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Abstract. Let f be a (germ of) holomorphic self-map of C2 such that the origin is an isolated
fixed point, and such that dfO = id. Let ν(f) be the degree of the first non-vanishing term in the
homogeneous expansion of f − id. We generalize to C2 the classical Leau-Fatou Flower Theorem
proving that there exist ν(f)−1 holomorphic curves f -invariant, with the origin in their boundary,
and attracted by O under the action of f .

0. Introduction
One of the most famous theorems in one-dimensional holomorphic dynamics is

Theorem 0.1: (Leau-Fatou Flower Theorem [L, F]) Let g(ζ) = ζ +akζk +O(ζk+1), with k ≥ 2 and ak 6= 0,
be a holomorphic function fixing the origin. Then there are k − 1 disjoint domains D1, . . . , Dk−1 with the
origin in their boundary, invariant under g (that is, g(Dj) ⊂ Dj) and such that (g|Dj

)n → 0 as n → ∞,
for j = 1, . . . , k − 1, where gn denotes the composition of g with itself n times.

Any such domain is called a parabolic domain for f at the origin, and they are (together with attracting
basins, Siegel disks and Hermann rings) among the building blocks of Fatou sets of rational functions (see,
e.g., [CG] for a modern exposition).

A natural problem in higher dimensional holomorphic dynamics is to find a generalization of this result,
where the function g is replaced by a germ f of self-map of Cn fixing the origin and tangent to the identity,
that is such that dfO = id. After preliminary results in C2 obtained by Ueda [U] and Weickert [W], a very
important step in this direction has been made by Hakim [H1, 2] (inspired by previous works by Ecalle [E]).

To describe her results, we need a couple of definitions. Let f be a germ of holomorphic self-map of Cn

fixing the origin and tangent to the identity. A parabolic curve for f at the origin is a injective holomorphic
map ϕ: ∆→ Cn satisfying the following properties:
(i) ∆ is a simply connected domain in C with 0 ∈ ∂∆;
(ii) ϕ is continuous at the origin, and ϕ(0) = O;
(iii) ϕ(∆) is invariant under f , and (f |ϕ(∆))n → O as n→∞.

Furthermore, if [ϕ(ζ)] → [v] ∈ Pn−1 as ζ → 0 (where [·] denotes the canonical projection of Cn \ {O}
onto Pn−1) we say that ϕ is tangent to [v] at the origin.

Writing f = (f1, . . . , fn), let fj = zj + Pj,νj + Pj,νj+1 + · · · be the homogeneous expansion of f in series
of homogeneous polynomial, where deg Pj,k = k (or Pj,k ≡ 0), and Pj,νj 6≡ 0. The order ν(f) is defined
by ν(f) = min{ν1, . . . , νn}. A characteristic direction for f is a vector [v] = [v1 : · · · : vn] ∈ Pn−1 such
that there is λ ∈ C so that Pj,ν(f)(v1, . . . , vn) = λvj for j = 1, . . . , n. If λ 6= 0 we shall say that [v] is
non-degenerate; otherwise it is degenerate.

Then Hakim’s result is:

Theorem 0.2: (Hakim [H1, 2]) Let f be a (germ of) holomorphic self-map of Cn fixing the origin and
tangent to the identity. Then for every non-degenerate characteristic direction [v] of f there are ν(f) − 1
parabolic curves tangent to [v] at the origin.

This is a very good generalization of Theorem 0.1, but applies only to generic maps: if f has no
non-degenerate characteristic directions, this theorem gives no informations about the dynamics of f .
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varietà reali e complesse.
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A similar situation occurred for continuous holomorphic dynamics. It was known since the end of the
last century, thanks, e.g., to Poincaré [P], that a generic holomorphic vector field with an isolated singularity
at the origin in Cn admits invariant submanifolds passing through the singularity; but it remained unknown
for more than one hundred years, even replacing “submanifold” by “complex analytic subvariety”, whether
this was true for any holomorphic vector field with an isolated singularity. At last, in 1982 Camacho and
Sad proved the following

Theorem 0.3: (Camacho and Sad [CS]) Let F be a (germ of) holomorphic vector field with an isolated
singularity at O ∈ C2. Then there exists a complex analytic subvariety invariant by F passing through the
origin.

See [T] for a different proof of part of this result. It should also be mentioned that Theorem 0.3 is
not true in C3: Gómez-Mont and Luengo [GL] found a family of holomorphic vector fields with an isolated
singularity at the origin in C3 and no invariant complex analytic subvariety passing through the singularity.

Our main result is an exact discrete analogue of Theorem 0.3 (and thus a complete generalization of
the Leau-Fatou Flower Theorem), namely:

Theorem 0.4: Let f be a (germ of) holomorphic self-map of C2 tangent to the identity and such that the
origin is an isolated fixed point. Then there exist (at least) ν(f)− 1 parabolic curves for f at the origin.

We shall also be able to prove the existence of parabolic curves for germs with dfO = J2, the canonical
Jordan matrix associated to the eigenvalue 1; see Corollary 3.4.

The proof of Theorem 0.3 was based on three main ingredients: Poincaré’s (and others’) results on generic
vector fields; a canonical reduction (developed by Briot and Bouquet [BB], Dumortier [D], Seidenberg [S]
and Ven den Essen [V]) via blow-ups of the singularity to simpler, irreducible cases (see [MM] for a good
account); and an index, introduced by Camacho and Sad, associated to a singularity of the vector field on
an invariant 1-dimensional submanifold.

In our situation, Theorem 0.2 (or better, a simplified version we shall discuss in Section 3) is the natural
replacement of Poincaré’s results; the bulk of this paper is devoted to the construction of the remaining two
ingredients in the discrete case.

In Section 1 we define a residual index ιp(f, S) ∈ C, where f is a holomorphic self-map of a complex
2-manifold which is the identity on a compact 1-dimensional submanifold S, and p ∈ S. It turns out that this
index is either not defined anywhere on S (and we say that f is degenerate along S) or everywhere defined.
Furthermore, though the definition and the context are definitely different, it formally behaves exactly as
Camacho-Sad’s index. In particular we recover an Index Theorem:

Theorem 0.5: Let S be a 1-dimensional compact submanifold of a complex 2-manifold M , and let f be a
germ about S of a holomorphic self-map of M such that f |S = idS . Assume that df acts as the identity on
the normal bundle νS of S in M , and that f is non-degenerate along S. Then∑

p∈S

ιp(f, S) = c1(νS),

where c1(νS) is the first Chern class of νS .

We also have a similar result, without assumptions on the action of df on the normal bundle, if M is
the total space of a holomorphic line bundle over S: see Theorem 1.2.

Section 2 is devoted to the proof of a Reduction Theorem. Let f be tangent to the identity at the
origin in C2, and write f = (z + `go, w + `ho), for suitable functions `, go and ho, with go and ho relatively
prime. The first main observation is that, loosely speaking (see Proposition 2.1 for a precise statement),
the origin is dinamically relevant only if go and ho vanish there — we shall say that O is singular for f .
Applying this observation to the blow-up of f we get the notion of singular directions, which turn out to
be the dynamically correct generalization of non-degenerate characteristic directions. Then the first step
of the reduction consists in showing that after a finite number of blow-ups we can lift f to a map whose
singularities are dicritical (roughly speaking, this means that all tangent directions are singular) or such that
the linear part of (go, ho) is not vanishing.
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In the latter case, it is easy to check that the eigenvalues {λ1, λ2} of the linear part of (go, ho) are
independent of the coordinates. Then the second step of the reduction is to show that after a finite number
of blow-ups we can control the eigenvalues: to be precise, after a finite number of blow-ups we can assume
that at each singular point which is not dicritical we have either λ1λ2 6= 0, λ1/λ2, λ2/λ1 /∈ N, or λ1 6= 0,
λ2 = 0. The third and last step of the reduction, yielding the Reduction Theorem 2.10, consists in showing
that possibly after some other blow-ups we can control the residual indeces of the blown-up map at all
singularities.

Finally, in Section 3 we prove a simplified version of Theorem 0.2 which is enough for our aims. In this
way we have recovered all the ingredients needed to follow Camacho-Sad’s argument, and we obtain at last
Theorem 0.4 (see Theorem 3.2 and Corollary 3.3).

I would like to thank Francesca Tovena for a couple of illuminating conversations, and César Camacho
and Paulo Sad for explaining me the content of their paper.

1. The Residual Index Theorem

We begin by fixing a number of notations and definitions that we shall freely use in the paper. On will
denote the ring of germs of holomorphic functions defined in a neighbourhood of the origin O of Cn. Any
g ∈ On has a homogeneous expansion as infinite sum of homogeneous polynomials, g = P0 + P1 + · · ·, with
deg Pj = j (or Pj ≡ 0); the least j ≥ 0 such that Pj is not identically zero is the order ν(g) of g.

If S is a subset of a complex 2-dimensional manifold M , we denote by End(M, S) the set of germs
about S of holomorphic self-maps of M sending S into itself. If S is a 1-dimensional submanifold of M , a
chart (U, ϕ) of M about p ∈ S is adapted to S if U∩S = ϕ−1({(z, w) | w = 0}); in particular, (U∩S, ϕ1|U∩S)
is a chart of S about p.

Let f ∈ End(C2, O). We shall always write f = (f1, f2); furthermore, f1 = P1 + P2 + · · · and
f2 = Q1 + Q2 + · · · will be the homogeneous expansions of f1 and f2 (in most cases, P1(z, w) = z
and Q1(z, w) = w). We shall consistently write f1 = P1 + g and f2 = Q1 + h; furthermore, by defini-
tion, the order of f is ν(f) = min{ν(g), ν(h)}. We shall always assume ν(f) < +∞, that is f 6= idC2 .

