
Chapter 2.1
Taut manifolds

We are now ready to enter the main part of this book, devoted to several complex variables.
Up to now, we mainly worked on hyperbolic Riemann surfaces; therefore the first problem
we must solve is to find out which kind of manifold is the right multidimensional analogue
of hyperbolic Riemann surfaces. We recall that in this book every manifold is, unless
otherwise stated, connected, Hausdorff and second countable, and that a submanifold of
a manifold X is always imbedded, i.e., it is a subset of X which is a manifold with the
structure inherited by X.

We saw that the main property of hyperbolic Riemann surfaces was Montel’s theorem:
a family of holomorphic functions into a hyperbolic Riemann surface is always normal. As
often happens in mathematics, a characterization gives rise to a definition: a taut manifold
is, essentially, a complex manifold X such that Hol(Y,X) is normal for every complex
manifold Y . In the first section we shall describe several examples of taut manifolds (and
other examples will be introduced in chapter 2.3), showing that, at least, we are working
with a sufficiently large amount of complex manifolds. In the second section we shall show
that function theory on taut manifolds is akin to function theory on hyperbolic Riemann
surfaces, thus justifying our choice; indeed, we shall generalize practically all consequences
of Montel’s theorem we presented in sections 1.1.4 and 1.3.1. The knowledgeable reader will
recognize in it a fancy version of classical function theory on bounded domains developed
mainly by H. Cartan and Carathéodory in the thirties.

The last section is devoted to introducing iteration theory on taut manifolds. The
situation, this time, is quite different from the one-dimensional case. The main reason is,
roughly speaking, that the image of a limit of a sequence of iterates should be a closed
connected submanifold; therefore, in the one-dimensional case the image can be only a
point or the whole manifold, whereas in several variables there are many intermediate
possibilities. For the moment, we shall limit ourselves to a preliminary discussion of the
situation; the results we get will trace the way to the full development we shall undertake
in chapter 2.4.

A final warning: in this chapter we shall talk for the first time of pseudoconvex
domains. This book is by no means an introduction to the subject; you must already
know (at least by hearsay) the basic theory. If you don’t, you may probably read this
chapter, and the next one, without losing anything important, but you will be inesorably
stuck in chapter 2.3. So please, if you need to, look at Krantz [1982], or at an analogous
book, before it is too late.

2.1.1 Definitions and examples

In the first part of this book we singled out the hyperbolic Riemann surfaces, so to have
at our disposal Montel’s theorem and its corollaries. As already mentioned, in this section
we shall introduce taut manifolds, the multidimensional versions of hyperbolic Riemann
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surfaces (but see also chapter 2.3), and other related concepts. We shall moreover describe
several examples, leaving function theory to the next section.

We recall the definition of normality. Let X, Y be two complex manifolds; a family F
of holomorphic maps from X to Y is normal if every sequence in F admits either a
convergent subsequence or a compactly divergent subsequence.

Normality is a compactness condition. Given a complex manifold X, denote by X∗ its
one-point compactification (see Kelley [1955], p. 150). Since X is Hausdorff, locally com-
pact, connected and second countable, X∗ is Hausdorff, locally compact, second countable
and hence metrizable. In particular, for every complex manifold Y the space C0(Y,X∗) is
second countable, and a subset of C0(Y,X∗) is compact iff it is sequentially compact. It
follows then that a family F ⊂ Hol(X,Y ) is normal iff F ∪ {1} ⊂ C0(Y,X∗) is relatively
compact, where we are denoting by 1 both the point at infinity of X∗ and any map of
constant value 1.

A complex manifold X is taut if Hol(∆,X) is a normal family. Since Hol(∆,X) is
closed in C0(∆,X), this is equivalent to say that Hol(∆,X)∪{1} ⊂ C0(∆,X∗) is compact.
The usefulness of this definition is that ∆ is such a standard space that tautness implies
the compactness of Hol(Y,X) ∪ {1} for every complex manifold Y , that is exactly the
property we would like to work with. The proof relies on the Ascoli-Arzelà theorem, as
usual, and thus is divided in two parts: first, we prove the equicontinuity with respect to
some suitable distance; second, we prove the closure of Hol(Y,X) ∪ {1} in C0(Y,X∗).

Proposition 2.1.1: Let X be a complex manifold, and d a distance on X compatible with
its topology. Assume Hol(∆,X) is equicontinuous with respect to d; then Hol(Y,X) is
equicontinuous with respect to d for every complex manifold Y .

Proof: Assume, by contradiction, that there is a complex manifold Y such that Hol(Y,X) is
not equicontinuous. Hence there exist ε > 0, a point z0 ∈ Y and sequences {z∫} ⊂ Y
and {f∫} ⊂ Hol(Y,X) such that z∫ → z0 and d

°
f∫(z∫), f∫(z0)

¢
≥ ε for all ∫ ∈ N. Choosing

a suitable local coordinate system we can then assume Y to be the euclidean unit ball B
of some Cn, and take z0 = 0.

Define g∫ ∈ Hol(∆,X) by g∫(≥) = f∫

°
≥z∫/kz∫k

¢
. Then kz∫k → 0 as ∫ → +1, and

d
°
g∫(kz∫k), g∫(0)

¢
= d

°
f∫(z∫), f∫(0)

¢
≥ ε

for all ∫ ∈ N, and hence Hol(∆,X) is not equicontinuous, contradiction, q.e.d.

And so

Theorem 2.1.2: Let X be a taut complex manifold. Then Hol(Y,X) is a normal family
for every complex manifold Y .

Proof: Fix a distance d on X∗ compatible with its topology. The tautness of X implies
that Hol(∆,X)∪{1} is compact in C0(∆,X∗) and thus, by the Ascoli-Arzelà theorem, it
is equicontinuous with respect to d. Therefore, by Proposition 2.1.1, Hol(Y,X) is equicon-
tinuous with respect to d for every complex manifold Y .
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Now suppose there is a complex manifold Y such that Hol(Y,X) is not normal. So
Hol(Y,X) ∪ {1} is not a compact subset of C0(Y,X∗); since it is equicontinuous with
respect to d, it follows that Hol(Y,X)∪{1} cannot be closed in C0(Y,X∗), by the Ascoli-
Arzelà theorem. In particular, there is a sequence {f∫} ⊂ Hol(Y,X) converging toward
a map f ∈ C0(Y,X∗) which is neither in C0(Y,X) nor the constant map 1, because
Hol(Y,X) is closed in C0(Y,X). So there are a point z0 ∈ Y such that f(z0) = 1, and
f is not identically 1 in any neighbourhood of z0. Hence, choosing a suitable system of
local coordinates, without loss of generality we can assume Y to be the unit ball B of
some Cn, and z0 = 0.

Since f 6≡ 1, there is z1 ∈ B such that f(z1) 6= 1. Define g∫ ∈ Hol(∆,X) and
g ∈ C0(∆,X∗) setting g∫(≥) = f∫(≥z1/kz1k) and g(≥) = f(≥z1/kz1k). Then g does not
belong to C0(∆,X)∪ {1} and g∫ → g as ∫ → +1, that is Hol(∆,X)∪ {1} is not closed
in C0(∆,X∗), contradiction, q.e.d.

Corollary 2.1.3: A Riemann surface is taut iff it is hyperbolic.

Proof: Theorems 1.1.43, 2.1.2 and Proposition 1.1.52, q.e.d.

Before giving other examples of taut manifolds, we introduce two notions strictly
linked to tautness.

Let D be a domain of a complex manifold X. We shall say that D is tautly imbedded
in X if Hol(∆,D) is relatively compact in Hol(∆,X); that D has simple boundary if every
holomorphic map ϕ:∆ → X such that ϕ(∆) ⊂ D and ϕ(∆) ∩ @D 6= /∞ is constant. Note
that every domain in a Riemann surface has simple boundary, by the open map theorem.

Again, choosing ∆ is just a matter of convenience:

Proposition 2.1.4: Let D be a domain of a complex manifold X. Then:
(i) D is tautly imbedded in X iff Hol(Y,D) is relatively compact in Hol(Y,X) for every

complex manifold Y ;
(ii) D has simple boundary iff every holomorphic map f :Y → X such that f(Y ) ⊂ D and
f(Y ) ∩ @D 6= /∞ is constant, where Y is any complex manifold.

