HARMONIC FUNCTIONS WITH CONTINUOUS BOUNDARY DATUM

Teorema 1. Let Ω be a bounded open set in \mathbb{R}^d satisfying the exterior ball condition. Let $g : \partial \Omega \to \mathbb{R}$ be a continuous function. Then, there is a unique continuous function

$$u:\overline{\Omega}\to\mathbb{R}$$
, $u\in C(\overline{\Omega})\cap C^2(\Omega)$,

such that

$$\Delta u = 0$$
 in Ω and $u = g$ on $\partial \Omega$.

Proof. For every $\varepsilon > 0$ we define the function

$$g_{\varepsilon}(x) = \min\left\{g(y) + \frac{1}{\varepsilon}|x - y| : y \in \partial\Omega\right\}.$$

Step 1. For every $x \in \partial \Omega$, we have that $g_{\varepsilon}(x) \leq g(x)$. Indeed,

$$g_{\varepsilon}(x) = \inf \left\{ g(y) + \frac{1}{\varepsilon} |x - y| : y \in \partial \Omega \right\} \le g(x) + \frac{1}{\varepsilon} |x - x| = g(x).$$

Step 2. $g_{\varepsilon} \to g$ uniformly on $\partial \Omega$. Let $\varepsilon > 0$ be fixed. Since g is continuous, for every $x \in \partial \Omega$ there is a point $y_x \in \partial \Omega$ that realizes the inf in the right hand side of the definition of $g_{\varepsilon}(x)$, that is

$$g_{\varepsilon}(x) = g(y_x) + \frac{1}{\varepsilon}|y_x - x|.$$

Now, since

$$g(y_x) + \frac{1}{\varepsilon}|y_x - x| = g_{\varepsilon}(x) \le g(x),$$

we have that

$$|y_x - x| \le \varepsilon M$$

where

$$M := \max_{\partial \Omega} g - \min_{\partial \Omega} g \,.$$

As a consequence, for every $x \in \partial \Omega$,

$$g_{\varepsilon}(x) - g(x)| = g(x) - g_{\varepsilon}(x) \le g(x) - g(y_x) \le \omega(\varepsilon M),$$

where

$$\omega: (0, +\infty) \to (0, +\infty)$$

is the (uniform) modulus of continuity of g on $\partial\Omega$, that is:

$$\omega(r) := \sup \left\{ |g(x) - g(y)| : x, y \in \partial\Omega, |x - y| \le r \right\}.$$

Step 3. For every fixed $\varepsilon > 0$, the function $g_{\varepsilon} : \partial \Omega \to \mathbb{R}$ is Lipschitz continuous. In fact, given $x_1, x_2 \in \partial \Omega$ let $y_1, y_2 \in \partial \Omega$ be such that

$$g_{\varepsilon}(x_i) = g(y_i) + \frac{1}{\varepsilon} |y_i - x_i| = \min\left\{g(y) + \frac{1}{\varepsilon} |y - x_i| : y \in \partial\Omega\right\},\$$

for i = 1, 2. Then, we have

$$g_{\varepsilon}(x_{2}) - g_{\varepsilon}(x_{1}) = \left(g(y_{2}) + \frac{1}{\varepsilon}|y_{2} - x_{2}|\right) - \left(g(y_{1}) + \frac{1}{\varepsilon}|y_{1} - x_{1}|^{2}\right)$$

$$= \min\left\{g(y) + \frac{1}{\varepsilon}|y - x_{2}| : y \in \partial B_{r}\right\} - \left(g(y_{1}) + \frac{1}{\varepsilon}|y_{1} - x_{1}|\right)$$

$$\leq \left(g(y_{1}) + \frac{1}{\varepsilon}|y_{1} - x_{2}|\right) - \left(g(y_{1}) + \frac{1}{\varepsilon}|y_{1} - x_{1}|\right)$$

$$\leq \frac{1}{\varepsilon}\left(|y_{1} - x_{2}| - |y_{1} - x_{1}|\right)$$

$$\leq \frac{1}{\varepsilon}|x_{2} - x_{1}|.$$

Step 4. Existence. For every $\varepsilon > 0$, there is a harmonic function

$$u_{\varepsilon} \in H^1(\Omega)$$

which solves

$$\Delta u_{\varepsilon} = 0 \quad \text{in} \quad \Omega , \qquad u_{\varepsilon} = g_{\varepsilon} \quad \text{su} \quad \partial \Omega$$

in the sense that u_{ε} is the minimizer of the variational problem

$$\min\Big\{\int_{\Omega}|\nabla\psi|^2\,dx\ :\ \psi\in H^1(\Omega),\ \psi-\widetilde{g}_{\varepsilon}\in H^1_0(\Omega)\Big\},$$