Borrowing a word from continuous dynamics, we shall say that the origin is dicritical if we have
wPν(f)(z, w) ≡ zQν(f)(z, w). Following Hakim [H1, 2], we shall say that [u0 : v0] ∈ P1 is a characteris-
tic direction for f at the origin if there exists λ ∈ C such that Pν(f)(u0, v0) = λu0 and Qν(f)(u0, v0) = λv0;
it is non-degenerate if λ 6= 0, and degenerate otherwise.

We now recall some basic definitions and results on blowing up maps, referring to [A] for details. Let
M be a complex 2-manifold, and p ∈ M . The blow-up of M at p is the set M̃ = (M \ {p}) ∪ P(TpM),
endowed with the manifold structure we shall presently describe, together with the projection π: M̃ → M
given by π|M\{p} = idM\{p} and π|P(TpM) ≡ p. The set S = P(TpM) = π−1(p) is the exceptional divisor of
the blow-up.

Fix a chart ϕ = (z1, z2):U → C2 of M centered at p. Set Uj = (U \ {zj = 0}) ∪
(
S \ Ker(dzj |p)

)
, and

let χj :Uj → Cn be given by

χj(q)h =


zj(q) if j = h and q ∈ U \ {zj = 0},
zh(q)/zj(q) if j 6= h and q ∈ U \ {zj = 0},
d(zh)p(q)/d(zj)p(q) if j 6= h and q ∈ S \Ker(dzj |p),
0 if j = h and q ∈ S \Ker(dzj |p).

(1.1)

Then the charts (Uj , χj), together with an atlas of M \ {p}, endow M̃ with a structure of 2-dimensional
complex manifold such that the projection π is holomorphic everywhere and given by

[ϕ ◦ π ◦ χ−1
j (w)]h =

{
wj if j = h,
wjwh if j 6= h. (1.2)

Let f ∈ End(M, p) be such that dfp is invertible. Then ([A]) there exists a unique map f̃ ∈ End(M̃, S),
the blow-up of f at p, such that π◦ f̃ = f ◦π. The action of f̃ on S is induced by the action of dfp on P(TpM);
in particular, if dfp = id then f̃ |S = idS .
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We can finally start working. Let S be a 1-dimensional submanifold of a complex 2-manifold M .
If (Uα, ϕα) and (Uβ , ϕβ) are two adapted charts with Uα ∩ Uβ 6= ∅, then ϕβα = (ϕ1

βα, ϕ2
βα) = ϕβ ◦ ϕ−1

α has
the form {

zβ = ϕ1
βα(zα, wα) = ψβα(zα) + wα θ1

βα(zα, wα),

wβ = ϕ2
βα(zα, wα) = wα θ2

βα(zα, wα).
(1.3)

Notice that {ξαβ(zβ) := θ2
αβ(zβ , 0)} is the cocycle representing the normal bundle νS = (TM |S)/TS.

Remark 1.1: As a particular case we can consider the total space M of a line bundle E over S
(identifying S with the zero section of E). Using as charts only trivializations of the bundle, (1.3) simplifies
to {

ϕ1
βα(zα, wα) = ψβα(zα),

ϕ2
βα(zα, wα) = wα ξβα(zα).

In this case νS is canonically isomorphic to E, and thus the notation is consistent.

Now let f ∈ End(M, S) be a (germ about S of) holomorphic self-map of M such that f |S ≡ idS . Setting
fα = ϕα ◦ f ◦ ϕ−1

α , we can write{
f1,α(zα, wα) = zα + wµα+1

α g•α(zα, wα),
f2,α(zα, wα) = bα(zα) wα + wνα+2

α h•α(zα, wα).
(1.4)

for suitable g•α, h•α ∈ O2, bα ∈ O1 and µα, να ∈ N∪{∞}, where µα =∞ (respectively, να =∞) means g•α ≡ 0
(respectively, h•α ≡ 0), and wα does not divide either g•α or h•α.

Lemma 1.1: If S is compact, then the function bα is constant and independent of the adapted chart chosen.

Proof : Since f |S = idS , the normal bundle νS is invariant under the action of the differential of f ; in
particular, being νS of rank 1, there should exist a holomorphic function λ:S → C such that dfp(v) = λ(p)v
for all p ∈ S and v ∈ (νS)p. But S is compact; therefore λ is necessarily constant. Finally, an easy
computation in local coordinates shows that λ(p) = bα

(
ϕα(p)

)
, and we are done. ¤

Denoting by b = b(f) ∈ C this constant, we introduce the (locally defined) meromorphic function

kα(zα) = lim
wα→0

f2,α(zα, wα)− b wα

wα

(
f1,α(zα, wα)− zα

) =


0 if µα < να;
h•α
g•α

(zα, 0) if µα = να;

∞ if µα > να.

We shall say that p ∈ S is a strictly fixed point if ϕα(p) is a pole of kα. If kα ≡ ∞, we shall say that f is
degenerate along S.

Remark 1.2: We shall momentarily show that these definitions are well-posed (i.e., they do not depend
on the adapted chart chosen); for the time being let us justify the name. The first non-linear term in the
power series expansion of fα at the origin is

(
g•α(0, 0)(wα)µα+1, h•α(0, 0)(wα)να+2

)
; thus if µα ≤ να the first

non-linear term is of order µα + 1 unless the origin is a strictly fixed point. Therefore, in a loose sense,
strictly fixed points are “more fixed” than other points of S.

We need to know the behavior of g•α, h•α and kα under change of coordinates. Since fβ = ϕβα ◦fα ◦ϕαβ ,
recalling (1.3) we get{

zβ + (wβ)µβ+1 g•β = ψβα(f1
α ◦ ϕαβ) + (f2

α ◦ ϕαβ) · θ1
βα(fα ◦ ϕαβ),

b wβ + (wβ)νβ+2h•β = (f2
α ◦ ϕαβ) · θ2

βα(fα ◦ ϕαβ).
(1.5)

Plugging (1.4) in the second equation we find

(wβ)νβ h•β =
1

[θ2
βα(zα, wα)]2

[
b

θ2
βα

(
fα(zα, wα)

)
− θ2

βα(zα, wα)
wα

+ θ2
βα

(
fα(zα, wα)

)
· (wα)ναh•α(zα, wα)

]
.
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Expressing fα as (zα, wα) plus a remainder we can write

θ2
βα

(
fα(zα, wα)

)
− θ2

βα(zα, wα)
wα

=
∂θ2

βα

∂zα
(zα, wα)(wα)µαg•α

+
∂θ2

βα

∂wα
(zα, wα)

(
(b− 1) + (wα)να+1h•α

)
+ o

(‖fα − (zα, wα)‖
wα

)
.

In particular, if b = 1 or if ∂θ2
βα/∂wα ≡ 0 (e.g., in the line bundle situation) we get

θ2
βα

(
fα(zα, wα)

)
− θ2

βα(zα, wα)
wα

=
∂θ2

βα

∂zα
(zα, wα)(wα)µαg•α+

∂θ2
βα

∂wα
(zα, wα)(wα)να+1h•α+o

(
(wα)min{µα,να+1}).

On the other hand,

θ2
βα

(
fα(zα, wα)

)
· (wα)ναh•α(zα, wα) = θ2

βα(zα, wα)(wα)ναh•α(zα, wα) + o
(
(wα)να

)
.

Assuming b = 1 or ∂θ2
βα/∂wα ≡ 0 we can then distinguish three cases:

(a) µα > να. In this case we get

(wβ)νβ h•β(zβ , wβ) =
1

θ2
βα(zα, wα)

(wα)ναh•α(zα, wα) + o
(
(wα)να

)
;

in particular, νβ = να, because wβ = ξβα(zα)wα + o(wα).
(b) µα = να. In this case we get

(wβ)νβ h•β(zβ , wβ) =
(wα)να

θ2
βα(zα, wα)

[
h•α(zα, wα) +

b

θ2
βα(zα, wα)

∂θ2
βα

∂zα
(zα, wα)g•α(zα, wα)

]
+ o

(
(wα)να

)
;

in particular, νβ ≥ να.
(c) µα < να. In this case we get

(wβ)νβ h•β(zβ) =
b

[θ2
βα(zα, wα)]2

(wα)µα
∂θ2

βα

∂zα
(zα, wα)g•α(zα, wα) + o

(
(wα)µα

)
;

in particular, νβ ≥ µα.

Let us now study g•α. The first equation in (1.5) yields

(wβ)µβ g•β =
1

θ2
βα(zα, wα)

[
ψβα

(
zα + (wα)µα+1g•α(zα, wα)

)
− ψβα(zα)

wα

+
(
b + (wα)να+1h•α(zα, wα)

)
· θ1

βα

(
fα(zα, wα)

)
− θ1

βα(zα, wα)
]
.

Arguing as before we find

ψβα

(
zα + (wα)µα+1g•α(zα, wα)

)
− ψβα(zα)

wα
= ψ′βα(zα)(wα)µαg•α(zα, wα) + o

(
(wα)µα

)
,

and (
b + (wα)µα+1h•α(zα, wα)

)
· θ1

βα

(
fα(zα, wα)

)
− θ1

βα(zα, wα)

= [θ1
βα

(
fα(zα, wα)

)
− θ1

βα(zα, wα)] +
(
b− 1 + (wα)να+1h•α(zα, wα)

)
θ1

βα

(
fα(zα, wα)

)
.
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In particular, if b = 1 or if θ1
βα(zα, wα) ≡ 0 (e.g., in the line bundle situation) we get

(
b + (wα)να+1h•α(zα, wα)

)
· θ1

βα

(
fα(zα, wα)

)
− θ1

βα(zα, wα)

=
∂θ1

βα

∂zα
(zα, wα)(wα)µα+1g•α(zα, wα) + θ1

βα(zα, wα)(wα)να+1h•α(zα, wα) + o
(
(wα)min{µα,να}+1

)
.

This time we have two possibilities:

(a) µα > να: in this case we have µβ ≥ να + 1.

