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Existence of harmonic functions via Perron’s method

Let Ω ⊂ Rd be a bounded open set and let φ : ∂Ω → R be a continuous function. In the next theorem we
will use the Perron’s method to prove the existence of a function u : Ω→ R solving the problem

∆u = 0 in Ω , u = φ on ∂Ω .

The argument is self-contained and only makes use of the Poisson’s formula for balls in Rd. An essential element
of the proof are the boundary barriers from Lemma 2.

In what follows, given an open set Ω and a boundary datum φ as above, we define the following family of
superharmonic functions

(1) A :=
{
w : Ω→ R : w ∈ C(Ω) , w ≥ φ on ∂Ω , ∆w ≤ 0 in Ω

}
,

where the inequality

∆w ≤ 0 in Ω

is intended in viscosity sense.

We recall that ∆w ≤ 0 in Ω in viscosity sense means that if a smooth function P : Ω → R touches w from
below at some point X ∈ Ω (that is, P ≥ w in Ω and P (X) = w(X)), then ∆P (X) ≥ 0.

Teorema 1 (Existence of viscosity solutions via the Perron’s method). Let Ω be a bounded open set admitting
an exterior ball at every point on the boundary. Let φ : ∂Ω→ R be a continuous function and let A be the class
from (1). Then, the function

u : Ω→ R,
defined as

u(X) = inf
{
w(X) : w ∈ A

}
for every X ∈ Ω,

has the following properties:

(a) ∆u = 0 in Ω in viscosity sense;
(b) u = φ on ∂Ω;
(c) u is continuous on Ω.

Proof. We proceed in two steps.

Step 1. Harmonicity of u: proof of (a).

We first notice that the functions w are bounded from below. Indeed, let u : Ω→ R be a continuous function,
which is smooth in Ω and such that

u < φ on ∂Ω and ∆u < 0 in Ω.

Then, for every w ∈ A, we have that:

• w is superharmonic in viscosity sense;
• u is subharmonic and smooth;
• w > u on ∂Ω.

This implies that

u ≤ w in Ω.

We fix a ball

Br ⊂ Ω.

We will show that u is harmonic in Br. We fix a dense countable set

Q ⊂ ∂Br.
and we select a sequence of functions wn ∈ A such that:

u(q) = lim
n→+∞

wn(q) for every q ∈ Q .

Moreover, by replacing wn with w1 ∧ w2 ∧ · · · ∧ wn ∈ A , we can also suppose that:

the sequence of functions wn : Ω→ R is decreasing.
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For every n we consider the function

hn : Br → R
which is continuous on Br, harmonic in Br and is such that

hn = wn on ∂Br.

We notice that by the maximum principle

u ≤ hn ≤ wn in Br.

We next claim that the function

vn : Ω→ R , vn(x) =

{
hn(x) if x ∈ Br ,
wn(x) if x ∈ Ω \Br , x

is in A. Indeed, suppose that a polynomial P is touching vn from below in a point X0:

• If X0 ∈ Br, then P touches from below the harmonic function hn at X0 and thus ∆P (X0) ≤ 0.
• If X0 ∈ Ω\Br, then P touches from below also the function wn at X0, and so we get again ∆P (X0) ≤ 0.

This proves that vn ∈ A. We now notice that hn is a monotone sequence of harmonic functions such that

u ≤ hn ≤ w1 for every n ≥ 1.

In particular, the pointwise limit

h(x) = lim
n→+∞

hn(x)

exists and is finite. Now, by the monotone convergence theorem, we have that

lim
n→+∞

∫
Br

hn(x)∆ψ(x) dx =

∫
Br

h(x)∆ψ(x) dx,

for every ψ ∈ C∞c (Br). This implies that h is harmonic in Br.

Notice that, since

u ≤ hn in Br,

for every n ≥ 1, by the definition of u, we have that

u ≤ h in Br.

Suppose that in some point X ∈ Br we have

u(X) < h(X).

By the definition of u, there is a function w ∈ A such that

w(X) < h(X).

Since w(X) < h(X) ≤ hn(X), we have that

w(X) < hn(X).

But then, by the maximum principle, there is a boundary point Y ∈ ∂Br such that

w(Y ) < hn(Y ).

By the continuity of w and hn, and by the density of Q, we can find q ∈ Q such that

w(q) < hn(q),

but this is impossible by the choice of wn. Thus

h ≡ u in Br,

and so u is harmonic in Ω.

Step 2. u agrees with φ at the boundary: proof of (b).

Let X0 ∈ ∂Ω be fixed. By the definition of the class A we have that

φ(X0) ≤ w(X0) for all w ∈ A,
By taking the infimum over all w ∈ A, we get

φ(X0) = inf
w∈A

w(X0) ≤ u(X0).
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In order to show that

(2) φ(X0) = u(X0),

we argue by contradiction and we suppose that u(X∞) − φ(X∞) = ε > 0. By Lemma 2 there is a competitor
w ∈ A such that

u(X∞)− φ(X∞) ≤ w(X∞)− φ(X∞) < ε.