Proof: (i) One direction is obvious. Conversely, assume D tautly imbedded in X; in
particular, since Hol(∆,D) contains the constant maps, D is relatively compact in X.

Fix a distance d on X inducing the manifold topology. Since the closure of Hol(Y,D)
in Hol(Y,X) is contained in C0(Y,D) and D is compact, by the Ascoli-Arzelà theorem
Hol(Y,D) is relatively compact in Hol(Y,X) iff it is equicontinuous with respect to d. The
assertion then follows from Proposition 2.1.1.

(ii) Again, one direction is clear. Conversely, assume there is a complex manifold Y
and a non-constant holomorphic map f :Y → X such that f(Y ) ⊂ D and f(Y )∩ @D 6= /∞.
Choosing a suitable system of local coordinates, we can assume Y to be the unit ball B
of some Cn, and f(0) ∈ @D. Then apply the usual trick: since f is not constant, there
is z1 ∈ B such that f(0) 6= f(z1). Then ϕ:∆ → X defined by ϕ(≥) = f

°
≥z1/kz1k

¢
is a

non-constant holomorphic map such that ϕ(∆) ⊂ D and ϕ(∆)∩ @D 6= /∞, and thus D has
not simple boundary, q.e.d.



106 2.1 Taut manifolds

A domain D ⊂ X which is taut as complex manifold need not to be tautly imbedded
(it can even be not relatively compact: think of H+ in C). The best we can do is:

Proposition 2.1.5: Let X be a taut manifold, and D ⊂⊂ X a relatively compact domain.
Then D is tautly imbedded in X.

Proof: Since no sequence in Hol(∆,D) can be compactly divergent in X, Hol(∆,D) is
relatively compact in Hol(∆,X), q.e.d.

On the other hand, a tautly imbedded domain need not to be taut:

Proposition 2.1.6: A tautly imbedded domain D ⊂ X is taut iff for every holomorphic
map ϕ ∈ Hol(∆,D) ⊂ Hol(∆,X) we have either ϕ(∆) ⊂ D or ϕ(∆) ⊂ @D. In particular,
a tautly imbedded domain with simple boundary is taut.

Proof: Assume D taut, and take a sequence {ϕ∫} ⊂ Hol(∆,D) which is converging toward
ϕ ∈ Hol(∆,X). Since D is taut, either ϕ ∈ Hol(∆,D) or, up to a subsequence, {ϕ∫} is
compactly divergent, and thus ϕ(∆) ⊂ @D.

Conversely, take a sequence {ϕ∫} ⊂ Hol(∆,D). Since D is tautly imbedded in X, there
is a subsequence {ϕ∫j} converging toward a map ϕ ∈ Hol(∆,X). Hence, by assumption,
either ϕ(∆) ⊂ D — and so ϕ∫j → ϕ in Hol(∆,X) — or ϕ(∆) ⊂ @D — and thus {ϕ∫j} is
compactly divergent, q.e.d.

At this point, the knowledgeable reader may begin to smell pseudoconvexity approach-
ing. The link is provided by the classical Kontinuätssatz:

Theorem 2.1.7: Let D be a bounded domain in Cn. Then D is pseudoconvex iff for every
family F ⊂ Hol(∆,D) ∩ C0(∆,D) such that

S
ϕ∈F

ϕ(@∆) ⊂⊂ D we have
S

ϕ∈F
ϕ(∆) ⊂⊂ D.

A proof can be found, e.g., in Krantz [1982].
Comparing Proposition 2.1.6 with Theorem 2.1.7 one can suspect that every bounded

taut domain is pseudoconvex. To confirm this suspicion, we first characterize tautly imbed-
ded domains in Cn, thus officially opening our list of several variables examples:

Proposition 2.1.8: A domain D ⊂ Cn is tautly imbedded in Cn iff it is bounded.

Proof: We have already observed that a tautly imbedded domain is always relatively com-
pact. Conversely, let D ⊂⊂ Cn be bounded, and take a sequence {ϕ∫} ⊂ Hol(∆,D). De-
note by pj :Cn → C the projection onto the j-th coordinate; then there exists a bounded
domain ≠ ⊂⊂ C such that pj(D) ⊂⊂ ≠ for every j = 1, . . . , n. Now, applying Montel’s
theorem to {pj ◦ ϕ∫} ∈ Hol(∆,≠) for j = 1, . . . , n, we can extract a subsequence {ϕ∫k}
such that {pj ◦ ϕ∫k} is converging in Hol(∆,≠) for every j = 1, . . . , n. Thus {ϕ∫k} is
converging in Hol(∆,Cn), q.e.d.

Then
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Proposition 2.1.9: Every bounded taut domain D ⊂ Cn is pseudoconvex.

Proof: Let F ⊂ Hol(∆,D) ∩ C0(∆,D) be a family of continuous maps holomorphic in ∆
such that

S
ϕ∈F ϕ(@∆) is relatively compact in D. In particular,

S
ϕ∈F ϕ(@∆) is bounded;

hence, by the maximum principle,
S

ϕ∈F ϕ(∆) is bounded too, and, by Proposition 2.1.8,
F is relatively compact in Hol(∆,Cn). In particular, since

S
ϕ∈F ϕ(@∆) ⊂⊂ D, no se-

quence in F can be compactly divergent. By the tautness of D, F is then relatively
compact in Hol(∆,D) — and thus in C0(∆,D). It follows that

S
ϕ∈F ϕ(∆) ⊂⊂ D, and

D is pseudoconvex, q.e.d.

As a consequence, taut domains are by no means generic; in particular, not every
tautly imbedded domain is taut.

Now we proceed toward the construction of examples of taut manifolds. We shall
be mainly interested in taut domains; so we begin looking for conditions allowing the
application of Proposition 2.1.6.

Let D be a domain in a complex manifold X. A peak function for D at a point x ∈ @D
is a holomorphic function f defined in a neighbourhood of D such that f(x) = 1 and
|f(z)| < 1 for all z ∈ D \ {x}. If |f(z)| < 1 only for z ∈ D, f will be a weak peak function.
A local (weak) peak function for D at x is a (weak) peak function for D ∩ U at x, where
U is a neighbourhood of x in X. Then

Proposition 2.1.10: Let D be a domain in a complex manifold X. Then
(i) if D is tautly imbedded in X and there is a local weak peak function for D at each

point of @D, then D is taut;
(ii) if there is a local peak function for D at each point of @D, then D has simple boundary.

Proof: (i) By Proposition 2.1.6, it suffices to show that for every ϕ ∈ Hol(∆,X) such that
ϕ(∆) ⊂ D we have either ϕ(∆) ⊂ D or ϕ(∆) ⊂ @D.

Let E = ϕ−1(@D). If E is empty, we are done. Otherwise, let ≥0 ∈ E such that
x0 = ϕ(≥0) ∈ @D. Let U be a neighbourhood of x0 in X such that there exists a weak
peak function ∏ for D∩U at x0, and V a neighbourhood of ≥0 such that ϕ(V ) ⊂ U . Then
∏◦ϕ is holomorphic in V and |∏◦ϕ| attains its maximum at ≥0. Therefore ∏◦ϕ ≡ ∏

°
ϕ(≥0)

¢

on V , and hence ϕ(V ) ⊂ @D. In other words, V ⊂ E; therefore, E is open, is obviously
closed and, since ∆ is connected, E = ∆, and we are done.

(ii) The same argument works, using local peak functions instead of local weak peak
functions, q.e.d.

And so we finally get true several variables examples of taut domains:

Corollary 2.1.11: If D ⊂⊂ Cn is a convex domain, and x ∈ @D, then there exists a weak
peak function for D at x. In particular, every bounded convex domain of Cn is taut.

Proof: In fact, there is a complex linear functional φ:Cn → C such that Reφ(x) > Reφ(z)
for all z ∈ D. Then ∏ = exp

°
φ− φ(x)

¢
is a weak peak function for D at x, and the latter

assertion follows from Proposition 2.1.10, q.e.d.
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In this corollary we made use of global peak functions, whereas Proposition 2.1.10
requires only local peak functions. The quick reader will immediately leap to the conclu-
sion: every strongly pseudoconvex domain is taut, for it is locally convex. To prove this
assertion, and to fix notations from now on, we digress a bit listing some definitions.