(b) µα ≤ να: in this case we find

(wβ)µβ g•β(zβ , wβ) =
1

θ2
βα(zα, wα)

ψ′βα(zα)(wα)µαg•α(zα, wα) + o
(
(wα)µα

)
, (1.6)

and thus µβ = µα.

In particular, we have shown that µα > να iff µβ > νβ ; this means that the degeneracy of f is independent
of the coordinates, as claimed.

Finally, assume that f is not degenerate, and that b(f) = 1 or we are in the line bundle situation. Then

kβ(zβ) =
1

ψ′βα(zα)

[
kα(zα) + b

ξ′βα(zα)
ξβα(zα)

]
.

In particular, kβ and kα have the same poles, and thus the definition of strictly fixed points is independent
of the coordinates. Furthermore, if we set

ηα = kα dzα,

we have
ηβ = ηα + d(b log ξβα). (1.7)

So the family of meromorphic forms {ηα} behaves exactly as the forms by the same name defined in [CS]
— and thus we can draw the same consequences. First of all, since d(b log ξβα) is a holomorphic (1, 0)-form,
the residue of ηα at a point is independent of the coordinates. We shall then call residual index of f at p
along S the number

ιp(f, S) = Res
(
ηα;ϕα(p)

)
;

it might be non-zero only at the strictly fixed points of f .
Secondly, arguing as in the Appendix of [CS] we get

Theorem 1.2: (Residual Index Theorem) Let S be a 1-dimensional compact submanifold of a complex
2-manifold M , and take f ∈ End(M, S) such that f |S = idS . Assume that b(f) = 1 or that M is the total
space of a line bundle E over S. Assume moreover that f is non-degenerate along S. Then

∑
p∈S

ιp(f, S) = b(f) c1(νS),

where c1(νS) is the first Chern class of νS (which is equal to c1(E) in the line bundle situation).

In the sequel we shall need to know how the residual index changes under blow-ups. So take p ∈ S, and
let M̃p be the blow-up of M at p, and S̃ the proper transform of S. If dfp is invertible (that is, if b(f) 6= 0),
then f lifts to a (germ of) holomorphic map f̃ ∈ End(M̃p, S̃); furthermore, since f̃ on the exceptional divisor
is induced by the differential of f , we still have f̃ |S̃ = idS̃ .
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Proposition 1.3: Let q ∈ M̃p be the intersection between S̃ and the exceptional divisor. Assume b(f) 6= 0.
Then:

(i) b(f̃) = b(f);
(ii) f̃ is non-degenerate along S̃ iff f is non-degenerate along S;
(iii) ιq(f̃ , S̃) = ιp(f, S)− b(f).

Proof : Choose an adapted chart (U, ϕ) in M centered at p. Then the corresponding chart (U1, χ1) in M̃p

centered at q is such that the relation between the coordinates of f and f̃ is given by{
f1(z, zw) = f̃1(z, w),
f2(z, zw) = f̃1(z, w)f̃2(z, w).

Putting (1.4) into the first equation we immediately find µ̃ = µ and

g̃•(z, w) = zµ+1g•(z, zw). (1.8)

Applying (1.4) to the second equation and dividing by zw we get(
1 + zµwµ+1g•(z, zw)

)(
b(f̃) + wν̃+1h̃•(z, w)

)
= b(f) + (zw)ν+1h•(z, zw), (1.9)

and thus (i) follows setting w = 0.
Now, (1.8) and (1.9) yield

wν̃ h̃•(z, w) =
zν+1wνh•(z, zw)− b(f)zµwµg•(z, zw)

1 + zµwµ+1g•(z, zw)
;

in particular, (ii) holds. Furthermore,

k̃(z) = k(z)− b(f)
z

,

and we are done. ¤
As already remarked, S will often be the exceptional divisor of a blow-up; it turns out that in this case

we have an important relationship between dicriticality downstairs and degeneracy upstairs.

Proposition 1.4: Let f ∈ End(C2, O) be such that dfO = id. Let M be the blow-up of C2 at the origin,
S ⊂M the exceptional divisor, and f̃ ∈ End(M, S) the blow-up of f . Then:

(i) non degenerate characteristic directions for f are strictly fixed points for f̃ ;
(ii) strictly fixed points for f̃ are characteristic directions for f ;
(iii) f̃ is degenerate along S iff the origin is dicritical for f .

Proof : First of all notice that [z0 : 1] ∈ P1 = S is a characteristic direction iff Pν(f)(z0, 1)−z0Qν(f)(z0, 1) = 0,
and it is degenerate iff Qν(f)(z0, 1) = 0.

In the canonical chart of M containing [z0 : 1], the blow-up f̃ is given by f̃1(z, w) = z + wν(f)−1

(
Pν(f)(z, 1)− zQν(f)(z, 1)

)
+ w

(
Pν(f)+1(z, 1)− zQν(f)+1(z, 1)

)
+ · · ·

1 + wν(h)−1Qν(h)(z, 1) + wν(h)Qν(h)+1(z, 1) + · · · ,

f̃2(z, w) = w + wν(h)Qν(h)(z, 1) + wν(h)+1Qν(h)+1(z, 1) + · · · .
Clearly, ν̃ = ν(h) − 2 and h̃•(z, w) = Qν(h)(z, 1) + wQν(h)+1(z, 1) + · · ·. On the other hand, µ̃ = ν(f) − 2
if the origin is not dicritical; µ̃ > ν(f)− 2 if the origin is dicritical. In particular, since dicriticality implies
ν(g) = ν(h) = ν(f), if the origin is dicritical we have µ̃ > ν̃, and f̃ is degenerate; conversely, if the origin is
not dicritical we have µ̃ ≤ ν̃, and f̃ is not degenerate.

If the origin is dicritical, all directions are characteristic, and all points of S are strictly fixed; therefore
the Proposition is proved in this case. If the origin is not dicritical, there are two possibilities to consider.
If ν(h) > ν(f), there are no strictly fixed points in this chart, but (being Qν(f) ≡ 0) all possible characteristic
directions are degenerate. On the other hand, if ν(h) = ν(f) we get

k(z) =
Qν(f)(z, 1)

Pν(f)(z, 1)− zQν(f)(z, 1)
. (1.10)

So if z0 is a strictly fixed point then Pν(f)(z0, 1) − z0Qν(f)(z0, 1) = 0, and thus [z0 : 1] is a character-
istic direction. Conversely, if [z0 : 1] is a non-degenerate characteristic direction, then Qν(f)(z0, 1) 6= 0,
Pν(f)(z0, 1)− z0Qν(f)(z0, 1) = 0, and so z0 is a strictly fixed point. ¤



8 Marco Abate

Remark 1.3: Hakim [H1, 2] associated to every non-degenerate characteristic direction [z0 : 1] the
number R′(z0)/Qν(f)(z0, 1), where R(z) = Pν(f)(z, 1) − zQν(f)(z, 1). It turns out that, when not zero, this
number is exactly the reciprocal of the residual index of f̃ at [z0 : 1]. In fact, in this case we should have
ν(h) = ν(f) and R′(z0) 6= 0; therefore k(z) is given by (1.10), R(z) = R′(z0)(z − z0) + o(z − z0), and so
ι[z0:1](f̃ , S) = Qν(f)(z0, 1)/R′(z0).

2. The Reduction Theorem

Let f ∈ End(C2, O) be such that dfO = id. The aim of this section is to show that a finite sequence of
blow-ups can substantially simplify the local expression of f — at the expense of changing the geometry of
the underlying space.

But first we need another set of definitions and notations. We shall consistently write f1 = z + g and
f2 = w+h, as before. We denote by ` ∈ O2 the greatest common divisor (g, h) of g and h (which is defined up
to units in O2), and write g = `go and h = `ho. The homogeneous expansion of go (respectively, of ho, `) will
be go = P o

0 +P o
1 + · · · (respectively, ho = Qo

0 +Qo
1 + · · ·, ` = R0 +R1 + · · ·), and we shall denote by κ = ν(`)

the order of `. The pure order of f is νo(f) = min{ν(go), ν(ho)}. Obviously, νo(f) + κ = ν(f) ≥ 2.
It is clear that `(z, w) = 0 is a (not necessarily reduced) local equation of the germ at the origin of the

fixed point set Fix(f) of f . If Fix(f) has (at least) two smooth (local) components intersecting transversally
at the origin, we shall say that the origin is a corner.

We shall say that the origin is a singular point for f if the pure order of f is at least 1 (and we shall
prove in a moment that the pure order — as well as being dicritical — is independent of the coordinates).
Notice that if the origin is dicritical then wP o

νo(f)(z, w) ≡ zQo
νo(f)(z, w), and thus it is necessarily singular.

There is a dynamical reason for singleing out singular points:

Proposition 2.1: Let S be a compact 1-dimensional submanifold of a 2-dimensional complex manifold M ,
and f ∈ End(M, S) such that f |S = idS . Assume that b(f) = 1 and that f is not degenerate along S. Let
p0 ∈ S be not singular and not a corner. Then no infinite orbit of f can stay arbitrarily close to p0, that is
there exists a neighbourhood U of p0 such that for all q ∈ U either the orbit of q lands on S or fn0(q) /∈ U
for some n0 ∈ N. In particular, no infinite orbit is converging to p0.

Proof : We shall work in a chart adapted to S and centered in p0. Since p0 is not a corner, we have
`(z, w) = wσ for a suitable σ ≥ 1; then we can write{

z1 := f1(z, w) = z + wσ
(
a0 + A1(z, w)

)
,

w1 := f2(z, w) = w + wσ
(
b0 + B1(z, w)

)
,

with ν(A1), ν(B1) ≥ 1. Since f is not degenerate along S, we must have b0 = 0 and B1 = wB0; since p0 is
not singular, we must have a0 6= 0 — and after a linear change of coordinates we can actually assume a0 = 1.