 $\widetilde{g}_{\varepsilon} \in H^1(\Omega)$ being any Lipschitz extension of g_{ε} to \mathbb{R}^d . Moreover, we know that the function

$$\widetilde{u}_{\varepsilon}:\overline{\Omega} \to \mathbb{R}$$
, $\widetilde{u}_{\varepsilon}(x) = \begin{cases} u_{\varepsilon}(x) & \text{if } x \in \Omega, \\ g_{\varepsilon}(x) & \text{if } x \in \partial\Omega, \end{cases}$

is continuous on $\overline{\Omega}$.

The sequence $g_{\varepsilon} : \partial \Omega \to \mathbb{R}$ is increasing towards g as $\varepsilon \to 0$. As a consequence, by the strong maximum principle, also the family of functions $\widetilde{u}_{\varepsilon} : \overline{\Omega} \to \mathbb{R}$ is increasing with respect to the parameter ε . Moreover, since

$$\|\widetilde{u}_{\varepsilon} - \widetilde{u}_{\delta}\|_{L^{\infty}(\Omega)} \le \|g_{\varepsilon} - g_{\delta}\|_{L^{\infty}(\partial\Omega)}$$

we have that $\widetilde{u}_{\varepsilon}: \overline{\Omega} \to \mathbb{R}$ converges uniformly on $\overline{\Omega}$ to a continuous function

 $u:\overline{\Omega}\to\mathbb{R}$

such that u = g on $\partial \Omega$. Finally, since u satisfies the mean value property (being a uniform limit of functions satisfying the mean-value property), we have that u is harmonic (and smooth) in Ω .

Step 5. Uniqueness. Suppose that there are two continuous functions $u, v : \overline{\Omega} \to \mathbb{R}$ such that

 $\Delta u = 0 \quad \text{in} \quad \Omega \qquad \text{and} \qquad u = g \quad \text{on} \quad \partial \Omega \,,$ $\Delta v = 0 \quad \text{in} \quad \Omega \qquad \text{and} \qquad v = g \quad \text{on} \quad \partial \Omega \,.$

For every t > 0 consider the family of functions

$$v_t: \overline{\Omega} \to \mathbb{R}$$
, $v_t(x) = v(x) + t$

Since u and vare continuous and bounded on $\overline{\Omega}$, for t large enough we have that

(1)
$$v_t(x) \ge u(x)$$
 for every $x \in \overline{\Omega}$.

Let t_* be defined as

$$t_* = \inf \left\{ t \in \mathbb{R} : (1) \text{ holds for } v_t \right\}.$$

We notice that:

• $t_* \ge 0$. In fact, if (1) holds for t, then

 $t + g(x) = v_t(x) \ge u(x) = g(x)$ for every $x \in \partial\Omega$,

so necessarily $t \ge 0$.

• t_* is a minimum, that is,

(2)

$$v_{t_*}(x) \ge u(x)$$
 for every $x \in \overline{\Omega}$.

• if $t < t_*$, then there is a point $x \in \overline{\Omega}$ such that

$$v_{t_*}(x) < u(x).$$

In particular, the last point implies that if t_n is a sequence such that

$$t_n < t_a st$$
 and $\lim_{n \to +\infty} t_n = t_*$,

then there is a sequence of points $x_n \in \overline{\Omega}$ such that

$$t_n + v(x_n) = v_{t_n}(x_n) < u(x_n)$$

Since Ω is bounded, up to extracting a subsequence, we can find a point $x_* \in \overline{\Omega}$ such that $x_n \to x_*$ as $n \to +\infty$. Now, the continuity of u and v implies that

$$t_* + v(x_*) \le u(x_*).$$

which together with (2) implies that

$$t_* + v(x_*) = u(x_*)$$

We are now ready to prove that $t_* = 0$. We suppose by contradiction that $t_* > 0$ and consider two cases.