A domain ≠ ⊂ RN has Cr boundary (or is a Cr domain), where r = 1 2, . . . , 1, ω
(and Cω means real analytic), if there is a Cr function ρ:RN → R such that:
(i) ≠ = {x ∈ RN | ρ(x) < 0},
(ii) @≠ = {x ∈ RN | ρ(x) = 0} and
(iii) grad ρ is not vanishing on @≠.
ρ is a defining function for ≠; it is easy to check that if ρ1 is another defining function
for ≠ then there is a never vanishing Cr function √:RN → R+ such that

ρ1 = √ρ. (2.1.1)

If ≠ ⊂ RN is a Cr domain with defining function ρ, @≠ is a Cr manifold embedded
in RN . In particular, for every x ∈ @≠ the tangent space of @≠ at x can be identified with
the kernel of dρx (which by (2.1.1) is independent of the chosen defining function), that is

Tx(@≠) =
Ω

v ∈ RN

ØØØØ
NX

j=1

@ρ

@xj
(x) vj = 0

æ
.

The outer unit normal vector nx at x is the unit vector parallel to −grad ρ(x); thus Tx(@≠)
is just the hyperplane orthogonal to nx.

If ρ:RN → R is a C2 function, the Hessian Hρ,x of ρ at x ∈ RN is the symmetric
bilinear form

∀v, w ∈ RN Hρ,x(v, w) =
NX

h,k=1

@2ρ

@xh@xk
(x) vhwk.

It is easy to check that a C2 domain ≠ ⊂ RN is convex iff for every x ∈ @≠ the symmetric
bilinear form Hρ,x is positive semidefinite on Tx(@≠), where ρ is any defining function
for ≠ (see, e.g., Krantz [1982], p. 102). We shall say that a C2 domain ≠ ⊂ Rn is strongly
(or strictly) convex at x ∈ @≠ if for some C2 defining function ρ for ≠ the Hessian Hρ,x is
positive definite on Tx(@≠); that ≠ is strongly (or strictly) convex if it is so at each point
of @≠. Note that, by (2.1.1), the definition is independent of the chosen defining function;
it can even be proved that every strongly convex domain ≠ has a C2 defining function ρ
such that Hρ,x is positive definite on the whole of RN for every x ∈ @≠ (see Krantz [1982],
p. 101). It is easy to check that a strongly convex domain ≠ is strongly convex in the
elementary sense, that is tx+(1− t)y ∈ ≠ for every t ∈ (0, 1) and x, y ∈ ≠, x 6= y; anyway,
in this book a strongly convex domain will always be a C2 domain satisfying the previous
definition. Finally, a convex domain which is not strongly convex will be sometimes called
weakly convex.
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Now we move on to the complex case. Let D ⊂⊂ Cn be a bounded domain with
C2 boundary and defining function ρ:Cn → R. The complex tangent space TC

x (@D)
of @D at x ∈ @D is the kernel of @ρx, that is

TC
x (@D) =

Ω
v ∈ Cn

ØØØØ
nX

j=1

@ρ

@zj
(x) vj = 0

æ
.

As usual, TC
x (@D) does not depend on the particular defining function. Note furthermore

that the outer unit normal vector nx is parallel to the complex gradient vector

@ρ

@z̄
(x) =

µ
@ρ

@z̄1
(x), . . . ,

@ρ

@z̄n
(x)

∂
.

The following lemma is now quite clear:

Lemma 2.1.12: Let D ⊂⊂ Cn be a bounded strongly convex domain in Cn, and
take x ∈ @D. Then there exists a peak function for D at x; in particular, D has sim-
ple boundary.

Proof: Let ρ:Cn → R be a defining function for D, and define φ:Cn → C by

φ(z) =
nX

j=1

@ρ

@z̄j
(x) (zj − xj).

Now
Reφ(z) =

d

dt

∑
ρ
°
tz + (1− t)x

¢∏

t=0

.

Since D is strongly convex, if z ∈ D \ {x} we have

∀t ∈ (0, 1) ρ
°
tz + (1− t)x

¢
< 0;

in particular, Reφ(z) > 0 for all z ∈ D \ {x}. Therefore ∏(z) = exp
°
−φ(z)

¢
is a peak

function for D at x, q.e.d.

The Levi form Lρ,x of ρ at x ∈ Cn is the hermitian form

∀v, w ∈ Cn Lρ,x(v, w) =
nX

h,k=1

@2ρ

@zh@z̄k
(x) vhwk.

Then a bounded C2 domain D ⊂⊂ Cn is strongly (or strictly) pseudoconvex at a
point x ∈ @D if for some (and hence all) C2 defining function ρ for D the Levi form Lρ,x

is positive definite on TC
x (@D); D is strongly (or strictly) pseudoconvex if it is so at each

point of @D. We stress that, in this book, a strongly pseudoconvex domain is always
bounded and with C2 boundary. Note that if D is strongly pseudoconvex then there is
again a defining function ρ for D such that the Levi form Lρ,x is positive definite on Cn

for every x ∈ @D (Krantz [1982], p. 109).
The link between strongly pseudoconvex domains and strongly convex domains is

provided by the following (well known) result:
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Proposition 2.1.13: A bounded C2 domain D ⊂⊂ Cn is strongly pseudoconvex iff for
every x ∈ @D there is a neighbourhood U ⊂ Cn and a biholomorphism Φ:U → Φ(U) such
that Φ(U ∩D) is strongly convex.

Proof: Assume first D strongly pseudoconvex, and let ρ:Cn → R be a C2 defining function
such that Lρ,x is positive definite on Cn for every x ∈ @D. Fix x0 ∈ @D; up to an affine
transformation of Cn, we can assume x0 = 0 and nx0 = @ρ/@z̄(x0) = (−1, 0, . . . , 0). Then
the second-order Taylor expansion of ρ about x0 is

ρ(z) = 2 Re
Ω
−z1 +

1
2

nX

h,k=1

@2ρ

@zh@zk
(0) zhzk

æ
+ Lρ,0(z, z) + o(kzk2).

Define Φ:Cn → Cn by





Φ1(z) = z1 −
1
2

nX

h,k=1

@2ρ

@zh@zk
(0) zhzk,

Φj(z) = zj for j = 2, . . . , n.

(2.1.2)

Since dΦ0 = id, Φ is a biholomorphism between a neighbourhood V of the origin and its
image. Furthermore

∀w ∈ Φ(V ) ρ
°
Φ−1(w)

¢
= −2 Rew1 + Lρ,0(w,w) + o(kwk2).

Therefore the Hessian of ρ ◦Φ−1 at the origin in the real coordinates is the Levi form of ρ
at 0, which is positive definite. So Φ(V ∩D) is strongly convex at Φ(x0) and thus, by the
continuity of the second-order derivatives, we can find a neighbourhood U ⊂⊂ V of x0

such that Φ(U ∩D) is strongly convex.
To prove the converse, it suffices to show that a strongly convex domain is strongly

pseudoconvex, and that strong pseudoconvexity is preserved by biholomorphic maps.
Let D ⊂⊂ Cn be a C2 domain with defining function ρ. Then taking x ∈ @D

and v ∈ Cn we have

Hρ,x(v, v) = 2Lρ,x(v, v) + 2 Re
nX

h,k=1

@2ρ

@zh@zk
(x) vhvk.

Assume now D strongly convex at x ∈ @D. Then if v ∈ TC
x (@D) ⊂ Tx(@D), with v 6= 0,

we have iv ∈ Tx(@D) too, and thus

Lρ,x(v, v) =
1
4

h
Hρ,x(v, v) + Hρ,x(iv, iv)

i
> 0,

that is D is strongly pseudoconvex at x.
Finally, if Φ:U → V is a biholomorphism of a neighbourhood U of x ∈ @D we have

∀v, w ∈ Cn Lρ,x(v, w) = Lρ◦Φ−1,Φ(x)

°
dΦx(v), dΦx(w)

¢
,

and so strong pseudoconvexity is preserved by biholomorphic maps, q.e.d.
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In particular, every strongly convex domain is strongly pseudoconvex, and conversely
every strongly pseudoconvex domain is locally convex.

We do not want to spend words about the importance and omnipresence of strongly
pseudoconvex domains in complex analysis; any book on function theory of several complex
variables will do the job incommensurably better. Anyway, it should be clear why the
following corollary provides us with quite an ample list of taut domains:

Corollary 2.1.14: Every strongly pseudoconvex domain in Cn has simple boundary and,
in particular, is taut.