We then make the following change of variables:{
Z = z,

W = w (1 + A1(z, w))1/σ
.

Then {
Z1 = Z + W σ,
W1 = W + Wσ+1B̃0(Z, W ).

In particular,
1

W σ
1

=
1

W σ
+ a(Z) + Wb(Z, W ),

for suitable holomorphic functions a(Z), b(Z, W ). Thus we can find d > 0 such that
∣∣(1/Wσ

1 )− (1/W σ)
∣∣ ≤ d

if (Z, W ) belongs to a compact set of the form {|Z| ≤ r, |W | ≤ ρ}. Following [U], we now choose
0 < r0 < (2d)−1 log 2, and set U = {|Z| < r0, |W | < ρ}; we claim that no point in U \ S can have an
orbit completely contained in U \ S.
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Suppose, by contradiction, that (Z0, W0) ∈ U \ S is such that (Zn, Wn) = fn(Z0, W0) ∈ U \ S for
all n ≥ 0. In particular, Wn 6= 0 for all n ≥ 0 and so

∣∣(1/Wσ
n )− (1/W σ

0 )
∣∣ ≤ nd. Hence

∣∣∣∣( W0

Wn

)σ

− 1
∣∣∣∣ ≤ nd|W0|σ

for all n ≥ 0. This implies that if nd|W0|σ < 1 then (Wn/W0)σ is in the disk which has the segment
[(1 + nd|W0|σ)−1, (1− nd|W0|σ)−1] as diameter, and thus

Re
(

Wn

W0

)σ

≥ 1
1 + nd|W0|σ

.

Let n0 ≥ 1 be the integer such that (n0 − 1)d|W0|σ < 1 ≤ n0d|W0|σ. Then

Re
(

Wj

W0

)σ

≥ 1
(n0 + j)d|W0|σ

for 0 ≤ j ≤ n0 − 1. But this implies

|Zn0 − Z0| =

∣∣∣∣∣∣
n0−1∑
j=0

W σ
j

∣∣∣∣∣∣ = |W0|σ
∣∣∣∣∣∣
n0−1∑
j=0

(
Wj

W0

)σ
∣∣∣∣∣∣

≥ |W0|σ
n0−1∑
j=0

Re
(

Wj

W0

)σ

≥
n−1∑
j=0

1
(n0 + j)d

≥ log 2
d

> 2r0,

and so (Zn0 , Wn0) /∈ U , contradiction. ¤

Since we shall show in Remark 2.1 that all the corners we obtain blowing up are singular, and we
shall never blow-up a dicritical point, the upshot of this Proposition is that the only interesting dynamics is
concentrated nearby singular points.

The singular cone of f is given by

Cf = {[u : v] ∈ P1 | vP o
νo(f)(u, v)− uQo

νo(f)(u, v) = 0} ⊂ P1;

clearly, Cf = P1 iff the origin is dicritical, and it is otherwise a finite set containing νo(f) + 1 points
(counted with multiplicities). Any [u0 : v0] ∈ Cf is said a singular direction for f at the origin. The
multiplicity of a singular direction is the multiplicity as root of vP o

νo(f) − uQo
νo(f). Since Pν(f) = RκP o

νo(f)

and Qν(f) = RκQo
νo(f), it is clear that non-degenerate characteristic directions are singular directions, and

that singular directions are characteristic directions.
Now let π:M → C2 be the blow-up of the origin, and S ⊂M the exceptional divisor. Let sj(z, w) = 0 be

the equation of S, and πj the expression of π, in the canonical chart Uj ; see (1.1) and (1.2). For any g ∈ O2

and j = 1, 2 we then set

ĝ(j) =
g ◦ πj

s
ν(g)
j

.

When the context indicates clearly (or it does not matter) in which chart we are working in, we shall drop
the index j and simply write ĝ.
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Lemma 2.2: Let f ∈ End(C2, O), and denote by f̃ ∈ End(M, S) its blow-up. Fix a canonical chart (Uj , χj)
on M . Then:

(i) we have (ĝ, ĥ) = ̂(g, h);
(ii) we have (g̃, h̃) = s

ν(f)−1
j

̂(g, h) if O is not dicritical, and (g̃, h̃) = s
ν(f)
j

̂(g, h) if O is dicritical.

Proof : For the sake of definiteness, we shall work in the chart (U2, χ2).
(i) The operation ˆ preserves the multiplication; therefore it suffices to prove that (g, h) = 1 im-

plies (ĝ, ĥ) = 1.
Up to a linear change of coordinates, we can assume ([GR, p.13]) that g and h are regular with respect

to x, i.e., that g(x, 0) vanishes of order ν(g) and h(x, 0) vanishes of order ν(h). Then, up to units, by the
Weierstrass Preparation Theorem we can assume that they are Weierstrass polynomials with respect to x
whose order coincides with the degree. In particular, they belong to the subring W ⊂ O2 of germs of the
form

p(x, y) = a0(y)xν + a1(y)xν−1 + · · ·+ aν(y),

where a0, . . . , aν ∈ O1 satisfy ν(aj) ≥ j. Now

p̂(z, w) = a0(w)zν +
a1(w)

w
zν−1 + · · ·+ aν(w)

wν
,

and thus :̂W → O1[z] is bijective. This implies that (ĝ, ĥ) = 1 in O1[z]; it remains to prove that (ĝ, ĥ) = 1
in O2.

So let p1, p2 ∈ O1[z] such that (p1, p2) = 1 in O1[z]. Up to a linear change of coordinates of the form
(z, w) = (αZ + W, W ) — which is an automorphism of O1[z] —, we can assume that both pj ’s are regular
with respect to z. Suppose, by contradiction, that there is ` ∈ O2, not a unit, such that pj = `qj . Being
pj regular with respect to z, both ` and qj must be so. Then we can write ` = u0r0 and qj = ujrj , where
u0, uj ∈ O2 are units, and r0, rj ∈ O1[z] are Weierstrass polynomials. Therefore pj = (u0uj)(r0rj); the
Weierstrass Division Theorem then implies u0uj ∈ O1[z]. But this means that r0 divides both p1 and p2

in O1[z], against the assumption.
(ii) We have

g̃(z, w) = wν(f)−1 ˆ̀(z, w)
wν(g)−ν(f)ĝo(z, w)− zwν(h)−ν(f)ĥo(z, w)

1 + wν(h)−1ĥ(z, w)
,

h̃(z, w) = wν(h) ˆ̀(z, w)ĥo(z, w);

(2.1)

in particular, wν(f)−1 ˆ̀ divides (g̃, h̃). Assume that s ∈ O2 divides wν(h)−ν(f)+1ĥo; since, by construction,
(w, ĥo) = 1, we should have either s|w or s|ĥo. In the latter case, if s divides g̃/(wν(f)−1 ˆ̀) it must also di-
vide ĝo, against (i). So (up to units) we have s = wr, with 0 ≤ r ≤ ν(h)−ν(f)+1; but w divides g̃/(wν(f)−1 ˆ̀)
iff the origin is dicritical, as claimed. ¤
Corollary 2.3: Let f ∈ End(C2, O) be tangent to the identity, and assume that the origin is not dicritical.
Let f̃ ∈ End(M, S) denote the blow-up of f at the origin. Then:

(i) the singular directions of f are exactly the singular points of f̃ in S;
(ii) strictly fixed points of f̃ are singular directions of f .

Proof : (i) Up to a linear change of coordinates, it suffices to prove that [0 : 1] ∈ S is singular for f̃ iff it
belongs to Cf . But by the previous Lemma and (2.1) we have h̃o(z, w) = wν(h)−ν(f)+1ĥo(z, w) and

g̃o(z, 0) = P o
νo(f)(z, 1)− zQo

νo(f)(z, 1),

and the assertion follows.
(ii) We shall prove the slightly more general assertion that if f ∈ End(M, S) with f |S = idS is non-

degenerate along S then every strictly fixed point is singular. Fix a chart adapted to S and centered in p ∈ S.
Write g(z, w) = wσ`1(z, w)go(z, w) and h(z, w) = wσ`1(z, w)ho(z, w), so that (g, h) = wσ`1 (and w does
not divide `1). By Lemma 1.1 we know that either σ ≥ 2 or w divides ho (or both). If σ ≥ 2 but w does
not divide ho, then f is degenerate; therefore ho = wh1. But then w cannot divide go, ν(ho) ≥ 1 and
k(z) = h1(z, 0)/go(z, 0); therefore if p is a strictly fixed point we must have go(0, 0) = 0, that is ν(go) ≥ 1
and p is singular. ¤
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In particular, if O is non dicritical we have the following inclusions:

{Non-degenerate characteristic directions for f} ⊆ {Strictly fixed points for f̃}
⊆ {Singular points for f̃} = Cf

⊆ {Characteristic directions for f};

all inclusions might be proper. If O is dicritical, then strictly fixed points, Cf and characteristic directions
all agree with P1.

Remark 2.1: Assume that f ∈ End(M, S) with f |S = idS and b(f) = 1 is non degenerate along S, and
that p0 ∈ S is not dicritical. Fix a chart adapted to S centered in p0, and write

f = (z + wµ+1g•, w + wν+2h•) = (z + wσ`1g
o, w + wσ`1h

o).

Arguing as in the proof of Corollary 2.3 we see that w must divide ho. Now let f̃ be the blow-up of f ,
and q0 the intersection between the proper transform of S and the exceptional divisor; in the canonical
coordinates, q0 = [1 : 0], and it is a corner. Using Lemma 2.2.(ii) and (2.1), we see that ν(g̃o) ≥ 1 always,
and that ν(h̃o) ≥ 1 if ν(h) > ν(f). If ν(h) = ν(f), we have h̃o(0, 0) = ĥo(0, 0) = Qo

ν(ho)(1, 0); but w|ho

forces Qo
ν(ho)(1, 0) = 0, and thus ν(h̃o) ≥ 1 in this case too. Summing up, we have proved that if f is non-

degenerate along S, and p0 ∈ S is not dicritical, then the corner over p0 in the blow-up is always singular
for f̃ .

