LOGICLESS NONSTANDARD ANALYSIS: AN AXIOM SYSTEM

ABHIJIT DASGUPTA

We give an axiomatic framework for getting full elementary extensions such as ultrapowers. From five axioms, all properties of a nonstandard extension are derived in a rather algebraic manner, without the use of any logical notions such as formulas or satisfaction. For example, when applied to the real number system, it provides a complete framework for working with hyperreals. This has possible pedagogical and expository applications as presented in, e.g., [2, 3], but we avoid use of special logical axioms such as the transfer axiom of [2, 3].

Terminology. An *n*-ary partial function f on a set X is a function whose domain is a subset of X^n and whose range is a subset of X (here $n \in \omega$).

For n > 0 and $1 \le k \le n$, let $P_k^{X,n}$ be the k-th n-ary projection function on X, i.e. the total function $P_k^{X,n} \colon X^n \to X$ satisfying $P_k^{X,n}(x_1, \ldots, x_n) = x_k$. For $a \in X$, $C_a^{X,n} \colon X^n \to X$ is the n-ary constant function taking the value a. We let f, g, h, etc, denote partial functions.

The Axioms. Let $A \subset B$ be non-empty sets and suppose that for each partial function f on A there is associated a partial function *f on B with the same arity. We refer to *f as the transform of f. The five axioms are:

- The transform preserves projection functions: *P^{A,n}_k = P^{B,n}_k.
 The transform preserves constant functions: For any a ∈ A, *C^{A,n}_a = C^{B,n}_a.
- (3) The transform preserves compositions: $(f \circ g) = f \circ g$, where f and g are partial functions on A. (Similarly for more general forms of composition.)
- (4) If dom(f) is itself a partial function, say dom(f) = g, then dom(*f) = *g.
- (5) If dom(f) is finite then *f = f.

Suppose these axioms are satisfied and fix an element $a \in A$. For each relation R on A, identify R with the partial constant function f_R having domain R and taking the constant value a, and let R be defined as the domain of f_R .

MetaTheorem. Let L_A be the language which consists of all relations and functions on A, and let \mathfrak{A} be the structure over A where each symbol of L_A is interpreted as itself, and \mathfrak{B} the structure over B where each symbol of L_A is interpreted as its transform. Under the axioms, $\mathfrak{A} \preccurlyeq \mathfrak{B}$, i.e. \mathfrak{A} is an elementary substructure of \mathfrak{B} .

References

- [1] Goldblatt, R. Lectures on the Hyperreals, Springer, 1998.
- [2] Keisler, H. J. Elementary Calculus: An Approach Using Infinitesimals, Online Edition, 2000.
- [3] Keisler, H. J. Foundations of Infinitesimal Calculus, Online Edition, 2007.

UNIVERSITY OF DETROIT MERCY, 4001 W. MCNICHOLS RD, DETROIT, MI 48221, U.S.A.

E-mail address: abhijit.dasgupta@udmercy.edu