Proof: Let D be a strongly pseudoconvex domain in Cn, and x ∈ @D. Then there exists a
neighbourhood U of x and a holomorphic injective map φ:U → Cn such that φ(U ∩D) is
strongly convex. Hence using Lemma 2.1.12 we can construct a local peak function for D
at x, and the assertion follows from Proposition 2.1.10, q.e.d.

So we have plenty of taut domains. Examples of generic taut manifolds can be con-
structed using the following

Lemma 2.1.15: (i) A closed submanifold Y of a taut manifold X is taut.
(ii) The product of two taut manifolds is taut.

Proof: (i) It suffices to notice that Hol(∆, Y ) is closed in Hol(∆,X).
(ii) Let X1 and X2 be two taut manifolds, and denote by pj :X1 × X2 → Xj the

projection (j = 1, 2). Then the assertion follows remarking that

Hol(∆,X1 ×X2) = Hol(∆,X1)×Hol(∆,X2)

and that a sequence {ϕ∫} ⊂ Hol(∆,X1×X2) is compactly divergent iff at least one of the
sequences {pj ◦ f∫} ⊂ Hol(∆,Xj), for j = 1, 2, is compactly divergent, q.e.d.

In chapter 2.3 we shall describe other techniques for the construction of taut manifolds.
For instance, it will turn out that any manifold covered by a strongly pseudoconvex domain
is taut, as well as a great deal of homogeneous manifolds.

2.1.2 Function theory on taut manifolds

In this section we shall generalize to taut manifolds and tautly imbedded domains several
theorems we proved in sections 1.1.4 and 1.3.1 concerning hyperbolic Riemann surfaces.

To unify the exposition, we introduce the following (quite artificial) definition: a com-
plex manifold X is relatively taut if there exists a compact connected metric space (X, d)
such that
(i) X is an open dense topological subspace of X, and
(ii) Hol(∆,X) is relatively compact in C0(∆,X).
We shall say that X is relatively taut in X; furthermore, for every complex manifold Y we
shall denote by Hol(Y,X) the closure of Hol(Y,X) in C0(Y,X).
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Both taut manifolds (where X is the one-point compactification) and tautly imbedded
domains (where X is the topological closure in the larger manifold) are relatively taut, and
a great deal of function theory on taut manifolds depends only on this fact.

A compact manifold is relatively taut iff it is taut; however, in general being a taut
manifold is stronger than being relatively taut. For instance, if X is taut then Hol(Y,X) is
locally compact for every complex manifold Y (copy the proof of Corollary 1.1.44), whereas
this is not true if X is only relatively taut. For instance, take X = B2 \ {0}, where B2 is
the unit euclidean ball of C2. X is relatively taut in B2 equipped with the usual euclidean
distance, by Proposition 2.1.8. Define fδ,ε, f ∈ Hol(∆,X) by f(≥) = (0, (≥ + 1)/2), and

fδ,ε(≥) =
µ

δ,
(1− δ2)1/2

2− ε
(≥ + 1− ε)

∂
,

for 0 < δ < 1 and 0 < ε < 1. Then every neighbourhood of f in Hol(∆,X) for the compact-
open topology contains a sequence {fδ∫ ,ε}, with δ∫ → 0 and ε > 0 small, converging to

fε(≥) =
µ

0,
1

2− ε
(≥ + 1− ε)

∂
.

Since fε belongs to Hol(∆, B2) but not to Hol(∆,X), f cannot have compact neighbour-
hoods in Hol(∆,X), and Hol(∆,X) is not locally compact.

It is worth remarking another difference between taut and tautly imbedded manifolds
on one side and generic relatively taut manifolds on the other side. We shall say that a com-
plex manifold X relatively taut in X fulfills the identity principle in X if for any complex
manifold Y and maps f , g ∈ Hol(Y,X) so that there is an open subset A ⊂ Y where f and g
coincide, we have f ≡ g on Y . Clearly, taut manifolds (for Hol(Y,X∗) = Hol(X,Y )∪{1})
and tautly imbedded domains (thanks to the usual identity principle applied to the larger
manifold) fulfill the identity principle; on the other hand, this is not true for any relatively
taut manifold.

To give an example, we first remark that if X is relatively taut in X, then it is relatively
taut in its one-point compactification X∗; this is easily seen using the continuous surjective
map p:X → X∗ obtained by setting p|X = idX and p(X \ X) = {1}. Now take

X = B2 \ {(0, w) | |w| ≤ 1/2}. (2.1.3)

Since X is tautly imbedded in C2, it is relatively taut in X∗. Then the maps f and
g ∈ Hol(∆,X∗) given by

f(≥) =
Ω

p(0, ≥) if |≥| > 1/2,
1 if |≥| ≤ 1/2,

and g ≡ 1 show that X does not fulfill the identity principle in X∗.
Coming back to the general situation, the formalization of what we did in the first

section gives:
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Lemma 2.1.16: Let X be a complex manifold contained, as an open dense topological
subspace, in a compact connected metric space (X, d). Then:
(i) X is relatively taut in X iff Hol(∆,X) is equicontinuous with respect to d;
(ii) if X is relatively taut in X, then Hol(Y,X) is relatively compact in C0(Y,X) for every
complex manifold Y , and thus Hol(Y,X) is equicontinuous with respect to d.

Proof: (i) Apply the Ascoli-Arzelà Theorem 1.1.42.
(ii) Proposition 2.1.1 and the Ascoli-Arzelà theorem, q.e.d.

We can now start our study of function theory on taut manifolds, beginning with an
easy fact (cf. Corollary 1.1.41):

Corollary 2.1.17: Let X be a relatively taut manifold. Then the topology of pointwise
convergence on Hol(Y,X) coincides with the compact-open topology for every complex
manifold Y .

Proof: Quote Kelley [1955], p. 232, using Lemma 2.1.16.(ii), q.e.d.

The second result is the generalization of Vitali’s theorem (cf. Theorem 1.1.45):

Proposition 2.1.18: Let X be a manifold relatively taut in X fulfilling the identity prin-
ciple, and Y another complex manifold. Let {f∫} be a sequence of maps in Hol(Y,X);
assume there is a non-empty open set A ⊂ Y such that {f∫(z)} converges in X for ev-
ery z ∈ A. Then {f∫} converges uniformly on compact sets to an element f ∈ Hol(Y,X).
In particular, if X is taut and f(A) ∩X 6= /∞ then f ∈ Hol(Y,X).

Proof: Since X is relatively taut, {f∫} must have at least one limit point in Hol(Y,X); by
the identity principle, it can have at most one, and the assertion follows, q.e.d.

Using the manifold X defined in (2.1.3) and its one-point compactification, it is easy
to see that Proposition 2.1.18 does not hold for relatively taut manifolds not fulfilling the
identity principle.

Our next aim is the generalization of Theorem 1.3.4 to relatively taut complex mani-
folds. To state the result in its greatest generality, we need a topological lemma:

Lemma 2.1.19: Let X, Y be two locally compact locally connected Hausdorff topological
spaces, and {ϕ∫} a sequence of continuous open maps of X into Y , converging for the
compact-open topology to a continuous map ϕ:X → Y . Suppose that z0 ∈ X is an
isolated point of ϕ−1

°
ϕ(z0)

¢
. Then for any neighbourhood U of z0 there is a ∫0 ∈ N such

that ϕ(z0) ∈ ϕ∫(U) for ∫ ≥ ∫0.

Proof: Suppose the assertion is false. Then, up to a subsequence, we can choose a neigh-
bourhood U of z0 such that U ⊂ X is compact, U ∩ϕ−1

°
ϕ(z0)

¢
= {z0} and ϕ(z0) /∈ ϕ∫(U)

for all ∫ ∈ N. In particular, ϕ(@U) is compact and ϕ(z0) /∈ ϕ(@U). Hence we can
find a neighbourhood V of ϕ(@U) and a connected neighbourhood P of ϕ(z0) in Y such
that V ∩ P = /∞.
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Now, since ϕ∫ → ϕ for the compact-open topology, there is a ∫0 ∈ N such that
ϕ∫(@U) ⊂ V for all ∫ ≥ ∫0. Since ϕ∫ is open, we have @ϕ∫(U) ⊂ ϕ∫(@U). Therefore
ϕ∫(U) is a relatively compact open set in Y with @ϕ∫(U) ⊂ V for all ∫ ≥ ∫0.