Case 1. $x_* \in \partial \Omega$. Since v = u = g on $\partial \Omega$, we get

$$t_* + v(x_*) = t^* + g(x_*) > g(x_*) = u(x_*)$$

which is a contradiction.

Case 2. $x_* \in \Omega$. In this case we have that u and v_{t_*} are two harmonic functions such that

 $v_{t_*}(x_*) = u(x_*)$ and $v_{t_*} \ge u$ in Ω .

By the strong maximum principle, we get that

$$v_{t_*} \equiv u$$
 in Ω_*

where Ω_* is the connected component of Ω containing x_* . Since u and v_{t_*} are continuous up to the boundary, we get that $v_{t_*} \equiv u \quad \text{on} \quad \partial \Omega_*$,

so there is a boundary point $y_* \in \partial \Omega_* \subset \partial \Omega$ such that

$$t_* + v(y_*) = u(y_*).$$

This is impossible by *Case 1*. Thus, we have a contradiction, so we get that

which implies that

Analogously

which proves that the solution u is unique.

The strong maximum principle

Teorema 2. Let Ω be a connected open set in \mathbb{R}^d . Suppose that $u : \Omega \to \mathbb{R}$ and $v : \Omega \to \mathbb{R}$ are two smooth harmonic functions in Ω such that

 $u \ge v \quad in \quad \Omega.$

- Then, one of the following holds:
 - (1) u(x) > v(x) for every $x \in \Omega$;
 - (2) $u \equiv v \text{ in } \Omega$.

Proof. Suppose that (1) does not hold. Then, there is a point $x_* \in \Omega$ such that $u(x_*) = v(x_*)$. Consider the coincidence set

$$\mathcal{C} := \{ x \in \Omega : u(x) = v(x) \}.$$

We know that $x_* \in \mathcal{C}$, so \mathcal{C} is non-empty. Let $y \in \mathcal{C}$. By the mean value property, we have that for every ball $B_r(y) \subset \Omega$ it holds

$$0 = u(y) - v(y) = \frac{1}{|B_r|} \int_{B_r(y)} (u(x) - v(x)) dx$$

Since $u - v \ge 0$ this implies that

$$u \equiv v$$
 in $B_r(y)$.

Thus, the coincidence set C is open. On the other hand, since u and v are continuous C is also relatively closed. Since Ω is connected, this implies that $C = \Omega$.

 $t_* = 0,$ $v \ge u \quad \text{in} \quad \overline{\Omega}.$ $u \ge v \quad \text{in} \quad \overline{\Omega},$

 $v \equiv 111 \quad 32$,

HARMONIC MEASURES

Let $\Omega \subset \mathbb{R}^d$ be a bounded open set satisfying the exterior ball condition and let the point $X_0 \in \Omega$ be fixed. We define the operator \mathcal{L}_X on the space of continuous functions on $\partial\Omega$,

$$\mathcal{L}_X: C(\partial\Omega) \to \mathbb{R},$$

as follows. Given a function

$$g \in C(\partial \Omega)$$

we consider the harmonic extension $h \in C(\overline{\Omega}) \cap C^2(\Omega)$ solution to

 $\Delta h = 0$ in Ω , h = g on $\partial \Omega$,

and we define

$$\mathcal{L}_X(g) = h(X).$$

We notice that:

• the operator $\mathcal{L}_X : C(\partial \Omega) \to \mathbb{R}$ is linear, that is,

$$\mathcal{L}_X(g_1 + g_2) = \mathcal{L}_X(g_1) + \mathcal{L}_X(g_2) \quad \text{for every} \quad g_1, g_2 \in C(\partial\Omega),$$

and

 $\mathcal{L}_X(c g) = c \mathcal{L}_X(g)$ for every $g \in C(\partial \Omega)$ and every $c \in \mathbb{R}$.