Following ideas used by Ven den Essen [V] in the continuous case, we now introduce another technical
tool fundamental for the proof of the Reduction Theorem. If g, h ∈ O2, we denote by I(g, h;O) ∈ N ∪ {∞}
the intersection multiplicity of g and h at the origin (see [Fu, GH, C] for several equivalent definitions). It
has the following properties:
(o) I(g, w;O) is the multiplicity of 0 as root of g(z, 0) = 0;
(i) I(g, h;O) = I(h, g;O);
(ii) I(g, h;O) = 0 iff min{ν(g), ν(h)} = 0;
(iii) I(g, h;O) =∞ iff (g, h) 6= 1, that is iff the origin is not isolated in g−1(0) ∩ h−1(0);
(iv) I(g1 · g2, h;O) = I(g1, h;O) + I(g2, h;O);

(v) if M ∈ GL(2,O2) and
∣∣∣∣ g1

h1

∣∣∣∣ = M

∣∣∣∣ g
h

∣∣∣∣, then I(g1, h1;O) = I(g, h;O);

(vi) if χ is a germ of biholomorphism of C2 with χ(O) = O, then I(g ◦ χ, h ◦ χ;O) = I(g, h;O);
(vii) let π:M → C2 be the blow-up of the origin, and S the exceptional divisor. Then [GH, pp. 475-476]

I(g, h;O) = ν(g)ν(h) +
∑
p∈S

I(ĝ, ĥ; p),

where to compute ĝ and ĥ nearby p we choose a canonical chart containing p (it does not matter which
one if p belongs to both).

The pure intersection index of f = (z + g, w + h) at the origin is then, by definition, IO(f) = I(go, ho; O).
The main properties of the pure intersection index are contained in the following lemmas:

Lemma 2.4: The order, the pure order, the pure intersection index and the dicriticality are invariant under
change of coordinates.

Proof : Given a germ χ of biholomorphism of C2 fixing the origin, set (z, w) = χ(ẑ, ŵ) and f̂ = χ−1 ◦ f ◦ χ.
As already remarked, ` = 0 is an equation of the set of non-trivial irreducible components of Fix(f) at the
origin. Since χ−1 sends this set onto the corresponding set for f̂ , whose equation is ˆ̀ = 0, we must have
ˆ̀p = (` ◦ χ)q for some p, q ∈ N∗. But now

ˆ̀·
∣∣∣∣ ĝo

ĥo

∣∣∣∣ = f̂ −
∣∣∣∣ ẑ
ŵ

∣∣∣∣ = χ−1

(
χ(ẑ, ŵ) + (` ◦ χ) ·

∣∣∣∣ go ◦ χ
ho ◦ χ

∣∣∣∣)− χ−1
(
χ(ẑ, ŵ)

)
= (` ◦ χ)(Jac(χ−1) ◦ χ) ·

∣∣∣∣ go ◦ χ
ho ◦ χ

∣∣∣∣ + (` ◦ χ)2(Hess(χ−1) ◦ χ)
(∣∣∣∣ go ◦ χ

ho ◦ χ

∣∣∣∣) + · · · ,
(2.2)
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which forces ˆ̀= ` ◦ χ and ν(ˆ̀) = ν(`). It moreover follows that∣∣∣∣∣ P̂ o
ν0(f̂)

Q̂o
ν0(f̂)

∣∣∣∣∣ = A−1
1 ·

∣∣∣∣ P o
ν0(f) ◦A1

Qo
ν0(f) ◦A1

∣∣∣∣ , (2.3)

where A1 is the linear part of χ; thus ν0(f̂) = ν0(f), ν(f̂) = ν(f), and O is dicritical for f̂ if it is so for f .
Furthermore, (2.2) implies that ∣∣∣∣ ĝo

ĥo

∣∣∣∣ = M(ẑ, ŵ) ·
∣∣∣∣ go ◦ χ
ho ◦ χ

∣∣∣∣ ,

where M(ẑ, ŵ) is a suitable matrix with M(0, 0) = A−1
1 . So M ∈ GL(2,O2), and IO(f̂) = IO(f) follows

from properties (v) and (vi) of the intersection multiplicity. ¤

Lemma 2.5: Assume that the origin is non dicritical, and let f̃ be the blow-up of f . Then

IO(f) = νo(f)2 − νo(f)− 1 +
∑
p∈S

Ip(f̃),

where S is the exceptional divisor.

Proof : First of all, by property (ii), Ip(f̃) 6= 0 iff p is a singular point of f̃ , and hence Ip(f̃) 6= 0 iff p ∈ Cf .
Up to a linear change of coordinates, we can assume ν(go) = ν(ho) = νo(f) and [1 : 0] /∈ Cf . Set

R(u, v) = vP o
νo(f)(u, v)− uQo

νo(f)(u, v), so that Cf = {R = 0}. For p0 = [s0 : 1] ∈ Cf , let µp0 ∈ N denote its
multiplicity. Clearly, ∑

p0∈S

µp0 = νo(f) + 1.

Now,
ĝo(s, w)− sĥo(s, w)
1 + wν(f)−1ĝ(s, w)

= R(s, 1) + O(w);

therefore property (o) yields

I

(
ĝo − sĥo

1 + wν(f)−1ĝ
, w; p0

)
= µp0 .

Then the properties of the intersection multiplicity, Lemma 2.2 and (2.1) yield

Ip0(f̃) = I

(
ĝo − sĥo

1 + wν(f)−1ĝ
, wĥo; p0

)
= I

(
ĝo − sĥo

1 + wν(f)−1ĝ
, w; p0

)
+ I

(
ĝo − sĥo

1 + wν(f)−1ĝ
, ĥo; p0

)
= µp0 + I

(
ĝo, ĥo; p0

)
.

Thanks to Lemma 2.2.(i), the latter number is always finite. Therefore property (vii) yields

IO(f) = I(go, ho;O) = νo(f)2 +
∑
p0∈S

I
(
ĝo, ĥo; p0

)
= νo(f)2 − ν0(f)− 1 +

∑
p0∈S

Ip0(f̃).

¤

We are then able to prove a first reduction theorem:
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Theorem 2.6: Let f ∈ End(C2, O) be tangent to the identity. Assume that O is an isolated singular point
of f . Then there exists a complex 2-manifold M , a holomorphic projection π:M → C2, and a holomorphic
map f̃ ∈ End(M, S), where S = π−1(O), satisfying the following properties:

(i) π|M\S :M \ S → C2 \ {O} is a biholomorphism;
(ii) S is either a point or the union of a finite number of projective lines intersecting each other transversally

and at most in one point;
(iii) π ◦ f̃ = f ◦ π;
(iv) f̃ |S = idS ;
(v) the singular points of f̃ on S are isolated, and dicritical or of pure order 1.

Proof : We construct the manifold M and the map f̃ using a sequence of blow-ups proceeding by induction
on the pure intersection index of f at the origin. If IO(f) = 1 then, by Lemma 2.5, either O is dicritical or
has pure order 1 (because there is always at least one singular direction), and we are done.

Assume then IO(f) > 1. Again, if O is dicritical or has pure order 1 we are done. Otherwise, we blow
it up. By Lemma 2.5, all the singularities of the blow-up of f in the exceptional divisor must have pure
intersection index strictly less than IO(f); therefore the inductive asssumption ensures us that after a finite
number of blow-ups we remain only with singularities which are dicritical or of pure order one, as desired.¤

The next step consists in a further reduction of the singularities of pure order one — but we need one
more definition. Assume that the origin is a singularity of pure order one; by (2.3), once ` is chosen the

eigenvalues of the linear map
∣∣∣∣ P o

1

Qo
1

∣∣∣∣ are independent of the coordinates; we shall call them the eigenvalues of

the singularity. Since ` is defined up to units of O2, they are uniquely determined up to a non-zero scalar
multiple.

Lemma 2.7: Let O be a non-dicritical singularity. Then every singular direction p0 ∈ Cf of multiplicity
one is a singularity of the blow-up of f of pure order one and with at least one non-zero eigenvalue.

Proof : Up to a linear change of coordinates, we can assume p0 = [0 : 1]. This means that

R(u, v) := vP o
νo(f)(u, v)− uQo

νo(f)(u, v) = u
k∏

j=1

(αju + βjv)µj ,

with β1 · · ·βk 6= 0. Since {
g̃o(z, w) = R(z, 1) + O(w),
h̃o(z, w) = wν(h)−ν(f)+1Qo

νo(f)(z, 1) + O(wν(h)−ν(f)+2),

it follows immediately that ν(g̃o) = 1 and that
∏

j β
µj

j 6= 0 is an eigenvalue of p0. ¤
Let O be singular. We shall say that O is irreducible if:

(a) νo(f) = 1, ν(`) ≥ 1, and
(b) the eigenvalues λ1, λ2 of O satisfy either:

(?1) λ1, λ2 6= 0 and λ1/λ2, λ2/λ1 /∈ N; or
(?2) λ1 6= 0, λ2 = 0.

The second reduction theorem says that every non dicritical singularity of pure order one can be reduced to
an irreducible singularity:

Theorem 2.8: Let f ∈ End(C2, O) be tangent to the identity. Assume that O is an isolated singular point
of f . Then there exists a complex 2-manifold M , a holomorphic projection π:M → C2, and a holomorphic
map f̃ ∈ End(M, S), where S = π−1(O), satisfying the following properties:

(i) π|M\S :M \ S → C2 \ {O} is a biholomorphism;
(ii) S is either a point or the union of a finite number of projective lines intersecting each other transversally

and at most in one point;
(iii) π ◦ f̃ = f ◦ π;
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(iv) f̃ |S = idS ;
(v) the singular points of f̃ on S are isolated, and dicritical or irreducible.