We claim that @ϕ∫(U) ∩ P 6= /∞ if ∫ is large enough; this will yield the sought con-
tradiction. Since ϕ(z0) ∈ P , we have ϕ∫(z0) ∈ P for ∫ large enough. On the other hand,
ϕ(z0) /∈ ϕ∫(U), by assumption. If @ϕ∫(U) ∩ P = /∞, we would have

P =
£
ϕ∫(U) ∩ P

§
∪

£°
Y \ ϕ∫(U)

¢
∩ P

§
,

and we would have written P as the union of two non void (for ϕ∫(z0) belongs to the
first, and ϕ(z0) to the second) disjoint open subsets, whereas P is connected. Hence
@ϕ∫(U) ∩ P 6= /∞ for ∫ large enough, and the lemma is proved, q.e.d.

This lemma is the topological background of Corollary 1.1.36. Indeed, in the one-
variable situation, every ϕ∫ is automatically open, and ϕ−1

°
ϕ(z0)

¢
is automatically dis-

crete, and so Corollary 1.1.36 becomes a quantitative version of Lemma 2.1.19.
Using Lemma 2.1.19 we can prove the following fact (cf. Lemma 1.3.1):

Lemma 2.1.20: Let X be relatively taut in X, and f ∈ Hol(X,X). Then idX can be a
limit point of the sequence of iterates of f only if f ∈ Aut(X).

Proof: Choose a subsequence {fk∫} converging to idX . We can assume that {fk∫−1}
converges to a map g ∈ Hol(X,X) such that

∀z ∈ X g
°
f(z)

¢
= lim

∫→1
fk∫−1

°
f(z)

¢
= z.

Therefore, if we set Y = g−1(X), it follows that Y is a not empty open submanifold of X;
furthermore

∀z ∈ Y f
°
g(z)

¢
= lim

∫→1
f
°
fk∫−1(z)

¢
= z.

Thus f :X → Y is a biholomorphism, and g is its inverse.
In particular, f is an open map. Set ϕ∫ = fk∫ , and choose z0 ∈ X. Then {ϕ∫} is

a sequence of open maps of X into itself converging to idX ; applying Lemma 2.1.19 we
obtain z0 ∈ ϕ∫(X) ⊂ f(X) for ∫ large enough. In other words, f is onto, Y = X, and we
are done, q.e.d.

Again, a non-periodic automorphism f such that the identity is a limit point of {fk}
will be called pseudoperiodic. Another definition we shall need is the following: if A is a
linear operator on a (finite dimensional) vector space, the spectrum sp(A) of A is the set
of eigenvalues of A.

We are now ready for the announced generalization of Theorem 1.3.4, the Cartan-
Carathéodory theorem:
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Theorem 2.1.21: Let X be a relatively taut manifold fulfilling the identity principle, and
take f ∈ Hol(X,X) with a fixed point z0 ∈ X. Then:
(i) the spectrum of dfz0 is contained in ∆;
(ii) |det dfz0 | ≤ 1;
(iii) dfz0 = id iff f is the identity;
(iv) Tz0X admits a dfz0-invariant splitting Tz0X = LN ⊕ LU such that the spectrum
of dfz0 |LN is contained in ∆, the spectrum of dfz0 |LU is contained in @∆ and dfz0 |LU is
diagonalizable;
(v) |det dfz0 | = 1 iff f is an automorphism.

Proof: Before starting the proof, we remark that, by equicontinuity, for every neighbour-
hood U ⊂⊂ X of z0 we can find another neighbourhood V ⊂⊂ U of z0 such that g(V ) ⊂ U
for all g ∈ Hol(X,X) such that g(z0) = z0. In particular, this holds for any limit point of
the sequence {fk} of iterates of f .

Since X is relatively taut in X, there is a subsequence {fk∫} of iterates of f converging
to a map h ∈ Hol(X,X). Clearly, h(z0) = z0. Furthermore, by the previous observation
h is holomorphic near z0; therefore dhz0 is well-defined and (dfz0)k∫ = d(fk∫ )z0 → dhz0

as ∫ → +1. In particular, if ∏ ∈ C is an eigenvalue of dfz0 , then the sequence {∏k∫}
converges to an eigenvalue of dhz0 . Therefore |∏| ≤ 1, and (i) and (ii) are proved.

We shall prove (iii) in a slightly more general case, that is for maps h ∈ Hol(X,X)
such that h(z0) = z0. We have already remarked that such an h is holomorphic in a
neighbourhood of z0; in particular, dhz0 is well defined.

So take h ∈ Hol(X,X) such that h(z0) = z0 and dhz0 = id. By equicontinuity, we
can find two coordinate neighbourhoods U ⊂⊂ V ⊂⊂ X of z0 such that hk(U) ⊂ V for
all k ∈ N. By the identity principle, it suffices to show that h|U ≡ idU .

Let φ:V → D be a biholomorphism between V and a bounded domain D of some Cn

containing the origin such that φ(z0) = 0. Then, if we set D1 = φ(U) and √ = φ ◦h ◦φ−1,
we have √(0) = 0, d√0 = id and √k(D1) ⊂⊂ D for all k ∈ N.

Assume, by contradiction, √|D1 6= idD1 . Then we can write

√(z) = z + Pj(z) + o(kzkj),

where Pj is a non-zero homogeneous polynomial of degree j. One sees easily, by induction
on k, that

∀k ∈ N √k(z) = z + k Pj(z) + o(kzkj); (2.1.4)

therefore no subsequence of {√k} can converge (for {kPj} does not have converging
subsequences), and this is impossible, for D is tautly imbedded in Cn. In conclusion,
√|D1 = idD1 , h|U = idU and, by the identity principle, (iii) is proved.

To prove (iv), let {∏1, . . . ,∏p} ⊂ ∆ be the eigenvalues of dfz0 , and let

Tz0X = J∏1 ⊕ · · ·⊕ J∏p

be the Jordan decomposition of Tz0X with respect to dfz0 . Set LN =
L

|∏∫ |<1 J∏∫ and
LU =

L
|∏∫ |=1 J∏∫ ; it suffices to show that dfz0 |LU is diagonalizable. If not, in the Jordan
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canonical form of dfz0 |LU there should be a block of the form




∏ 1 0
. . . . . .

. . . 1
0 ∏




,

where |∏| = 1. Then (dfz0 |LU )k should have a corresponding block of the form




∏k k∏k−1 ∗
. . . . . .

. . . k∏k−1

0 ∏k




. (2.1.5)

Since (dfz0 |LU )k∫ → dhz0 |LU , the entries of (dfz0 |LU )k∫ should be bounded by a constant
independent of ∫, and hence (2.1.5) yields a contradiction.

It remains to prove (v). If f is an automorphism, (ii) yields |det dfz0 | = 1 at once.
Conversely, assume |det dfz0 | = 1; in particular, Tz0X = LU , and so dfz0 in Jordan canon-
ical form is diagonal. Then we can find a subsequence, still denoted by {fk∫}, converging
to a map h ∈ Hol(X,X) such that h(z0) = z0 and dhz0 = id. But we saw that this implies
h = idX , and so we can apply Lemma 2.1.20 to infer that f is an automorphism, q.e.d.

The subspace LU of Tz0X defined in (iv) is called the unitary space of f at the fixed
point z0, because dfz0 |LU acts isometrically with respect to any hermitian product on LU .
On the other hand, the subspace LN is called the nilpotent space of f at z0 because
(dfz0 |LN )k → 0 as k → +1, for sp(dfz0 |LN ) ⊂ ∆.

An immediate consequence of the Cartan-Carathéodory theorem is Cartan’s unique-
ness theorem:

Corollary 2.1.22: Let X be a relatively taut manifold fulfilling the identity principle,
and z0 ∈ X. Then if f , g ∈ Aut(X) are such that f(z0) = g(z0) = z0 and dfz0 = dgz0 , it
follows that f ≡ g on X.

Proof: Apply Theorem 2.1.21.(iii) to g−1 ◦ f , q.e.d.

In other words, automorphisms with a fixed point are completely determined by their
differential at that point.

There is another nice corollary of Theorem 2.1.21, that we shall need in section 2.2.1.
A domain D ⊂ Cn is circular if eiθz ∈ D for every θ ∈ R and z ∈ D. Then

Corollary 2.1.23: Let D ⊂⊂ Cn be a bounded circular domain of Cn containing 0. Let
f ∈ Aut(D) be such that f(0) = 0. Then f is linear.

