 = ‖(1, 1) − a(x)(λ1(x), λ2(x))‖R2 .

Si tratta quindi di provare che esite una funzione a(x) ∈ L∞(Ω), a(x) ≥ σ > 0 q.o. in Ω tale che per ogni
matrice ξ, 2 × 2, si abbia

∣

∣

∣

∣

∣

∣

2
∑

i=1

ξii − a(x)

2
∑

i,j=1

aij(x)ξij

∣

∣

∣

∣

∣

∣

= (I − a(x)A(x)|ξ) ≤

≤ ‖I − a(x)A(x)‖R4‖ξ‖R4 = ‖(1, 1) − a(x)(λ1(x), λ2(x))‖R2‖ξ‖R4 ≤ ρ‖ξ‖R4 ,

(122)
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con ρ ∈ (0, 1). Ovvero

‖(1, 1) − a(x)(λ1(x), λ2(x))‖R2 ≤ ρ ⇐⇒ a2(x)[λ2
1(x) + λ2

2(x)] − 2 a(x)[λ1(x) + λ2(x)] + 2 − ρ2 ≤ 0.

Che ammette una soluzione reale a(x) se e solo se

[λ1(x) + λ2(x)]
2 − [λ2

1(x) + λ2
2(x)](2 − ρ2) ≥ 0 ⇐⇒

2λ1(x)λ2(x)

λ2
1(x) + λ2

2(x)
≥ 1 − ρ2.

Da cui posto, M = max
i,j=1,2

sup
Ω
aij(x), deduciamo

2λ1(x)λ2(x)

λ2
1(x) + λ2

2(x)
≥

ν2

M2
.

Si ha la tesi scegliendo
[

1 −
( ν

m

)2
]

1
2

≤ ρ < 1 e a(x) =
λ1(x) + λ2(x)

λ2
1(x) + λ2

2(x)
.

13 Esistenza di soluzione per il problema non variazionale con

coefficienti regolari

.

In questa parte illustriamo il metodo di N. S. Bernstein con il quale si dimostra l’esistenza di soluzione per
il problema di Cauchy relativo ad un’equazione non variazionale con coefficienti regolari.
Questo metodo parte da maggiorazioni a priori (ossia maggiorazioni che riguardano soluzioni delle quali non
si conosce ancora l’esistenza) e arriva a rpovare l’esistenza delle medesime. Il primo passo di questa tecnica
è il seguente principio di massimo.

Teorema 13.1. (Principio di Massimo o di minimo)
Sia u ∈ C2(Ω) ∩ C0(Ω) una sottosoluzione (soprasoluzione) dell’equazione

n
∑

i,j=1

aij(x)Diju(x) ≥ 0, (≤ 0) in Ω, (123)

dove aij ∈ C0(Ω) e la matrice A(x) = {aij(x)}i,j=1,··· ,n è uniformemente ellittica su Ω. Allora

max
Ω

u = max
∂Ω

u, (min
Ω

u = min
∂Ω

u). (124)

Dimostrazione. Supponiamo come primo passo che in (123) si abbia

n
∑

i,j=1

aij(x)Diju(x) > 0, (< 0) in Ω, (125)

Se x0 fosse un punto di massimo relativo (minimo relativo) interno ad Ω la matrice hessiana H(x0) =
{Diju(x0)}i,j=1,··· ,n sarebbe semidefinita negativa (positiva). D’altra parte A(x0) è definita positiva (nega-
tiva) e dunque (10)

n
∑

i,j=1

aij(x0)Diju(x0) ≤ 0, (≥ 0) in Ω, (126)

10Infatti se poniamo A = A(x0), H = H(x0) e consideriamo le matrici unitarie U , V che riducono rispettivamente A, H in
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Ma questo contraddice (125). Supponiamo ora che in (123) valga “≥” (“≤”). Consideriamo per ogni ε > 0
la funzione

uε(x) = u(x) + ε ‖x‖2 (uε(x) = u(x) − ε ‖x‖2),

che soddisfa (125) e quindi risulta

max
Ω

uε = max
∂Ω

uε, (min
Ω

uε = min
∂Ω

uε). (127)

Passando al limite per ε che tende a zero si ha la tesi.

Corollario 13.2. Se u ∈ C2(Ω) ∩ C0(Ω) è soluzione dell’equazione omogenea

n
∑

i,j=1

aij(x)Diju(x) = 0, in Ω, (128)

allora u assume su ∂Ω sia il valore massimo che il valore minimo.