Proof : By Theorem 2.6, we can assume that all singularities are dicritical or of pure order one; to get the
assertion we must show that by blowing up we may reduce all non-dicritical reducible singularities of pure
order one to irreducible ones.

Assume p is such a singularity, and choose coordinates centered in p and adapted to the exceptional
divisor (it can always be done because, by construction, the worst singularities in the exceptional divisor are
normal crossings). We have three cases to consider:

(a) 0 is the only eigenvalue. Since the singularity has pure order one, up to a linear change of coordinates
we can assume go(x, y) = A2(x, y) and ho(x, y) = x + B2(x, y), with ν(A2), ν(B2) ≥ 2. In particular,
Cf = {[0 : 1]}, and µ[0:1] = 2; moreover, necessarily κ = ν(`) ≥ 1 (because the singularity belongs to the
exceptional divisor). Blowing-up we get g̃o(z, w) =

wA0(z, w)− z
(
z + wB0(z, w)

)
1 + wκ ˆ̀(z, w)

(
z + wB0(z, w)

) = −z2 + wC0(z, w),

h̃o(z, w) = w
(
z + wB0(z, w)

)
,

where A0(z, w) = A2(zw, w)/w2, B0(z, w) = B2(zw, w)/w2 and ν(C0) ≥ 0. Notice that the pure order of f̃
at [0 : 1] can well be greater than one; we claim that blowing-up we can reduce all singularities to pure order
one with at least one non-zero eigenvalue.

We shall prove the claim in the following more general situation:{
go(z, w) = −nz2 + wA0(z, w),
ho(z, w) = w

(
z + wB0(z, w)

)
,

where n ∈ N∗.
(a.1) A0(0, 0) = a0 6= 0. In this case we have only one singular direction, [1 : 0], of multiplicity two.

Blowing up again we find {
g̃o(z, t) = −nz2 + a0zt + O(z2t),
h̃o(z, t) = (n + 1)zt− a0t

2 + O(zt2, z2t);

in particular, the equation of Cf̃ is zt[2a0t − (2n + 1)z] = 0. This means that all singular directions have
multiplicity one; by Lemma 2.7, another blow-up provides then singularities of pure order one with at least
one non-zero eigenvalue — and thus we are outside case (a).

(a.2) A0(0, 0) = 0. Let us write A0(z, w) = a1z + a2w + A2(z, w) and B0(z, w) = b0 + B1(z, w), with
ν(A2) ≥ 2 and ν(B1) ≥ 1. Then

Cf = {v
(
−(n + 1)u2 + (a1 − b0)uv + a2v

2
)

= 0}.

Write −(n + 1)u2 + (a1 − b0)uv + a2v
2 = −(n + 1)(u− c1v)(u− c2v). We have two subcases:

(a.2.i) c1 6= c2. Then we have three singular directions of multiplicity one; by Lemma 2.7 blowing up
we end up with three singularities of pure order one and outside case (a).

(a.2.ii) c1 = c2. Lemma 2.7 already says that after blowing up [1 : 0] will become a singularity of pure
order one and not in case (a); we should check what happens to [c1 : 1]. Since c1 = (a1 − b0)/2(n + 1) and
−a2 = (a1 − b0)2/4(n + 1), blowing up and then setting s′ = s− c1 we get{

g̃o(s′, w) = −(n + 1)(s′)2 + wÃ0(s′, w),
h̃o(s′, w) = w

(
c1 + b0 + s′ + wB̃0(s′, w)

)
.

If c1 + b0 6= 0 we have a singularity of pure order one with a non-zero eigenvalue, and we are outside case (a).
If c1 + b0 = 0, and Ã0(0, 0) 6= 0, we are back in case (a.1). Finally, if c1 + b0 = Ã0(0, 0) = 0, we have a
singularity of pure order two and of the same kind we are studying; but we already know that after a finite
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number of blow-ups every singularity must become of pure order one, and thus we shall eventually be outside
of this case.

(b) λ 6= 0 is the only eigenvalue. Since the singularity has pure order one and it is non-dicritical, up to
a linear change of coordinates we can assume go(x, y) = λx+ y +A2(x, y) and ho(x, y) = λy +B2(x, y), with
ν(A2), ν(B2) ≥ 2. Then there is only one singular direction, [1 : 0], of multiplicity two. Blowing up we find{

g̃o(z, w) = λz + zw + z2Ã0(z, w),
h̃o(z, w) = −w2 + zB̃0(z, w);

therefore we are in case (?2).

(c) There are two distinct eigenvalues λ1 6= λ2. If one eigenvalue is zero we are in case (?2); if both
are non-zero and λ1/λ2, λ2/λ1 /∈ N, we are in case (?1). Suppose instead that λ1/λ2 ∈ N or λ2/λ1 ∈ N,
with λ1λ2 6= 0; up to a linear change of coordinates, we can assume that go(x, y) = λx + A2(x, y) and
ho(x, y) = nλy+B2(x, y), with ν(A2), ν(B2) ≥ 2, λ 6= 0 and n ∈ N, n ≥ 2; in particular, Cf = {[1 : 0], [0 : 1]}.

After blowing-up, in [0 : 1] we have{
g̃o(z, w) = (1− n)λz + wÃ0(z, w),
h̃o(z, w) = nλw + w2B̃0(z, w);

since (1− n)/n < 0, we are then in case (?1).
The situation is slightly more complicated in [1 : 0]. Blowing up we get{

g̃o(z, w) = λz + z2Ã0(z, w),
h̃o(z, w) = (n− 1)λw + zB̃0(z, w).

This means that if n > 2 with n−2 blow-ups we can reduce n to 2 (producing n−2 singularities of type (?1)
along the way). If n = 2, we end up either with a dicritical singularity (if B̃0(0, 0) = 0) or in case (b) — and
yet another blow-up lands us in case (?2). ¤

This is not enough; we need to control the residual indeces with respect to the various branches of the
exceptional divisor. The case (?1) is relatively easy — but quite important:

Proposition 2.9: Let p be an irreducible singularity of type (?1) produced by Theorem 2.8. Then:

(i) If S denotes a branch of the exceptional divisor containing p, then ιp(f̃ , S) /∈ N.
(ii) If p is a corner, and S1, S2 are the branches of the exceptional divisor meeting transversally at p, then

ιp(f̃ , S1) · ιp(f̃ , S2) = 1.

Proof : (i) Choose a chart centered in p and adapted to S. Then we can write{
g̃(z, w) = wµ`1(z, w)

(
a11z + a12w + A2(z, w)

)
,

h̃(z, w) = wµ`1(z, w)
(
a21z + a22w + B2(z, w)

)
,

(2.4)

with µ ≥ 1, (w, `1) = 1, ν(A2), ν(B2) ≥ 2, and sp
(
(aij)

)
= {λ1, λ2}. Since f̃ is not degenerate along S (we

have never blown-up a dicritical singularity), we must have a21 = 0 and B2 = wB1 with ν(B1) ≥ 1. In
particular, then, a11, a22 are the eigenvalues of the singularity, and ιO(f, S) = a22/a11 /∈ N.

(ii) Choose a chart centered in p and adapted to S1 and S2. Then in (2.4) we must have `1 = zσ`2,
with σ ≥ 1 and (z, `2) = 1. Repeating the previous argument for both S1 and S2 we find ιO(f, S1) = a22/a11

and ιO(f, S2) = a11/a22, and we are done. ¤

We are now ready to prove the final version of the Reduction Theorem:
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Theorem 2.10: (Reduction Theorem) Let f ∈ End(C2, O) be tangent to the identity. Assume that O
is an isolated singular point of f . Then there exists a complex 2-manifold M , a holomorphic projection
π:M → C2, and a holomorphic map f̃ ∈ End(M, S), where S = π−1(O), satisfying the following properties:

(i) π|M\S :M \ S → C2 \ {O} is a biholomorphism;
(ii) S is either a point or the union of a finite number of projective lines intersecting each other transversally

and at most in one point;
(iii) π ◦ f̃ = f ◦ π;
(iv) f̃ |S = idS ;
(v) the singular points of f̃ on S are isolated, and dicritical or irreducible;
(vi) if p ∈ S is a non-dicritical irreducible singular point of type (?2), then the residual index of f̃ at p along

at least one of the branches of S containing p is zero.

Proof : Let p ∈ S be a non-dicritical irreducible singularity of type (?2), and choose a chart centered at p
and adapted to a branch S1 of S containing p. Then we can again write{

g̃(z, w) = wµ`1(z, w)
(
a11z + a12w + A2(z, w)

)
,

h̃(z, w) = wµ`1(z, w)
(
a21z + a22w + B2(z, w)

)
,

with µ ≥ 1, (w, `1) = 1, ν(A2), ν(B2) ≥ 2, and sp
(
(aij)

)
= {λ, 0} with λ 6= 0. As in the proof of

Proposition 2.9, the non degeneracy of f implies a21 = 0 and B2 = wB1 with ν(B1) ≥ 1; then we must
have either a11 = 0 or a22 = 0 (but not both). We can tell apart these two cases in an intrinsic way as
follows: the matrix (aij) has two distinct eigendirections, one for each eigenvalue. Then a22 = 0 means that
the branch S1 we singled out is tangent to the eigendirection associated to the non-zero eigenvalue, whereas
a11 = 0 means that S1 is transversal to it.