• the operator $\mathcal{L}_X : C(\partial \Omega) \to \mathbb{R}$ is monotone, that is, if

 $g_1, g_2 \in C(\partial \Omega)$ such that $g_1 \leq g_2$ on $\partial \Omega$,

then, by the (weak) maximum principle, the harmonic extensions h_1 and h_2 satisfy

$$h_1 \leq h_2$$
 in $\overline{\Omega}$

and as a consequence

$$\mathcal{L}_X(g_1) = h_1(X) \le h_2(X) = \mathcal{L}_X(g_2)$$

By the Riesz representation theorem, there is a positive Borel measure on $\partial\Omega$ such that

$$\int_{\partial\Omega} g(y) \, d\mu_X(y) = \mathcal{L}_X(g) \quad \text{for all} \quad g \in C(\partial\Omega).$$

Moreover, μ_X is a probability measure. In fact, if we take the boundary datum

$$g \in C(\partial \Omega)$$
, $g \equiv 1$ on $\partial \Omega$,

then its harmonic extension is the constant function

$$h \in C(\overline{\Omega})$$
, $h \equiv 1$ on $\overline{\Omega}$.

which gives (by the definition of \mathcal{L}_X) that

$$\mathcal{L}_X(1) = h(X) = 1.$$

This implies:

$$\mu_X(\partial\Omega) = \int_{\partial\Omega} 1 \, d\mu_X = \mathcal{L}_X(1) = 1.$$

Definizione 3. The measure μ_X is called harmonic measure with pole at X.

Osservazione 4. In some special cases the harmonic measure can be computed explicitly. For instance, if Ω is the ball B_R , then the Poisson's formula implies that for every $X \in B_R$ the harmonic measure μ_X is absolutely continuous with respect to the surface measure \mathcal{AH}^{d-1} on ∂B_R :

$$\mu_X = \rho_X \, d\mathcal{H}^{d-1},$$

and its density function ρ_X is

$$\rho_X : \partial B_R \to \mathbb{R}, \qquad \rho_X(Y) = \frac{R^2 - |X|^2}{d\omega_d R} \frac{1}{|X - Y|^d} \quad \text{for all} \quad Y \in \partial B_R$$

Esercizio 5. Let Ω be a bounded open set in \mathbb{R}^d and let

$$u_{\varepsilon} \in C^2(\Omega) \cap L^{\infty}(\Omega), \quad \varepsilon > 0,$$

be a family of harmonic functions,

 $\Delta u_{\varepsilon} = 0 \quad in \quad \Omega \,,$ monotone (decreasing or increasing) in ε and bounded in $L^{\infty}(\Omega)$. Then, the pointwise limit $u_0(X) = \lim_{\varepsilon \to 0} u_\varepsilon(X) ,$

exists, satisfies $u_0 \in C^2(\Omega) \cap L^{\infty}(\Omega)$, and is a harmonic function in Ω .

Osservazione 6. In the next exercice, given two points $X, Y \in \mathbb{R}^2$, we use the notation:

$$(X,Y) = \left\{ (1-t)X + tY : 0 < t < 1 \right\};$$
$$[X,Y] = \left\{ (1-t)X + tY : 0 \le t \le 1 \right\}.$$

Esercizio 7. Let Ω be the square $\Omega := (0,1) \times (0,1)$ with vertices $A = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, C = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, and D = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$

Prove that there is a function

 $\begin{aligned} u:\overline{\Omega}\to\mathbb{R}\\ \text{which is continuous on }\overline{\Omega}\setminus\left\{A,B,C,D\right\} \text{ and which solves the PDE}\\ \int\Delta u=0 \quad \text{in } \quad \Omega \end{aligned}$

$$\begin{cases} \Delta u = 0 & in & \Omega, \\ u = 0 & on & (A, B) & and & (C, D), \\ u = 1 & on & (B, C) & and & (A, D). \end{cases}$$

Prove that, at the vertex A = (0,0), u can be written in polar coordinates as follows:

$$u(r,\theta) = \frac{1}{\pi}\theta + O(r^2)$$

Precisely:

(a) prove that

$$h(r,\theta) = u(r,\theta) - \frac{1}{\pi}\theta$$

is harmonic in $B_1 \cap Q$ and has zero boundary datum on $[A, B] \cup [A, D]$;

(b) prove that there is a constant C > 0 such that

$$|h(r,\theta)| \le Cr^2 \quad in \quad B_1 \cap Q$$