Proof: Fix θ ∈ R and define hθ:D → D by hθ(z) = f−1
°
e−iθf(eiθz)

¢
. Clearly hθ(0) = 0

and
dhθ(0) = df−1(0) · e−iθ · df(0) · eiθ = id .
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By Theorem 2.1.21.(iii) hθ = idD, that is

f(eiθz) = eiθf(z)

for all θ ∈ R and z ∈ D. Therefore the linear term in the expansion of f in homogeneous
polynomials is the only one different from zero, q.e.d.

We are left with the generalization of Proposition 1.1.46 and Corollary 1.1.47. For the
sake of simplicity, we leave the general setting of relatively taut manifolds proving

Proposition 2.1.24: Let X be a taut manifold. Then Aut(X) is closed in Hol(X,X),
and Autz0(X) is compact for all z0 ∈ X.

Proof: Let {f∫} be a sequence of automorphisms of X converging to f ∈ Hol(X,X). Set
g∫ = f−1

∫ , and choose z0 ∈ X. Since g∫

°
f∫(z0)

¢
= z0 for all ∫ ∈ N, and moreover

f∫(z0) → f(z0) ∈ X, no subsequence of {g∫} can be compactly divergent. Therefore, up
to a subsequence we can assume g∫ → g ∈ Hol(X,X), and it is clear that g is the inverse
of f , q.e.d.

Actually, this is also true for tautly imbedded domains. The proof relies on another
version of Corollary 1.1.36:

Proposition 2.1.25: Let X be a complex manifold, and {f∫} a sequence of holomorphic
functions on X converging to a holomorphic function f :X → C. Assume f∫(z) 6= 0 for
all z ∈ X and ∫ ∈ N. Then either f ≡ 0 or f(z) 6= 0 for all z ∈ X.

Proof: Assume, by contradiction, both f 6≡ 0 and the existence of z0 ∈ X with f(z0) = 0;
we now apply the usual trick. Choosing a suitable system of local coordinates centered
about z0, we can assume X to be the euclidean unit ball B of some Cn, and z0 = 0. Since
f 6≡ 0, there is z1 ∈ B such that f(z1) 6= 0; define g∫ , g ∈ Hol(∆,C) by

g∫(≥) = f∫(≥z1/kz1k) and g(≥) = f(≥z1/kz1k).

Then every g∫ has no zeroes on ∆ and g∫ → g; hence, by Corollary 1.1.36, either g ≡ 0 or
g(≥) 6= 0 for every ≥ ∈ ∆. But g(0) = 0 and g(kz1k) 6= 0, contradiction, q.e.d.

Then:

Theorem 2.1.26: Let D ⊂⊂ X be a tautly imbedded domain in a complex manifold X,
and {f∫} a sequence of automorphisms of D converging to a holomorphic map f :D → X.
Then either f ∈ Aut(D) or f(D) ⊂ @D and f is everywhere degenerate on D.

Proof: Let E = {z ∈ D | dfz is invertible}. E is clearly open; we claim it is also closed
in D. Take z0 ∈ D \ E (if D = E there is nothing to prove), and choose a coordinate
neoghbourhood U of f(z0), and a relatively compact coordinate neighbourhood V ⊂⊂ D
of z0 such that f(V ) ⊂⊂ U . In particular, we have f∫(V ) ⊂⊂ U for ∫ large enough. Since
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U and V are coordinate neighbourhoods, we can trivialize TU and TV so to define unam-
biguously j∫ = det(df∫) and j = det(df) from V into C for ∫ large enough. Every j∫ (if
defined) has no zeroes in V ; moreover, j∫ → j and j(z0) = 0. Therefore Proposition 2.1.25
implies j|V ≡ 0, and so V ⊂ D \ E.

In conclusion, since D is connected, either E = /∞ or E = D; it remains to show that
in the first case f(D) ⊂ @D, and that in the second case f ∈ Aut(D).

Assume E = /∞ and, by contradiction, that f(D) ∩ D 6= /∞. Choose z0 ∈ D so that
f(z0) = w0 ∈ D. Let g∫ = f−1

∫ ; up to a subsequence we can assume that {g∫} converges
to a holomorphic map g:D → X. Since f∫(z0) → f(z0) = w0, we have

g(w0) = lim
∫→1

g∫

°
f(z0)

¢
= lim

∫→1
g∫

°
f∫(z0)

¢
= z0 ∈ D.

Hence there is a small neighbourhood U ⊂ D of w0 such that g(U) is relatively compact
in D. But then, for ∫ large enough g∫(U) is relatively compact in D and for every z ∈ U

f
°
g(z)

¢
= lim

∫→1
f∫

°
g∫(z)

¢
= z.

Therefore (df)g(z) · (dg)z = id for z ∈ U ; in particular, g(U) ⊂ E, contradiction, and the
first part of the assertion is proved.

Now assume E = D. Then f is open and locally injective; by Lemma 2.1.19,
f(D) ⊂

S
∫ f∫(D) = D. To show that f ∈ Aut(D) it is then enough to produce an inverse.

Again, up to a subsequence we can assume that g∫ = f−1
∫ converges to a holomorphic

function g:D → X. If z ∈ D we have

g
°
f(z)

¢
= lim

∫→1
g∫

°
f∫(z)

¢
= z.

Hence dg is invertible on f(D); then the argument already used implies that dg is every-
where invertible and, by Lemma 2.1.19, g(D) ⊂ D. But then it is clear that g is the inverse
of f , and the theorem is proved, q.e.d.

Corollary 2.1.27: Let D ⊂⊂ X be a tautly imbedded domain in a complex manifold X.
Then Aut(D) is closed in Hol(D,D), and Autz0(D) is compact for all z0 ∈ D.

2.1.3 Limit points of iterates

Up to now, the function theory on taut manifolds was not that different from what we saw
for hyperbolic Riemann surfaces. In this section we shall see that this is not anymore the
case when we begin to work seriously with iterates.

The core of the difference lies in the following observation. Let X be a complex
manifold, and f ∈ Hol(X,X) such that its sequence of iterates converges to a holomorphic
function ρ:X → X. The sequence {f2k} tends to ρ too; it follows that ρ2 = ρ. If X is a
Riemann surface, this implies that ρ is either the identity or a constant function — for the
image of ρ coincides with Fix(ρ) and thus it is either X or one point. This is not true if the
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dimension of X is greater than 1: in general, maps ρ ∈ Hol(X,X) such that ρ2 = ρ can be
quite complicated. For instance, let B2 be the unit euclidean ball in C2. The power series

1−
√

1− t =
1X

k=1

cktk

is converging for |t| < 1 and has ck > 0 for all k ≥ 1. Take gk ∈ Hol(B2,C) such that
|gk(z, w)| ≤ ck for all (z, w) ∈ B2, and define φ ∈ Hol(B2,∆) by

φ(z, w) = z +
1X

k=1

gk(z, w)w2k.

Then ρ(z, w) =
°
φ(z, w), 0) always satisfies ρ2 = ρ, and it can be very far from being

constant. . .
This section is mainly devoted to elucidate the relationship between limit points of

sequences of iterates and maps ρ such that ρ2 = ρ. Our results will be applied in chapter 2.4
to investigate thoroughly iteration theory on taut manifolds.

We begin with a definition. Let X be a complex manifold. A holomorphic retraction
of X — or, with terminology borrowed by semigroup theory, an idempotent of Hol(X,X) —
is a holomorphic map ρ:X → X such that ρ2 = ρ. The image of a holomorphic retraction
is said to be a holomorphic retract of X.

We saw that holomorphic retractions can be quite complicated. However, the holo-
morphic retracts are never too wild:

Lemma 2.1.28: Let X be a complex manifold, and ρ:X → X a holomorphic retraction
of X. Then the image of ρ is a closed submanifold of X.

Proof: Let M = ρ(X) be the image of ρ, and take z0 ∈ M . Choose an open neighbour-
hood U of z0 in X contained in a local chart for X at z0. Then V = ρ−1(U ∩M) ∩ U is
an open neighbourhood of z0 contained in a local chart such that ρ(V ) ⊂ V . Therefore
without loss of generality we can assume that X is a bounded domain D in Cn.

Set P = dρz0 :Cn → Cn, and define ϕ:D → Cn by

ϕ = idD +(2P − idD) ◦ (ρ− P ).

