COUNTING INFINITE POINT-SETS

MARCO FORTI

[Joint research with Mauro Di Nasso.]

We axiomatize a notion of size for collections (*numerosity*) that satisfies the five *common notions* of Euclid's Elements, including the Aristotelian principle that "the whole is greater than the part", under the natural Cantorian definitions of sum, product, and ordering (see [1, 2, 3]). These numerosities turn out to have a much better arithmetic than cardinalities, included as they are in the positive part of a discrete (partially) ordered ring. Therefore equinumerosity cannot be identified with equipotency.

Focusing on finite dimensional point-sets, *i.e.* sets of tuples of points from a given "line" \mathcal{L} , we only postulate that natural "geometric" bijections are numerosity-preserving, *inter alia* all biunique "support preserving" transformations of tuples. We thus obtain that the numerosities are a positive subsemiring \mathfrak{N} of the quotient ring $\mathfrak{R} = \mathbb{Z}[[\mathcal{T}]]/\mathfrak{p}$ of the powerseries ring over a set \mathcal{T} of indeterminates of size $|\mathcal{L}|$, modulo a suitable prime ideal \mathfrak{p} . We name "Euclidean" such ideals, as well as the corresponding ultrafilters over $\kappa = |\mathcal{L}|$. The ring \mathfrak{R} is then isomorphic to a ring of hyperintegers, namely the ultrapower $\mathbb{Z}_{\mathcal{U}_{\mathfrak{p}}}^{\kappa}$, where $\mathcal{U}_{\mathfrak{p}}$ is the ultrafilter corresponding to \mathfrak{p} .

The existence of "Euclidean" ultrafilters on an arbitrary cardinal κ is problematic, and we deal here with three particular cases, leaving the general question to further investigation:

(1) A countable line \mathcal{L} . Then the numerosities can be taken to be a cut in the ultrapower $\mathbb{N}_{\mathcal{U}}^{\mathbb{N}}$, and for \mathcal{U} ultrafilter on \mathbb{N} one has

 \mathcal{U} Ramsey $\Rightarrow \mathcal{U}$ Euclidean $\Rightarrow \mathcal{U}$ P-point.

- (2) The ordinary line \mathbb{R} . Then the countable numerosities can be taken as above, provided that one assume $\mathfrak{c} < \aleph_{\omega}$, but we conjecture that no Euclidean ultrafilter on an uncountable cardinal can provide linearly ordered uncountable numerosities.
- (3) Countable point-sets over an arbitrary line \mathcal{L} . Then the numerosities can be taken as above, but the existence of the Euclidean ultrafilter \mathcal{U} over $\kappa = |\mathcal{L}|$ such that $\mathbb{Z}_{\mathcal{U}}^{\kappa} \approx \mathbb{N}_{\mathcal{U}}^{\mathbb{N}}$ requires supplementary, although not too strong, set theoretic assumptions, *e.g.* the Singular Cardinal Hypothesis plus \Box_{κ} for each singular cardinal κ of countable cofinality.

References

- V. BENCI, M. DI NASSO Numerosities of labelled sets: a new way of counting, Adv. Math. 173 (2003), 50–67.
- [2] V. BENCI, M. DI NASSO, M. FORTI An Aristotelian notion of size, Ann. Pure Appl. Logic 143 (2006), 43–53.
- [3] V. BENCI, M. DI NASSO, M. FORTI An Euclidean measure of size for mathematical universes, *Logique et Analyse* 50 (2007).

(Marco Forti) DIPART. DI MATEMATICA APPLICATA "U. DINI", UNIVERSITÀ DI PISA, ITALY.

E-mail address: forti@dma.unipi.it

(Mauro Di Nasso) Dipart. di Matematica "L. Tonelli", Università di Pisa, Italy.

E-mail address: dinasso@dm.unipi.it