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But not

• large cardinals (Itay Neeman),
• dynamics = algebra = combinatorics

(Vitaly Bergelson and Neil Hindman),
• topology (Boban Veličković),
• measure theory (David Fremlin)
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What’s left?

• Characterizations of ultrafilters and re-
lated structures,

• Connection with the Axiom of Choice,
• Generic (and other) ultrafilters in forc-

ing,
• Special ultrafilters (P-points, Q-points,

selectives),
• Connections with cardinal characteris-

tics,
• Applications in infinite combinatorics,
• Ultrafilters as pathological examples (un-

determined games, non-measurable sets),
• Ultrafilters and determinacy,
• Cofinality of ultrapowers, pcf theory.
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What is an ultrafilter?

Very elementary set theory: ∪, ∩, etc.
Algebraic structure of 2X induced by alge-
braic structure (all operations) on 2 = {0, 1}.
Homomorphisms 2X → 2Y amount to Y -
indexed families of ultrafilters on X .
In particular, an ultrafilter on X is a homo-
morphism 2X → 2.

More: Homomorphism nX → n for any fi-
nite n.

Less: Suffices to preserve operations of ≤ 2
arguments.
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Preserve operations of ≤ n + 1 arguments
=⇒
Preserve relations of ≤ n + 1 arguments
=⇒
Preserve operations of ≤ n arguments.

A map f : 2X → 2 preserves binary rela-
tions iff f−1{1} is a maximal linked family.
Existence of these in all nondegenerate Boolean
algebras is weaker than existence of ultrafil-
ters there (BPI), but still needs some choice.
Open: Do maximal linked families follow
from the assumption that every set can be
linearly ordered?



Any map 3X → 3 that respects all unary
operations on 3 (as canonically extended to
3X) is given by an ultrafilter. (Lawvere)



Among all the weak forms of AC in “Con-
sequences of the Axiom of Choice” (Howard
and Rubin), BPI has the most equivalent
forms listed.
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Special Ultrafilters

An ultrafilter U on ω is selective if every
function on ω becomes one-to-one or con-
stant when restricted to some set in U .

U is a P-point if every function on ω be-
comes finite-to-one or constant when restricted
to some set in U .

Such ultrafilters can be proved to exist if we
assume CH (or certain weaker assumptions),
but not in ZFC alone.
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finitely many pieces has a homogeneous set
in U . (Kunen)
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If U is selective and if [ω]ω is partitioned into
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then there is a homogeneous set in U .

If U is merely a P-point, then you get H ∈
U with a weaker homogeneity property: There
exists f : ω → ω such that one piece of the
partition contains all those infinite subsets
{x0 < x1 < . . . } for which f (xn) ≤ xn+1

for all n.
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Let U and V be non-isomorphic selective ul-
trafilters, and let [ω]ω be partitioned into an
analytic piece and a co-analytic piece. Then
there exist A ∈ U and B ∈ V such that one
piece of the partition contains all the sets
chosen alternately from A and B, i.e., all
{a0 < b0 < a1 < b1 < . . . } with all ai ∈ A
and all bi ∈ B.
The same goes for non-nearly-coherent P-
points.
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Near Coherence

Two filters are coherent if their union gen-
erates a filter.
They are nearly coherent if their images
under some finite-to-one f are coherent. “Im-
age” means

f (F) = {X : f−1(X) ∈ F}.
For ultrafilters, near-coherence means f (U) =
f (V) for some finite-to-one f .
This is an equivalence relation on the non-
principal ultrafilters on ω.
The number of equivalence classes can be 1,

can probably be 2, can be 22ℵ0, and cannot
be any other infinite cardinal.
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Ultrafilters, Near-Coherence
and Cardinal Characteristics

Definitions of some cardinal characteristics
of the continuum.
u is the minimum number of sets to generate
a non-principal ultrafilter on ω.
d is the minimum number of functions ω →
ω to dominate all such functions.

Any non-principal ultrafilter on ω generated
by < d sets is a P-point. (Ketonen)
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The following are equivalent:

• All non-principal (ultra)filters on ω are
nearly coherent.

• Every non-principal ultrafilter on ω has
a finite-to-one image generated by < d
sets.

• The ultrapowers of ω by non-principal
ultrafilters on ω all have cofinality > u.
(Mildenberger)

• The ideal of compact operators on Hilbert
space is not the sum of two properly
smaller ideals.
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Ultrafilters are Bad Sets

A non-principal ultrafilter U on ω can be
viewed as a subset of the space of 2ω of bi-
nary sequences, and thus, via binary expan-
sions, as a subset of [0, 1].

As such, it is not Lebesgue measurable (Sierpiński)
and does not have the Baire property.

It follows that the existence of such U con-
tradicts the axiom of determinacy. But there’s
a more direct contradiction.
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An Undetermined Game

Let U be a non-principal ultrafilter, and con-
sider the following game in which two play-
ers move alternately for ω moves.
Each move consists of “taking” finitely many
elements of ω that neither player has previ-
ously taken.
A player wins if, after all ω moves, the set
of numbers he has taken is in U .

Neither player has a winning strategy in this
game.
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Determinacy Produces Ultrafilters

Although AD prohibits non-principal ultra-
filters on ω, it produces non-principal ultra-
filters on some other sets.
Martin’s ultrafilter on the Turing degrees is
generated by the cones

Cd = {x : d ≤T x}.
It follows that the club filter on ℵ1 is an
ultrafilter.
So are the restrictions of the club filter on
ℵ2 to the sets

{α : cf(α) = ℵ0} and {α : cf(α) = ℵ1}.
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AD gives explicit ultrafilters on many other
cardinals.
All of these ultrafilters are countably com-
plete, because all ultrafilters on ω are prin-
cipal.
Ultrapowers with respect to these ultrafil-
ters are essential in the combinatorial theory
of cardinals under AD, and even in descrip-
tive set theory.
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Forcing

In the Boolean-valued approach to forcing,
generic ultrafilters (in complete Boolean al-
gebras B) play two roles.

• They amount to V -complete homomor-
phisms B → 2 and thus let us convert
B-valued models to 2-valued ones.

• They play a key role in the formaliza-
tion of what is true in V B.
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Non-generic Ultrafilters and
Forcing

When forcing over models of ZFC, generic-
ity is not needed to turn V B into a 2-valued
model. Any ultrafilter in B will do — even
one in the ground model. (Vopěnka)
Any statement with truth-value 1 in V B will
be true in the 2-valued quotient.
But there may be new ordinals in the 2-
valued model produced by this process.
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Vopěnka’s Theorem

Every set is in a generic extension of HOD,
the universe of hereditarily ordinal definable
sets.
So (in ZFC) every set is obtainable from or-
dinals and ultrafilters (in Boolean algebras).
Intuition: Ultrafilters provide a second fun-
damental building block, after ordinals, for
the universe of sets.