If S1 is tangent to the eigendirection associated to the non-zero eigenvalue, that is a22 = 0, we have

k(z) = lim
w→0

wµ−1`1(z, w)B1(z, w)
wµ−1`1(z, w)

(
a11z + a12w + A2(z, w)

) =
O(z)

a11z + O(z2)
=

O(1)
a11 + O(z)

,

and thus ιp(f̃ , S1) = 0.
On the other hand, if S1 is transversal to the eigendirection associated to the non-zero eigenvalue, that

is a11 = 0, then a quick computation yields k(z) =
(
a22 + B1(z, 0)

)
/A2(z, 0), and thus in general we cannot

say anything on the residual index.
Now, if p is a corner we can choose coordinates adapted to both the branches of S intersecting at p;

this means that `1 = zσ`2 for a suitable σ ≥ 1, and thus there is always at least one branch of S tangent to
the eigendirection associated to the non-zero eigenvalue — and thus a branch such that the residual index
is zero.

Finally, assume that p is not a corner, and that S1 is transversal to the eigendirection associated to the
non-zero eigenvalue; in particular, z does not divide `1. We have Cf = {[1 : 0], [−a12/a22 : 1]}. Blowing-up,
near [1 : 0] we find 

˜̃g(z, t) = zµtµ`1(z, zt)z
(
a12t + A1(z, t)

)
,

˜̃
h(z, t) = zµtµ`1(z, zt)

a22t + tB1(z, zt)− a12t
2 − tA1(z, t)

1 + zµtµ`1(z, zt)
(
a12t + A1(z, t)

) ,

where A1(z, t) = A2(z, zt)/z, and so we get a corner of type (?2).
Finally, near v1 = [−a12/a22 : 1] we have

˜̃g(s, w) = wµ`1(sw, w)
a12 − a22s + wA0(s, w)− sB1(sw, w)
1 + wµ`1(sw, w)

(
a22 + B1(sw, w)

) ,

˜̃
h(s, w) = wµ`1(sw, w)w

(
a22 + B1(sw, w)

)
,

where wA0(s, w) = A2(sw, w)/w. Setting s = s′ + a12/a22, it is easy to see that v1 is a (?1) point with
eigenvalues {−a22, a22}, and not a corner. ¤
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3. Dynamics

The next step in the continuous case would be to show the existence of invariant submanifolds passing
through the singularity in the dicritical or in the (?1) case — and this is the point where the continuous
theory and the discrete theory actually differ. Indeed, although it is possible to find a formal power series
expression for a holomorphic curve passing through the singularity and invariant under f , it turns out that
this power series in general is not converging.

An example of this phenomenon is given by the following apparently tame (?1) singularity: f1(z, w) = z exp(−αw) + w3 = z + w
(
−αz + w2 + O(zw)

)
,

f2(z, w) =
w

1 + w
= w + w

(
−w + O(w2)

)
,

with α, 1/α /∈ N∗. Then it is not difficult to show that there is a power series η(ζ) such that the formal
curve ζ 7→

(
ζη(ζ), ζ

)
is f -invariant; on the other hand, arguing as in [H1, p. 409] we see that any injective

f -invariant holomorphic curve passing through the origin must be contained in Fix(f) = {w = 0}, and thus
the power series η(ζ) cannot be converging.

It turns out that the problem lies in assuming that the origin is inside the invariant curve. The correct
replacement is the following: a parabolic curve for f is an injective holomorphic map ϕ: ∆→ C2 such that:

(i) ∆ is a simply connected domain with 0 ∈ ∂∆;
(ii) ϕ is holomorphic, injective, continuous at the origin and such that ϕ(0) = O;
(iii) f

(
ϕ(∆)

)
⊂ ϕ(∆);

(iv) fn
(
ϕ(ζ)

)
→ O as n→ +∞ for any ζ ∈ ∆.

Remark 3.1: It is not restrictive to assume that a parabolic curve is continuous up to the boundary.
Indeed, by (ii) and (iii) the map Φ = ϕ−1 ◦ f ◦ ϕ is a holomorphic self-map of ∆; by (iv) the iterates
of Φ converge to the origin. By Wolff’s lemma, this implies that the horocycles centered at the origin are
invariant under Φ; therefore the restriction of ϕ to any horocycle satisfies (i)–(iv) and it is continuous up to
the boundary.

So we need to prove the existence of parabolic curves for dicritical or (?1) singularities:

Theorem 3.1: Let f ∈ End(C2, O) be tangent to the identity. Then:

(i) if O is a singularity of type (?1) such that Fix(f) is smooth at the origin, then there exist ν(f) − 1
parabolic curves for f ;

(ii) if O is dicritical then there exist infinitely many parabolic curves for f .

Remark 3.2: If p is a (?1) singularity, not a corner, obtained in the Reduction Theorem 2.10 starting
from an isolated fixed point then p satisfies the conditions of Theorem 3.1.(i).

Proof : In case (i), after possibly a change of coordinates we can write{
f1(z, w) = z + `(z, w)[λ1z + A2(z, w)],
f2(z, w) = w + `(z, w)[λ2w + B2(z, w)],

with ν(A2), ν(B2) ≥ 2, λ1λ2 6= 0, λ1/λ2, λ2/λ1 /∈ N, and `(z, w) = (az + bw)κ with κ = ν(f) − 1 ≥ 1
and a 6= 0. Blowing up and focusing our attention to the chart containing [1 : 0] we get{

f̃1(z, y) = z + λ1a
κzκ+1 + O(zκ+2, zκ+1y),

f̃2(z, y) = y[1 + (λ2 − λ1)aκzκ + O(zκ+1, zκy)] + O(zκ+1).

Setting x = αz, where ακ = −λ1a
κ, we reduce to{

f̃1(x, y) = x− xκ+1 + O(xκ+2, xκ+1y),
f̃2(x, y) = y

[
1− (λ2/λ1 − 1)xκ + O(xκ+1, xκy)

]
+ O(xκ+1).

(3.1)
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Notice that a parabolic curve for f̃ cannot intersect the exceptional divisor, since all points of the curve
are attracted to the origin. Therefore the push-forward of a parabolic curve for f̃ is a parabolic curve for f
(tangent to [1 : 0] at the origin), and (i) will follow if we prove the existence of κ parabolic curves at the
origin for f̃ .

In case (ii) we can write {
f1(z, w) = z + `(z, w)[Pµ(z, w) + Aµ+1(z, w)],
f2(z, w) = w + `(z, w)[Qµ(z, w) + Bµ+1(z, w)],

with µ ≥ 1, ν(Aµ+1), ν(Bµ+1) ≥ µ + 1, and zQµ − wPµ ≡ 0. Writing `(z, w) = Rκ(z, w) + Cκ+1(z, w)
with κ + µ = ν(f) ≥ 2 and ν(Cκ+1) ≥ κ + 1, we are interested to the directions [u0 : v0] ∈ P1 such that

Rκ(u0, v0)Pµ(u0, v0) 6= 0. (3.2)

Up to a linear change of coordinates we can assume [u0 : v0] = [1 : 0], but what we are going to say applies
to the other directions too.

Blowing up and focusing our attention to the chart containing [1 : 0] we get{
f̃1(z, y) = z + Rκ(1, y)Pµ(1, y)zν + O(zν+1),

f̃2(z, y) = y[1 + O(zν)] + O(zν),

where ν = ν(f). Setting x = αz, with αν−1 = −Rκ(1, 0)Pµ(1, 0), we reduce to{
f̃1(x, y) = x− xν + O(xν+1, xνy),
f̃2(x, y) = y[1 + O(xν)] + O(xν).

(3.3)

Again, the push-forward of any parabolic curve for f̃ will be a parabolic curve for f tangent to [1 : 0];
therefore if we prove the existence of parabolic curves for f̃ we have proved (ii), because we can repeat the
argument for the infinite number of directions satisfying (3.2).

Summing up, we must prove the existence of r parabolic curves at the origin for a map of the form{
f1(z, w) = z − zr+1 + O(zr+2, zr+1w),
f2(z, w) = w

(
1− λzr + O(zr+1, zrw)

)
+ zr+1ψr(z), (3.4)

where r ≥ 1, λ /∈ N∗ and ψr ∈ O1. This is a consequence of the general results of [H1], adapted as in [H2]
if r > 1. We describe here a slightly simplified approach, which is enough for our aims.

First of all, since λ 6= 1, a linear change of coordinates allows to replace ψr(z) in (3.4) by zψr+1(z).
Then blowing up and checking nearby [1 : 0] we see that f̃ is still of the form (3.4) but with λ−1 instead of λ.
This means that after a finite number of blow-ups and linear change of coordinates we can assume Reλ < 0
and ψr = zψr+1 in (3.4). Furthermore, the change of variables Z = z, W = w +

(
ψr+1(0)/(λ− 2)

)
z2 allows

to replace zψr+1 by z2ψr+2, and thus we have{
z1 := f1(z, w) = z − zr+1 + O(zr+2, zr+1w),
w1 := f2(z, w) = w

(
1− λzr + O(zr+1, zrw)

)
+ zr+3ψr+2(z). (3.5)

Now set Dδ,r = {ζ ∈ C | |ζr − δ| < δ}. This set has r connected (and simply connected) components,
all of them with the origin in the boundary. Put E(δ) = {u ∈ Hol(Dδ,r, C2) | u(ζ) = ζ2uo(ζ), ‖uo‖∞ <∞};
it is a Banach space with the norm ‖u‖E(δ) = ‖uo‖∞. For u ∈ E(δ) put fu(ζ) = f1

(
ζ, u(ζ)

)
. The classical

Fatou theory for maps of the form f(ζ) = ζ − ζr+1 + O(ζr+2) shows that there exists a δ0 = δ0(‖uo‖∞) > 0
such that if 0 < δ < δ0 then fu sends every component of Dδ,r into itself, and |(fu)n(ζ)| = O(1/n1/r).

Assume we have found u ∈ E(δ) such that

u
(
f1

(
ζ, u(ζ)

))
= f2

(
ζ, u(ζ)

)
(3.6)
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for all ζ ∈ Dδ,r; then the restriction of ϕ(ζ) =
(
ζ, u(ζ)

)
to any component of Dδ,r is a parabolic curve for f .