This is a contradiction and proves (2).

Step 3. Continuity of u up to the boundary: proof of (c).

Let X∞ ∈ ∂Ω be fixed. It is sufficient to show that given a sequence Xn ∈ Ω converging to X∞, we have

lim
n→+∞

u(Xn) = u(X∞).

We notice that, since all the functions w ∈ A are continuous on Ω and u = infA w, it holds

lim
n→+∞

u(Xn) ≤ u(X∞).

Suppose by contradiction that

lim
n→+∞

u(Xn) < u(X∞).

By the previous point

φ(X∞) = u(X∞).

so we have

lim
n→+∞

u(Xn) < φ(X∞).

Without loss of generality we can assume that there is a positive constant ε > 0 such that

φ(X∞) = 0 while u(Xn) < −ε for every n ≥ 1.

Let w be a competitor constructed in Lemma 2. Then, for every w ∈ A we have

w(X) ≤ w(X) for all X ∈ Ω.

As a consequence,

w(X) ≤ u(X) for all X ∈ Ω.

So, in particular,

−ε < w(X∞)− φ(X∞) = w(X∞) = lim
n→+∞

w(Xn) ≤ lim
n→+∞

u(Xn),

which is a contradiction. Thus, we have proved that

lim
n→+∞

u(Xn) = φ(X∞) = u(X∞),

which concludes the proof of (c) and of the theorem. �

Lemma 2 (Upper and lower barriers at boundary points admitting an exterior ball). Let Ω be a bounded open
set in Rd and let φ : ∂Ω→ R be a continuous function. Suppose that X0 ∈ Ω admits an exterior ball B at X0,
that is, an open ball in Rd such that Ω ∩B = {X0}. Then, for every ε > 0 there are continuous functions

u : Ω→ R and u : Ω→ R,

such that:

(3)


∆u > 0 in Ω;

u ≤ φ on ∂Ω;

0 ≤ φ(X0)− u(X0) ≤ ε;
and


∆u < 0 in Ω;

φ ≤ u on ∂Ω;

0 ≤ u(X0)− φ(X0) ≤ ε.

Proof. Without loss of generality we can suppose that φ(X0) = 0. We proceed in several steps.

Step 1. Choice of an exterior tangent ball. Suppose that B = BR(Y0) is the exterior ball at X0 ∈ Ω,

Ω ∩BR(Y0) = {X0}.
Let r > 0 be such that

|φ(X)| ≤ ε for every X ∈ ∂Ω ∩Br(X0).
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We now set

ρ :=
1

4
min{R, r},

and we consider the ball Bρ(Z0), where

Z0 = X0 + ρ
Y0 −X0

|Y0 −X0|
,

which is an exterior ball at X0 and is such that:

X0 ∈ ∂Bρ(Z0) , Bρ(Z0) ⊂ Rd \ Ω , B2ρ(Z0) ⊂ Br(X0).

Step 2. A radially increasing superharmonic function in every dimension. Consider the function

g : (0,+∞)→ (0,+∞) , g(r) = 1− r−d,
and let

G : Rd \ {0} → R
be defined as follows:

G(X) = 1− |X|−d = g(|X|).
We notice that by construction

G = 0 on ∂B1

while we can compute the Laplacian of G in polar coordinates r = |X| and θ = X/|X| as

∆G(X) =
1

rd−1
∂r
[
rd−1∂rg(r)

]
= − 1

rd−1
∂r

[
rd−1∂r

[
r−d
]]

=
d

rd−1
∂r
[
rd−1r−d−1

]
=

d

rd−1
∂r
[
r−2
]

=
−2d

rd−4
,

so in any dimension d ≥ 2 we have

∆G(X) < 0 for X ∈ Rd \ {0}.

Step 3. Construction of u and u. Let now C > 0 be a constant such that

C > ‖φ‖L∞(∂Ω)

and let
η : Rd → R

be defined as

η(X) :=


C
g(2)g

(
|X−Z0|

ρ

)
if |X − Z0| ≥ ρ,

0 if |X − Z0| ≤ ρ.
Then η has the following properties 

∆η < 0 in Rd \Bρ(Z0),

η ≡ 0 in Bρ(Z0),

η ≥ C in Rd \B2ρ(Z0).

By construction, we have that

−ε− η(X) ≤ φ(X) ≤ ε+ η(X) for every X ∈ ∂Ω.

Thus, the functions
u(X) := ε+ η(X) and u(X) := −ε− η(X)

satisfy the conditions in (3). �


