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Riemann mapping theorem for simply connected sets with smooth boundary

The Riemann mapping theorem states that for any simply connected open set Ω ⊂ C, Ω 6= C, there is a
biholomorphic map H : Ω→ B1. In this section we prove this theorem for simply connected sets Ω with smooth
boundaries. The proof follows the original idea of Riemann, which is based on a variational principle. We notice
that this proof also provides the up-to-the-boundary regularity of H, which turns out to be as smooth as ∂Ω.

Idea of the proof. The Riemann’s proof starts from the following observation. Suppose that we have a map

H : Ω→ B1,

which is a homeomorphism between Ω and B1, and a conformal map between Ω and B1. Suppose that H can
be written in the form

H(z) = zh(z),

for some holomorphic function h. Since

|H(z)| = 1 for all z ∈ ∂Ω,

we have that

|h(z)| = 1

|z|
for all z ∈ ∂Ω.

Assume that h can be written in the form

h = exp(u+ iv),

where u and v are real-valued functions and that L := u+ iv is holomorphic on Ω. Then u and v are harmonic
on Ω. Moreover, since

|h(z)| = eu(z),

we have that u should satisfy

u(z) = − ln |z| for all z ∈ ∂Ω.

Thus, u is the solution to

∆u = 0 in Ω , u = − ln |z| on ∂Ω.

In order to prove the Riemann mapping theorem, we invert this process. We start from the harmonic extension
defined from the above equation, we reconstruct H and we prove that it is a bijection between Ω and B1.

Teorema 1 (Riemann mapping theorem for smooth sets). Let Ω be a connected bounded open set in R2 whose
boundary ∂Ω is:

• Ck,α regular for some k ≥ 1 and α ∈ (0, 1);
• parametrized by a single closed Ck,α curve σ : [0, 1]→ R2 with |σ′(t)| > 0 for all t ∈ [0, 1].

Then, there is a map

H : Ω→ B1

such that:

(i) H : Ω→ R2 is Ck,α regular for some α ∈ (0, 1);
(ii) H is holomorphic on Ω;
(iii) H : Ω→ B1 is a homeomorphism;
(iv) the inverse H−1 : B1 → Ω is Ck,α regular on B1 and holomorphic on B1.

Proof. Without loss of generality we suppose that 0 ∈ Ω. We proceed in several steps.

Step 1. Construction of H. Let

u : Ω→ R
be a continuous function solution to

∆u = 0 in Ω , u(z) = − ln |z| on ∂Ω .

Since ∂Ω is Ck,α and since the boundary datum is smooth, we have that

u ∈ Ck,α(Ω).

Consider the differential form

−∂yu dx+ ∂xu dy.
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This is a closed form since

d
(
− ∂yu dx+ ∂xu dy

)
= ∆u dx ∧ dy = 0.

Then, there is a function v : Ω→ R (called harmonic conjugate of u) such that

dv = −∂yu(x, y) dx+ ∂xu(x, y) dy,

or equivalently {
∂xv = −∂yu
∂yv = ∂xu

in Ω.

For every z = (x, y) ∈ Ω, v(x, y) can be computed by integrating the differential form −∂yu dx + ∂xu dy over
any curve σ = (σ1, σ2) : [0, 1]→ Ω with

σ(0) = (0, 0) and σ(1) = (x, y),

precisely:

v(x, y) =

∫ 1

0

(
σ′(t)∂yu(σ1(t), σ2(t)) + σ′2(t)∂xu(σ1(t), σ2(t))

)
dt,

which in particular implies that also the function v : Ω→ R is in Ck,α(Ω). Finally, we have constructed maps

L : Ω→ C = R2 , L(z) = u(z) + iv(z) ,

and

h : Ω→ C = R2 , h(z) = exp
(
u(z) + iv(z)

)
,

which are both of class Ck,α(Ω,C) and holomorphic in Ω. This implies that the map

H : Ω→ C = R2 , H(z) = zh(z)

is of class Ck,α(Ω,C) holomorphic in Ω.

Step 2. H has values in B1. Precisely, we will show that

H(∂Ω) ⊂ ∂B1 and H(Ω) ⊂ B1.

First we notice that by construction we have

|h(z)| = exp(u(z)) = exp(− ln |z|) =
1

|z|
on ∂Ω.

This implies that
|H(z)| = 1 for all z ∈ ∂Ω.

Now, since the function ln |z| is subharmonic in Ω and u is harmonic in Ω, we have that

u(z) + ln |z| is subharmonic in Ω and continuous on Ω.

Since u(z) + ln |z| vanishes on ∂Ω, the strong maximum principle now yields

u(z) + ln |z| > 0 for z ∈ Ω.

This implies that

1 > exp
(
u(z) + ln |z|

)
= |z| exp(u(z)) = |z||h(z)| = |H(z)| for all z ∈ Ω.

Step 3. H is onto. We notice that:

• since H : Ω→ C is continuous, H(Ω) is a closed set;
• since H : Ω→ C is holomorphic, the set H(Ω) is open.

In particular, in order to prove that
H(Ω) = B1,

it is sufficient to prove that
B1 ⊂ H(Ω).

Suppose by contradiction that there is a point

w ∈ B1 \H(Ω).

For every t ∈ [0, 1], we set
wt := tw
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and we define t∗ to be the largest t ∈ [0, 1] such that wt∗ ∈ H(B1). By assumption, t∗ < 1. Let zt∗ ∈ Ω be
such that H(zt∗) = wt∗ . Since H(Ω) is open, we necessarily have that zt∗ ∈ ∂Ω. But this is impossible since
H(∂Ω) ⊂ ∂B1. This proves that H(Ω) = B1.

Step 4. H : Ω→ B1 is injective. Notice that by construction

|h| = eu 6= 0 in Ω.

Thus, 0 is the unique zero of the function

H : Ω→ C , H(z) = zh(z),

and 0 has multiplicity 1. Thus, for every connected open set 0 3 D b Ω whose boundary ∂D is parametrized
by a single closed regular C1 curve γ : [0, 1]→ C with γ′ 6= 0, we have that:

1 =
1

2πi

∫
γ

∂zH(z)

H(z)
dz.

Consider the map

z0 7→
1

2πi

∫
γ

∂zH(z)

H(z)−H(z0)
dz

defined for every z0 ∈ D. Since this map is continuous and has values in N we have that

1

2πi

∫
γ

∂zH(z)

H(z)−H(z0)
dz = 1 for every z0 ∈ D.

This shows that H is injective as map from D to C. Since D is arbitrary, we get that H is injective as a map
from Ω to B1.

Step 5. Behavior of H at the boundary. Let

g(x, y) = ln |z| = 1

2
ln(x2 + y2).

We notice that since u+ g : Ω is continuous in Ω, subharmonic and strictly positive in Ω and vanishes on ∂Ω,
the Hopf maximum principle implies that

∇(u+ g) 6= 0 on ∂Ω,

which can be written as

∇u(x, y) +
(x, y)

x2 + y2
6= 0 for (x, y) ∈ ∂Ω,

or in terms of z = x+ iy as

(∂xu− i∂yu) +
1

z
6= 0 for z ∈ ∂Ω.

We next notice that

∂zL(z) =
1

2
(∂x − i∂y)(u+ iv)

=
1

2
(∂xu+ ∂yv) + i

1

2
(∂xv − ∂yu)

= ∂xu− i∂yu,
so the above condition yields

∂zL(z) +
1

z
6= 0 for z ∈ ∂Ω.

Now, we notice that

∂zH(z) = h(z) + z∂zh(z)

= h(z)
(

1 +
z∂zh(z)

h(z)

)
= h(z)

(
1 + z∂L(z)

)
,

for every z ∈ Ω. This implies that
∂zH(z) 6= 0 for z ∈ ∂Ω,

which gives that the map
H : Ω→ B1

is invertible around any boundary point z ∈ ∂Ω. This proves two things:
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• first, since H : Ω→ B1 is injective, then also H : Ω→ B1 should be injective;
• second, the inverse map H−1 : B1 → Ω is Ck,α regular up to the boundary.

This concludes the proof. �

In the proof of the Riemann mapping theorem we have used the following well-known formula for the number
of zeros of a holomorphic function.

Teorema 2 (Number of zeros of a holomorphic function). Let Ω ⊂ C be an open set and let Φ : Ω → C be a
holomorphic function. Let D b Ω be a bounded connected open set such that:

• Φ 6= 0 on ∂D;
• the boundary ∂D of D is C1 regular and is parametrized by a positively oriented closed regular C1 curve
γ : [0, 1]→ C with γ′ 6= 0.

Then, the number N(Φ, D) of zeros (counted with their multiplicity) of Φ in D given by the formula

N(Φ, D) =
1

2πi

∫
γ

∂zΦ(z)

Φ(z)
dz.

Proof. Let N := N(Φ, D) and let z1, . . . , zN be the zeros of Φ in D (counted with their multiplicity). Then, Φ
can be written as

Φ(z) = (z − z1)(z − z2) . . . (z − zN )Ψ(z),

where Ψ : Ω → C is a holomorphic function, which is non-zero in a neoghborhood of D. One can easily check
that

∂zΦ(z)

Φ(z)
=
∂zΨ(z)

Ψ(z)
+

N∑
j=1

1

z − zj
.

Now, since ∂zΨ
Ψ is holomorphic in a neighborhood of D, we have that

1

2πi

∫
γ

∂zΨ(z)

Ψ(z)
dz = 0,

so that

1

2πi

∫
γ

∂zΦ(z)

Φ(z)
dz =

1

2πi

∫
γ

∂zΨ(z)

Ψ(z)
dz +

N∑
j=1

1

2πi

∫
γ

dz

z − zj

=

N∑
j=1

1

2πi

∫
γ

dz

z − zj
.

Now the claim follows since, by the Cauchy formula, we have

1

2πi

∫
γ

dz

z − zj
= 1,

for every zj ∈ D. �
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