So we must find a solution of (3.6). If f is given by (3.5), and z, z1 belongs to the same component
of Dδ,r, we can define

H(z, w) = w − zλ

zλ
1

w1 = O(zr+1w, zrw2, zr+3); (3.7)

then for u ∈ E(δ) we set

Tu(ζ0) = ζλ
0

∞∑
n=0

ζ−λ
n H

(
ζn, u(ζn)

)
,

where ζn = (fu)n(ζ0). If we choose u and δ so that ‖uo‖ ≤ c0 and δ ≤ δ0(c0), then H
(
ζn, u(ζn)

)
is well-defined

for any ζ0 ∈ Dδ,r; furthermore, since Reλ < 0, the series is normally convergent in Dδ,r, and Tu ∈ E(δ).
Furthermore, it is not difficult to see that u is a fixed point of T iff it satisfies (3.6); therefore we are left to
finding a fixed point for T .

Take δ < δ0(1) and u ∈ E(δ) with ‖uo‖∞ ≤ 1. Then ζ1 = ζ0 − ζr+1
0 − ζr+2

0 ψu(ζ0), where ‖ψu‖∞ is
bounded independently of u. Then

1
ζr
1

=
1
ζr
0

+ r + ζ0θu(ζ0), (3.8)

with again ‖θu‖∞ bounded independently of u. Summing up from 1 to n we get

1
ζr
n

=
1
ζr
0

(1 + nrζr
0 )

1 +
ζr
0

1 + nrζr
0

n−1∑
j=0

ζjθu(ζj)

 .

Since ζj = O(1/j1/r), the quantity in square brackets is uniformly (with respect to u and ζ0) close to 1 if δ
is small enough; therefore we have

|ζn|r ≤ 2
|ζ0|r

|1 + nrζr
0 |

(3.9)

as soon as δ is small enough. From this it follows the existence for any s > r of a constant Cs = Cs(δ) ≥ 1
such that

∞∑
n=0

|ζn|s ≤ Cs|ζ0|s−r. (3.10)

Now assume that ‖uo‖∞ ≤ 1 and |u′(ζ)| ≤ |ζ| for all ζ ∈ Dδ,r; in particular, ‖(uo)′‖∞ ≤ 3, and ‖θ′u‖∞
too is bounded indipendently of u. Let K = ‖(ζθu)′‖∞. Differentiating (3.8) with respect to ζ0 we get

dζ1

dζ0
=

ζr+1
1

ζr+1
0

[
1− ζr+1

0

r

(
θu(ζ0) + ζ0θ

′
u(ζ0)

)]
.

In particular if δ < r/(2KCr+1) we have ∣∣∣∣dζ1

dζ0

∣∣∣∣ ≤ 2
|ζ1|r+1

|ζ0|r+1
.

We can now argue by induction. Assume that∣∣∣∣dζj

dζ0

∣∣∣∣ ≤ 2
|ζj |r+1

|ζ0|r+1
(3.11)

for j = 1, . . . , n− 1. Since
1
ζr
n

=
1
ζr
0

+ nr +
n−1∑
j=0

ζjθu(ζj),
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differentiating with respect to ζ0 we get

dζn

dζ0
=

ζr+1
n

ζr+1
0

1− ζr+1
0

r

n−1∑
j=0

θ̂′u(ζj)
dζj

dζo

 ,

where θ̂u(ζ) = ζθu(ζ). Now, (3.10) and (3.11) yield∣∣∣∣∣∣
n−1∑
j=0

θ̂′u(ζj)
dζj

dζo

∣∣∣∣∣∣ ≤ 2KCr+1

|ζ0|r
;

therefore again if δ < r/(2KCr+1) we get (3.11) for j = n too.
Fix then δ small, and take u ∈ E(δ) with ‖uo‖∞ ≤ 1. Then (3.7) and (3.10) yield

|Tu(ζ)| ≤ K1|ζ|3,
for a suitable K1 ≥ 1; in particular, if δ < 1/K1 we get ‖(Tu)o‖∞ ≤ 1. Analogously, if moreover u satisfies
|u′(ζ)| ≤ |ζ|, then (3.7), (3.10) and (3.11) yield∣∣∣∣dTu

dζ
(ζ)

∣∣∣∣ ≤ K2|ζ|2;

therefore if δ < 1/K2 we get |(Tu)′(ζ)| ≤ |ζ|. This means that we can choose δ > 0 so small that T sends
into itself the convex closed set

F(δ) = {u ∈ E(δ) | ‖uo‖∞ ≤ 1, |u′(ζ)| ≤ |ζ|}.
Then it suffices to show that, for δ small enough, T is a contraction on F(δ). And this can be done as
in [H1, Proposition 4.8], using (3.10) as before. ¤

We have finally collected all we need to prove our main theorem:

Theorem 3.2: Let f ∈ End(C2, O) be tangent to the identity, and assume that the origin is an isolated
fixed point. Then there exist (at least) ν(f)− 1 parabolic curves at the origin for f .

Proof : First of all we apply the Reduction Theorem 2.10, and replace f by f̃ ∈ End(M, S). As already
remarked in the proof of Theorem 3.1, the push-forward of any parabolic curve for f̃ will be a parabolic
curve for f . Notice furthermore that, by Lemma 2.2.(ii) and (2.1), the order of f̃ at any singular point is at
least ν(f).

If f̃ has a dicritical singularity, by Theorem 3.1 we are done. If p ∈ S is a singularity which is not a
corner and of type (?1), we are done again. The only possibility left is that no singularity is dicritical, and
that if p ∈ S is a singularity which is not a corner, it is necessarily of type (?2), and thus its residual index
with respect to S is zero. Therefore to conclude we must prove that if no singularity of f̃ is dicritical, then
there is at least a singularity p ∈ S which is not a corner and with residual index different from zero.

Assume then, by contradiction, that the singularities of f̃ are only non-dicritical corners or of type (?2).
We have proven the following formal properties of the residual index:
(i) the sum of the residual indeces over a branch S1 of S is equal to the first Chern class of the normal

bundle of S1 in M (Theorem 1.2);
(ii) if p is a singularity belonging to a branch S1, then the residual index of the corner over p along the

proper transform of S1 is one less the residual index of p along S1 (Proposition 1.3.(iii));
(iii) the product of the residual indeces along the two branches of a corner of type (?1) is one (Proposition 2.9);
(iv) at least one of the residual indeces along the two branches of a corner of type (?2) is zero (Theo-

rem 2.10.(vi)).
Exactly as in [CS], the main consequence of these properties (under the to-be-proven-contradictory assump-
tion) is that the residual indeces λ1, . . . , λk of the singular directions p1, . . . , pk of the original map f with
respect to the exceptional divisor of the first blow-up of the origin are completely determined by the geomet-
rical combinatorics of the resolution S (where by geometrical combinatorics we mean the relative positions
of the branches of S, the Chern classes of their normal bundles, and the placement of the (?2) corners). In
particular, arguing as in [CS, Proposition 3.3] we see that λ1, . . . , λk must be non-negative rational numbers;
but λ1 + · · ·+ λk = −1 by Theorem 1.2, and this is a contradiction. ¤
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Actually, the last part of the argument yields a generalization of Theorem 0.2 to singular directions
whose residual index is not a non-negative rational number:

Corollary 3.3: Let f ∈ End(C2, O) be tangent to the identity, and assume that the origin is an isolated fixed
point. Let [v] ∈ P1 be a singular direction of f such that ι[v](f̃ , P1) /∈ Q+ (where here P1 is the exceptional

divisor of the blow-up of the origin, and f̃ is the blow-up of f). Then there are ν(f) − 1 parabolic curves
tangent to [v] at the origin.

Proof : The point is that if applying the Reduction Theorem 2.10 to f̃ at [v] we end up only with non-
dicritical corners or singularities of type (?2), then the argument quoted at the end of the previous proof
forces ι[v](f̃ , P1) ∈ Q+. Therefore we must obtain a dicritical singularity or a non-corner of type (?1) — and
thus at least ν(f̃) − 1 parabolic curves for f̃ at [v]. Blowing down we then get at least ν(f) − 1 parabolic
curves for f at the origin, as claimed. ¤

As a final application, we can prove the existence of parabolic curves even when dfO is not diagonalizable:

Corollary 3.4: Let f ∈ End(C2, O) be such that dfO = J2, the canonical Jordan matrix associated to the
eigenvalue 1, and assume that the origin is an isolated fixed point. Then there is at least one parabolic curve
tangent to [1 : 0] for f at the origin.

Proof : Write f = (f1, f2) and

f1(z, w) = z + w + a1
11z

2 + 2a1
12zw + a2

22w
2 + · · · ,

f2(z, w) = w + a2
11z

2 + 2a2
12zw + a2

22w
2 + a2

111z
3 + · · ·

In [A] we proved the existence of (at least) one parabolic curve for f at the origin but for the case a2
11 = 0,

a1
11+a2

12 = 0 and (a1
11−a2

12)
2+2a2

111 = 0. In this case, blowing up the origin and looking at a neighbourhood
of [1 : 0] (the only fixed point of the blow-up f̃ of f) we find that f̃ is of the form

f̃(z1, z2) =
(
z1 + αz2

1 + z1z2 + O(‖z‖3), z2 − 2α2z2
1 − 3αz1z2 − z2

2 + O(‖z‖3)
)
,

for some α ∈ C. This map has two singular directions, [1 : −α] and [0 : 1]. The latter is tangent to the
exceptional divisor (which is a parabolic curve for f̃) and thus it should be discarded, because it is killed
blowing down. But the former, even though as characteristic direction is degenerate, gives rise to a honest
parabolic curve. In fact, the residual index of f̃ at [1 : −α] with respect to the exceptional divisor is −1/2,
and so we can apply Corollary 3.3. This parabolic curve is not tangent to the exceptional divisor, and thus
it can be blown down, producing the parabolic curve tangent to [1 : 0] we were looking for. ¤
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