Since dϕz0 = id, ϕ defines a local chart in a neighbourhood of z0. Now P 2 = P and ρ2 = ρ;
hence

ϕ ◦ ρ = ρ + (2P − idD) ◦ ρ2 − (2P − idD) ◦ P ◦ ρ

= P ◦ ρ = P + P ◦ (2P − idD) ◦ (ρ− P ) = P ◦ ϕ.

Therefore in this local chart ρ becomes linear, and M is a submanifold near z0. By the
arbitrariness of z0, the assertion follows, q.e.d.

And now we can prove the fundamental
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Theorem 2.1.29: Let X be a taut manifold, and f ∈ Hol(X,X). Assume that the se-
quence {fk} of iterates of f is not compactly divergent. Then there exist a submanifold M
of X and a holomorphic retraction ρ:X → M such that every limit point h ∈ Hol(X,X)
of {fk} is of the form

h = ∞ ◦ ρ, (2.1.6)

where ∞ is an automorphism of M . Moreover, even ρ is a limit point of the sequence {fk}.

Proof: Let {fk∫} be a subsequence of {fk} converging to h ∈ Hol(X,X). We can assume
that also p∫ = k∫+1 − k∫ and q∫ = p∫ − k∫ = k∫+1 − 2k∫ tend to +1 as ∫ → +1, and
that {fp∫} and {fq∫} are either converging or compactly divergent. Now for all z ∈ X

lim
∫→1

fp∫
°
fk∫ (z)

¢
= lim

∫→1
fk∫+1(z) = h(z);

therefore {fp∫} cannot be compactly divergent, and thus converges to a map ρ ∈ Hol(X,X)
such that

h ◦ ρ = ρ ◦ h = h. (2.1.7)

Next, for all z ∈ X

lim
∫→1

fq∫
°
fk∫ (z)

¢
= lim

∫→1
fp∫ (z) = ρ(z).

Hence neither {fq∫} can be compactly divergent, and converges to a map g ∈ Hol(X,X)
such that

g ◦ h = h ◦ g = ρ. (2.1.8)

In particular
ρ2 = ρ ◦ ρ = g ◦ h ◦ ρ = g ◦ h = ρ,

and ρ is a holomorphic retraction of X onto a submanifold M , by Lemma 2.1.28. Now
(2.1.7) implies h(X) ⊂ M . Since g ◦ ρ = ρ ◦ g, we have g(M) ⊂ M and (2.1.8) yields

g ◦ h|M = h ◦ g|M = idM ;

hence ∞ = h|M ∈ Aut(M) and (2.1.7) becomes (2.1.6).
Now, let {fk0∫} be another subsequence of {fk} converging to a map h0 ∈ Hol(X,X).

Arguing as before, we can assume s∫ = k0∫ − k∫ and t∫ = k∫+1 − k0∫ tending to +1
as ∫ → +1, and that {fs∫} and {f t∫} converge to holomorphic maps α ∈ Hol(X,X),
respectively β ∈ Hol(X,X) such that

α ◦ h = h ◦ α = h0 and β ◦ h0 = h0 ◦ β = h. (2.1.9)

Then h(X) = h0(X), and so M does not depend on the particular converging subsequence.
It remains to show that ρ itself does not depend on the chosen subsequence. Write

h = ∞1 ◦ ρ1, h0 = ∞2 ◦ ρ2, α = ∞3 ◦ ρ3 and β = ∞4 ◦ ρ4, where ρ1, ρ2, ρ3 and ρ4 are
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holomorphic retractions of X onto M , and ∞1, ∞2, ∞3 and ∞4 are automorphisms of M .
Then h ◦ h0 = h0 ◦ h and α ◦ β = β ◦ α together with (2.1.9) become

∞1 ◦ ∞2 ◦ ρ2 = ∞2 ◦ ∞1 ◦ ρ1

∞3 ◦ ∞1 ◦ ρ1 = ∞1 ◦ ∞3 ◦ ρ3 = ∞2 ◦ ρ2

∞4 ◦ ∞2 ◦ ρ2 = ∞2 ◦ ∞4 ◦ ρ4 = ∞1 ◦ ρ1

∞3 ◦ ∞4 ◦ ρ4 = ∞4 ◦ ∞3 ◦ ρ3

(2.1.10)

Writing ρ2 in function of ρ1 using the first and the second equation in (2.1.10) we find
∞3 = ∞−1 ◦ ∞2. Writing ρ1 in function of ρ2 using the first and the third equation, we get
∞4 = ∞−1

2 ◦ ∞1. Hence ∞3 = ∞−1
4 and the fourth equation yields ρ3 = ρ4. But then, using

the second and third equation we obtain

ρ2 = ∞−1
3 ◦ ∞−1

1 ◦ ∞2 ◦ ρ2 = ρ3 = ρ4 = ∞−1
4 ◦ ∞−1

2 ◦ ∞1 ◦ ρ1 = ρ1,

and we are done, q.e.d.

The manifold M whose existence is asserted in the previous theorem is called the
limit manifold of the map f , and its dimension the limit multiplicity of f ; analogously,
the holomorphic retraction is called the limit retraction of f . These concepts are defined
as soon as the sequence {fk} is not compactly divergent.

If f has a fixed point, its limit multiplicity can be easily computed:

Corollary 2.1.30: Let X be a taut manifold, and take f ∈ Hol(X,X) such that f(z0) = z0

for some z0 ∈ X. Then the unitary space of f at z0 is the tangent space at z0 of the limit
manifold of f . In particular, the limit multiplicity of f is the number of eigenvalues of dfz0

contained in @∆, counted according to their multiplicity.

Proof: Let ρ:X → M be the limit retraction; clearly, z0 ∈ M . Fix a subsequence {fk∫}
converging to ρ; in particular,

(dfz0)
k∫ −→ dρz0 . (2.1.11)

Let Tz0X = LN ⊕ LU be the dfz0-invariant splitting given by Theorem 2.1.21.(iv); then
(2.1.11) implies dρz0 |LN = 0 and dρz0 |LU = id, for dfz0 acts diagonally on LU and
sp(dfz0 |LU ) ⊂ @∆. Hence LU = Tz0M , and the assertion follows, q.e.d.

Another observation we shall need later on is that f acts on its limit manifold:

Corollary 2.1.31: Let X be a taut manifold; take f ∈ Hol(X,X) such that {fk} is not
compactly divergent, and let ρ:X → M be its limit retraction. Then f(M) ⊂ M and
ϕ = f |M is an automorphism of M .

Proof: Since f ◦ ρ = ρ ◦ f , it is clear that f(M) ⊂ M . Let {fk∫} be a subsequence of
iterates converging to ρ; then fk∫+1 → ϕ ◦ ρ as ∫ → +1, and the assertion follows from
Theorem 2.1.29, q.e.d.
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Theorem 2.1.29 outlines the direction we should follow in the study of the sequence
of iterates. We should understand when the sequence {fk} is compactly divergent, and
what happens in that case, and we should find out when, and whether, its only limit point
is the limit retraction. We shall undertake this study in chapter 2.4; for the moment we
shall limit ourselves to two consequences of Theorem 2.1.29.

The first one actually is an application of the proof of Theorem 2.1.29. It is the
generalization of Proposition 1.3.14:

Corollary 2.1.32: Let X be a relatively taut manifold without compact submanifolds of
dimension greater than zero. Let f ∈ Hol(X,X) be such that f(X) ⊂⊂ X. Then f has a
unique fixed point z0 ∈ X, and the sequence of iterates of f converges to z0.

Proof: Since f(X) is relatively compact in X, the sequence {fk} of iterates of f is rel-
atively compact in Hol(X,X). Then, arguing as in the proof of Theorem 2.1.29, we can
find a subsequence of iterates converging to a holomorphic retraction ρ:X → X. Now,
ρ(X) should be a closed submanifold of X contained in f(X), i.e., a compact connected
submanifold of X; by the assumption, then, ρ(X) is a point z0 ∈ X. Since f ◦ ρ = ρ ◦ f ,
it follows that z0 is a fixed point of f . Finally, the same argument used in the proof of
Theorem 2.1.29 — namely, (2.1.7) — shows that z0 is the unique limit point of {fk}, that
is fk → z0, q.e.d.