Come conseguenza di questo fatto otteniamo il seguente risultato

Teorema 13.3. Se u ∈ C2(Ω) ∩ C0(Ω) è soluzione del Problema di Dirichlet



















n
∑

i,j=1

aij(x)Diju(x) = f(x), in Ω,

u(x) = g(x), su ∂Ω,

(129)

allora è unica.

Dimostrazione. Per asurdo, se u1 e u2 allora v = u1 − u2 risolverebbe il Problema di Dirichlet omogeneo



















n
∑

i,j=1

aij(x)Dijv(x) = 0, in Ω,

v(x) = 0, su ∂Ω,

(130)

da cui per il Corollario 13.2 v = 0 e dunque v1 = v2.

Il passo successivo nella dimostrazione dell’esistenza di soluzioni per il Problema di Dirichlet è la seguente
maggiorazione a priori

Teorema 13.4. Se ∂Ω è di classe C3 e u ∈ H2,2 ∩H1,2
0 (Ω) è soluzione del Problema di Dirichlet 129, con

g = 0, dove aij ∈ C0,α(Ω), f ∈ C0,α(Ω), allora Diju ∈ C0,α(Ω) e si ha

n
∑

ij=1

‖Diju‖
2
C0α(Ω)

≤ c



‖f‖2
C0,α(Ω) +

n
∑

i,j=1

‖Diju‖
2
0,Ω



 . (131)

forma diagonale, cioè U∗AU = ΛA, V ∗HV = ΛH , dove ΛA = {αi δij}i=1,··· ,n, ΛH = {βi δij}i=1,··· ,n, possiamo scrivere

n
X

i,j=1

aij(x)) Diju(x0) = (A|H) = (UU∗AUU∗|V V ∗HV V ∗) =

= (UΛAU∗|V ΛHV ∗) = (ΛAU∗V |U∗V ΛB) = (ΛAQ|QΛH) =

(dove U∗V = Q = {qij}i,j=1,··· ,n ),

=
n

X

i,j=1

αij qijqijβj =
n

X

i,j=1

αij q2
ij αi βj ≤ 0.
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Conseguenza di questo teorema è il seguente.

Teorema 13.5. Sia Ω aperto limitato di R
n con ∂Ω di classe C3, se f appartiene a C0,α(Ω) allora esiste

una costante positiva c che dipende da Ω, dalla costante di ellitticità dei coefficienti aij, dalla norma di essi
in C0,α(Ω), tale che se u è una soluzione H2,2(Ω) del problema



















n
∑

i,j=1

aij(x)Diju(x) = f(x), in Ω,

u(x) = 0, su ∂Ω,

(132)

allora vale la maggiorazione

n
∑

ij=1

‖Diju‖
2
2,2,Ω ≤ c

(

‖f‖2
C0,α(Ω)

)

. (133)

Dimostrazione. Se la tesi fosse falsa esisterebbero

(1) una successione di coefficienti a
(k)
ij (x) verificanti

(1a) per ogni ξ ∈ R
n, k ∈ N, x ∈ Ω:

n
∑

i,j=1

a
(k)
ij (x)ξi ξj ≥ ν ‖ξ‖2

n,

(1b) esite M > 0 tale che per ogni k ∈ N valga ‖a
(k)
ij ‖C0,α(Ω) ≤ M

(2) una successione di funzioni in C0,α(Ω) tali che

‖fk‖C0,α(Ω
k→+∞
−→ 0 (134)

(3) una successione di soluzioni del problema di Dirichlet


















n
∑

i,j=1

a
(k)
ij (x)Dijuk(x) = fk(x), in Ω,

uk(x) = 0, su ∂Ω,

(135)

con

‖uk‖2,2,Ω = 1. (136)

Per il teorema di Ascoli-Arzelà esiste una successione estratta da a
(k)
ij che converge a aij unifomemente in Ω,

inoltre {aij}i,j=1,··· ,n verifica (1a) e (1b). Dalla maggiorazione a priori (129) ricaviamo per k sufficientemente
grande

n
∑

ij=1

‖Dijuk‖
2
C0,α(Ω)

≤ c



‖fk‖
2
C0,α(Ω) +

n
∑

i,j=1

‖Dijuk‖
2
0,Ω



 ≤ c1, (137)

perché per (134) risulta ‖fk‖C0,α(Ω

k→+∞

−→ 0 , mentre per il punto (3) si ha ‖uk‖2,2,Ω = 1. Da questo deduciamo

che essendo {uk}k∈N equilimitata in C2,α(Ω) possimo estrarre una sottosuccessione che converge uniforme-
mente ad u in C2(Ω) (per Ascoli-Arzelà), il che implica la convergenza forte in H2,2(Ω) ad u. Passando al
limite in (135) si ottiene che u è soluzione del problema



















n
∑

i,j=1

aij(x)Diju(x) = 0, in Ω,

u(x) = 0, su ∂Ω.

(138)

Per il principio di massimo si ha che u = 0 su Ω, ma questo è in contraddizione con ‖u‖2,2,Ω = 1.
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Da questi due teoremi deduciamo il seguente corollario

Corollario 13.6. Nelle ipotesi dei teoremi precedenti per la soluzione u del Problema di Dirichlet (13.3) vale
la maggiorazione

‖u‖C0,α(Ω) ≤ c ‖f‖C0,α(Ω). (139)

Siamo ora in grado di provare il seguente teorema

Teorema 13.7. Sia Ω un aperto limitato di R
n con frontiera ∂Ω di classe C3 e siano aij ∈ C0,α(Ω) per i

quali esiste ν > 0 tale che per ogni ξ ∈ R
n, per ogni x ∈ Ω si abbia

n
∑

i,j=1

aij(x) ξi ξj ≥ ν‖ξ‖2
n, (140)

allora per ogni f appartente a C0,α(Ω) il problema di Dirichlet


















n
∑

i,j=1

aij(x)Diju(x) = f(x), in Ω,

u(x) = 0, su ∂Ω.

(141)

ammette una ed una soluzione appartenente a C0,α(Ω) e per essa vale la maggiorazione

‖u‖C0,α(Ω) ≤ c ‖f‖C0,α(Ω). (142)

Dimostrazione. Per dimostrare il teorema utilizziamo il Metodo di continuità considerando la famiglia di
operatori At(u) cos̀ı definita

Atu = (1 − t)ν∆u + t

n
∑

i,j=1

aij Diju, t ∈ [0, 1]. (143)

I coefficienti di ciascun operatore At, ovvero a
(t)
ij (x) = (1− t)νδij + t aij(x) verifica (140). Come conseguenza

del Corollario 13.6 si ha che per ogni u ∈ C0,α(Ω) vale(11)

‖u‖C0,α(Ω) ≤ c ‖Atu‖C0,α(Ω), (144)

dove la costante non dipende da t. Verifichiamo quindi le ipotesi del Teorema 6.8 considerando come spazi
X = C2,α(Ω), B = C0,α(Ω). L’ipotesi (41) è verificata per t = 0 perché l’operatore ∆ è un isomorfismo tra
X e B. Per la verifica di (42) possiamo scrivere

‖Atu − Asu‖C0,α(Ω) = |t − s|

∥

∥

∥

∥

∥

∥

ν∆u −
n
∑

i,j=1

aij Diju

∥

∥

∥

∥

∥

∥

C0,α(Ω)

≤

≤ c |t − s| ‖u‖C0,α(Ω)

(per il Corollario 13.6)

≤ c1 c |t − s| ‖Atu‖C0,α(Ω).

(145)

11Infatti posto Atu = ft possiamo applicare il corollario al problema di Dirichlet
8

>

>

>

<

>

>

>

:

n
X

i,j=1

(1 − t)ν∆u + t

n
X

i,j=1

aij Diju = ft(x), in Ω,

u(x) = 0, su ∂Ω.
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14 Commento bibliografico

I testi che trattano la problematica relativa alle equazioni ellittiche sono numerosi. Mi limito a segnalare
quelli che a mio giudizio sono i più utili per un primo approccio all’argomento. Alcuni degli argomenti esposti
li ho tratti dai libri di Giusti [3] e di Michajlov [7]. Ovviamente non si può omettere di citare il anche il testo
della Ladyzhenskaya [5]. Per le equazioni non variazionali un testo abbastanza completo è il classico Gilbarg-
Trudinger [4] (nell’edizione più recente del 1998). È interessante anche il testo di Maugeri-Plagachev-Softova
[9]. Per un primo approfondimento relativo alle equazioni e/o ai sistemi di ordine superiore si possono vedere
i libri di Campanato [1], di Miranda [8], vol II, Giaquinta-Martinazzi [2], o il classico Lions-Magenes [6].
Infine non si può non citare come testo di base, non solo per le equazioni ellittiche ma per tutte le equazioni
alle derivate parziali il monumentale libro di Salsa [10]
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