Prova scritta – 15 Febbraio 2022

Non è consetito l'uso di telefoni cellulari, tablet, smartwatch (né di altri dispositivi connessi), né di calcolatrici, libri, dispense, appunti...

Nome:

Cognome:

Parte 1. (Domande a risposta aperta. Sarà valutata solo la risposta finale.)

Esercizio 1. Con B_R indichiamo la palla di raggio R > 0 e centro (0,0) in \mathbb{R}^2

$$B_R = \left\{ (x, y) : x^2 + y^2 < R^2 \right\}.$$

Consideriamo gli insiemi

(A)
$$\Omega_A = \partial B_1 \cup \{(0,0)\}$$
; (B) $\Omega_B = B_1 \cap \{(0,0)\}$;

(B)
$$\Omega_B = B_1 \cap \{(0,0)\}$$

(C)
$$\Omega_C = \overline{B}_1 \cup \{(0,0)\};$$
 (D) $\Omega_D = \overline{B}_1 \setminus \{(0,0)\};$

$$(D) \quad \Omega_D = \overline{B}_1 \setminus \{(0,0)\}$$

(E)
$$\Omega_E = \overline{B}_2 \setminus B_1$$
;

$$(F) \quad \Omega_F = B_2 \setminus \overline{B}_1 \ .$$

Gli insiemi seguenti sono compatti:

Esercizio 2. Trovare la frontiera dell'insieme

$$D = \Big([0,1] \times [0,1]\Big) \cap \Big\{(x,y) \ : \ y \ge x\Big\} \setminus \big\{(0,0)\big\}$$

 $\partial D =$

Esercizio 3. Sviluppare fino al secondo ordine in (0,0) la funzione $\frac{\cos(y+x^2)}{1-\sin(x-y)}$.

$$\frac{\cos(y+x^2)}{1-\sin(x-y)} =$$

Esercizio 4. Siano
$$\gamma(t) = \left(\sqrt{1+2t} - 1, \sqrt{1-3t} - 1\right)$$
 $e F(x,y) = \frac{e^{x+2y^2} - e^{y+x^2}}{1+2xy}$.

$$\left. \frac{d}{dt} \right|_{t=0} F(\gamma(t)) =$$

Esercizio 5. Calcolare la matrice hessiana H della funzione $F(x,y) = \frac{e^{x^2} + e^{2y^2}}{1 + 2xy}$ in (0,0). Dire se H è definita positiva, semidefinita positiva, definita negativa, semidefinita negativa, indefinita.

$$H = La matrice H \grave{e}$$
:

Esercizio 6. Calcolare l'integrale della funzione $F(x,y) = e^{1-x^2-y^2}$ sulla palla B_1 . $\iint_{B_1} F(x,y) dx dy =$

Esercizio 7. Siano $\alpha = (x^2 - xy + y^2) dx + x dy$ e γ la curva semplice chiusa e C^1 a tratti che parametrizza il bordo del quadrato $[0,1] \times [0,1]$ in senso antiorario. Calcolare $\int_{\gamma} \alpha =$

Parte 2. Saranno valutate sia la risposta finale che lo svolgimento degli esercizi.

Esercizio 8. Consideriamo la funzione

$$F(x,y) = \frac{1}{3}x^3 - \frac{1}{2}x^2y + y^2.$$

Trovare (se esistono!) i punti critici di F in \mathbb{R}^2 e, studiando la matrice Hessiana, dire se si tratta di punti di massimo relativo, di minimo relativo oppure di punti di sella.

Esercizio 9. Trovare i massimi ed i minimi della funzione

$$F(x, y, z) = x - y + z,$$

sull'in sieme

$$D = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{1}{2}x^2 + \frac{1}{2}y^2 + z^2 \le 5 \right\}.$$

Esercizio 10. Consideriamo la funzione

$$F(x,y) = \frac{xy}{\sqrt{x^2 + y^2} \left(x^2 + y^2 + \frac{y^2}{x^2 + y^2}\right)} .$$

 $Calcolare \lim \sup_{(x,y) \to (0,0)} F(x,y) \quad e \lim \inf_{(x,y) \to (0,0)} F(x,y) \ e \ dire \ se \ esiste \ il \ limite \lim_{(x,y) \to (0,0)} F(x,y).$

Esercizio 11. Consideriamo la funzione $F: \mathbb{R}^2 \to \mathbb{R}$ definita come

$$F(0,0) = 0$$
 e $F(x,y) = \frac{xy^2}{(x^2 + y^2)^n}$ se $(x,y) \neq (0,0)$,

dove $n \ge 1$ è un numero intero.

- (1) Per quali valori del parametro $n \geq 1$ la funzione è derivabile in (0,0).
- (2) Per quali valori del parametro $n \ge 1$ la funzione F è continua in (0,0).
- (3) Per quali valori del parametro $n \ge 1$ la funzione F è differenziabile in (0,0).