Any manifold X where Hol(X,C) separates points is without compact submanifolds of
dimension greater than zero. So Corollary 2.1.32 applies, for instance, to bounded domains
in Cn.

The second application we present is the generalization of Corollary 1.3.21. We first
need the

Proposition 2.1.33: Let D ⊂⊂ Cn be a taut domain, and f ∈ Hol(D,D) such that
{fk} is not compactly divergent. Assume that the q-th cohomology group Hq(D,C) is
non-trivial and finite dimensional, and that the induced map f∗:Hq(D,C) → Hq(D,C)
is not nilpotent. Then the limit multiplicity of f is at least q.

Proof: By the universal coefficient theorem, Hq(D,C) = Hq(D,Z) ⊗ C; therefore we
can choose a basis {σ1, . . . ,σd} of Hq(D,C) contained in Hq(D,Z), and the dual basis
{ω1, . . . ,ωd} of Hq(D,C) is contained in Hq(D,Z). Furthermore, since D is pseudoconvex
(Proposition 2.1.9), we can represent ω1, . . . , ωd by holomorphic forms on D (see, e.g.,
Krantz [1982], p. 237).

Since f∗ is not nilpotent, up to reordering {ω1, . . . , ωd} we may choose a subsequence
{fk∫} converging to the limit retraction ρ ∈ Hol(D,D) such that

(f∗)k∫ ω1 =
dX

j=1

c j
∫ ωj 6= 0,

where every c j
∫ is integer. Moreover, we can also assume that for some r we have cr

∫ 6= 0
for all ∫ ∈ N. Thus

cr
∫ =

dX

j=1

Z

σr

c j
∫ ωj =

Z

σr

(f∗)k∫ ω1 =
Z

σr

(fk∫ )∗ω1.
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Now, since σr is represented by a compactly supported cycle, we may take the limit
as ∫ → +1 obtaining ØØØØ

Z

σr

ρ∗ω1

ØØØØ ≥ 1,

because |cr
∫ | ≥ 1 for every ∫ ∈ N. Hence ρ(X) should have dimension at least q, q.e.d.

Then

Theorem 2.1.34: Let D ⊂⊂ Cn be a bounded C1 domain with simple boundary. Assume
that the n-th cohomology group Hn(D,C) is non-trivial and finite dimensional. Then
f ∈ Hol(D,D) is an automorphism iff f∗:Hn(D,C) → Hn(D,C) is not nilpotent.

Proof: If f ∈ Aut(D) then f∗ is not nilpotent, of course. Conversely, assume that f∗ is
not nilpotent. Since a bounded domain of Cn with simple boundary is taut, there are
only two possibilities: either {fk} is compactly divergent, or {fk} admits a subsequence
converging to a holomorphic retraction ρ:D → M (by Theorem 2.1.29). In the latter case,
by Proposition 2.1.33, ρ is the identity and, by Lemma 2.1.20, f is an automorphism.

If {fk} is compactly divergent, there is a subsequence {fk∫} converging to a constant
map x0 ∈ @D, for D has simple boundary. Since @D is an imbedded manifold, x0 has a
fundamental system of contractible neighbourhoods in D; hence, arguing as in the proof
of Corollary 1.3.21, we find that f∗ (and hence f∗) is nilpotent, contradiction, q.e.d.

In particular, this theorem holds for strongly pseudoconvex domains of Cn, thanks to
Corollary 2.1.14.

Notes

The systematic investigation of normal families of holomorphic maps of several complex
variables began only recently, with the papers by Grauert and Reckziegel [1965], Wu [1967]
and Kaup [1968]; before them, the only general result was Proposition 2.1.8, an easy
consequence of the one-variable Montel theorem (see Montel [1927]).

The theorems of general topology we used in our discussion of the one-point compact-
ification can be found, e.g., in Kelley [1955] and in Dugundji [1966].

The concept of taut manifold was first introduced by Wu [1967] and Kaup [1968]
(Kaup used the term hyperbolic that we have reserved, following the common usage, to
another concept to be introduced in chapter 2.3). Their definition stated that a complex
manifold X is taut iff the family Hol(Y,X) is normal for any complex manifold Y ; only
later Barth [1970] proved Proposition 2.1.1 and Theorem 2.1.2, establishing the equivalence
of our definition with the original one.

Tautly imbedded domains have been introduced by Kiernan [1973], who also proved
Proposition 2.1.4.

The relevance of conditions like the one described in Proposition 2.1.6 has been already
pointed out by Hervé [1951], who studied iteration theory in what he called D0 domains
in C2, which are exactly bounded domains satisfying the characterization of tautness given
in Proposition 2.1.6.



124 2.1 Taut manifolds

Proposition 2.1.9 is taken from Wu [1967]. Its best converse (improving the fairly
standard Corollary 2.1.14) is due to Demailly [1987], who proved that every bounded
pseudoconvex domain with Lipschitz boundary is taut. On the other hand, Kerzman
and Rosay [1981] (see also Barth [1983]) have given an example of a bounded weakly
pseudoconvex domain in C2 which is not taut. This is somehow related to the fact that
weakly pseudoconvex domains are not necessarily locally convex; an example is in Kohn
and Niremberg [1973].

A large part of Wu [1967] is devoted to show that large classes of hermitian manifolds
(far beyond our rough Lemma 2.1.15) are taut; for instance, every complete hermitian
manifold with holomorphic sectional curvature bounded above by a negative constant
is taut (see also Grauert and Reckziegel [1965]). In chapter 2.3 we shall introduce on
every complex manifold an invariant pseudodistance — the multidimensional version of
the Poincaré distance of Riemann surfaces — and we shall see that if this distance is
complete then the manifold is taut, thus providing the examples we mentioned at the end
of section 2.1.1.

The notion of relatively taut manifold has been introduced here only to avoid repeating
two times every statement, once for taut manifolds and once for tautly imbedded domains.
At present, it does not seem to have any other significance.

Section 2.1.2 is a short account in the setting of taut manifolds of the classical
theory of holomorphic mappings of bounded domains of Cn as developed mainly by
Carathéodory [1932] and H. Cartan [1930a, b, 1932]. Corollary 2.1.17, Propositions 2.1.18,
2.1.24 and 2.1.25 are easy extensions of their one-variable counterparts. Theorem 2.1.21
was first proved by H. Cartan [1930a, b] for domains in C2, and subsequently general-
ized by Carathéodory [1932] to domains in Cn. In the present version was first proved
by Wu [1967], who also showed that the automorphism group of a taut manifold is a
Lie group, generalizing the classical theorem of H. Cartan [1935] (for a modern proof see
Narasimhan [1971]).

Corollary 2.1.22 is somehow akin to the É. Cartan uniqueness theorem of differential
geometry: if X is a Riemannian manifold, z0 ∈ X and f , g:X → X are two isometries
with fixed point z0, then dfz0 = dgz0 iff f ≡ g. The proof (see, for instance, Kobayashi
and Nomizu [1968]) is completely different, relying on the exponential map of Riemannian
manifolds, but the phenomenon is absolutely the same.

Corollary 2.1.23 is again due to H. Cartan [1930a]. Finally, Theorem 2.1.26 is in
H. Cartan [1932], as well as Lemma 2.1.20.

Lemma 2.1.28 is due to Rossi [1963]; the proof we presented is taken from H. Car-
tan [1986].

Theorem 2.1.29 (see Abate [1988c]) is inspired by Bedford [1983b]; his result, slightly
less complete, was in turn inspired by H. Cartan [1932], and forecast by Hervé [1951]
for domains in C2. An analogous statement for convex domains has been proved by
Suzuki [1987]. A different approach to the existence of the limit retraction can be obtained
via topological semigroup theory; see Wallace [1955] and Shields [1964].

Corollary 2.1.32 was first proved by Wavre [1926]. Our proof is very similar to the one
given by Hervé [1963b]. A different approach can be found in Earle and Hamilton [1969].

Looking at the proofs, it is clear that Proposition 2.1.33 and Theorem 2.1.34 hold for
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generic taut Stein manifolds (respectively, tautly imbedded Stein C1 domains with simple
boundary), which is the original statement due to Bedford [1983b]. Again, it seems that
the holomorphic structure tries to get rid of topological obstructions in a rather decise way.
The influence of topology on function theory of several complex variables is, at present,
not well understood, and only few papers on the argument have appeared (we quote, for
instance, Bedford [1983a, b] and Mok [1983]).


