Istituzioni di Geometria

Prof. Marco Abate

Secondo scritto A.A. 2012/13 — 24 giugno 2013

Nome e Cognome:

1) Sia $\pi: \mathbb{R}^{n+1} \setminus \{O\} \to \mathbb{P}^n(\mathbb{R})$ la proiezione canonica, e poniamo

$$E = \{(p, x) \in \mathbb{P}^n(\mathbb{R}) \times \mathbb{R}^{n+1} \mid \pi(x) = p \text{ oppure } x = 0\} \subset \mathbb{P}^n(\mathbb{R}) \times \mathbb{R}^{n+1}$$
.

Dimostra che E ha una naturale struttura di fibrato in rette su $\mathbb{P}^n(\mathbb{R})$, e determina le funzioni di transizione di E rispetto all'usuale atlante di $\mathbb{P}^n(\mathbb{R})$.

2) Siano M, N due varietà Riemanniane di dimensione n, siano d_M e d_N le distanze Riemanniane definite su M e N, e sia $f: M \to N$ una funzione bigettiva tale che

$$d_N(f(p), f(p')) = d_M(p, p')$$
.

Scopo di questo esercizio è dimostrare che f è di classe C^{∞} . Per ogni $q \in N$ denota con $d_q: N \to \mathbb{R}$ la funzione distanza da q data da $d_q(q') = d_N(q, q')$ per ogni $q' \in N$. Analogamente, se $p \in M$ denota con d_p la funzione distanza da p calcolata rispetto a d_M .

Fissato $p_0 \in M$, sia $q_0 = f(p_0)$.

- (i) Mostra che esistono un intorno U di q_0 in N ed un intorno V di p_0 in M tali che: f(V) = U; per ogni $q \in U$ la restrizione di d_q a $U \setminus \{q\}$ è una funzione di classe C^{∞} ; e per ogni $p \in V$ la restrizione di d_p a $V \setminus \{p\}$ è una funzione di classe C^{∞} . [Suggerimento: può essere utile ricordare che i compatti hanno raggio di iniettività positivo.] Per ogni $q \in U$, denota inoltre con grad d_q il campo vettoriale gradiente di d_q , che risulta pertanto definito su $U \setminus \{q\}$.
- (ii) Sia U come nel punto precedente. Mostra che esistono punti q_1, \ldots, q_n in $U \setminus \{q_0\}$ tali che i vettori

$$(\operatorname{grad} d_{q_1})(q_0), \ldots, (\operatorname{grad} d_{q_n})(q_0)$$

definiscono una base di $T_{q_0}N$.

- (iii) Sia $H: U \setminus \{q_1, \ldots, q_n\} \to \mathbb{R}^n$ la funzione definita da $H(q) = (d_{q_1}(q), \ldots, d_{q_n}(q))$. Mostra che esiste un intorno W di q_0 tale che $H|_W$ è una carta locale intorno a q_0 .
- (iv) Posto $p_i = f^{-1}(q_i)$ per i = 1, ..., n, calcola H(f(p)) per $p \in U$, e concludi che $f|_{f^{-1}(W)}$ è una funzione di classe C^{∞} .

Hai così mostrato che f è C^{∞} in p_0 e, data la genericità di p_0 , da ciò segue che f è globalmente di classe C^{∞} .

3) Data un'applicazione differenziabile $f\colon S\to M$ fra due varietà, per ogni $q\in\mathbb{N}$ poniamo

$$A^q(f) = A^q(M) \oplus A^{q-1}(S) ,$$

con la convenzione $A^{-1}(S) = \{O\}$. Sia poi $A^{\bullet}(f) = \bigoplus_q A^q(f)$ e definiamo $d: A^{\bullet}(f) \to A^{\bullet+1}(f)$ ponendo

$$d(\omega, \theta) = (d\omega, f^*\omega - d\theta) .$$

- (i) Dimostra che $(A^{\bullet}(f), d)$ è un complesso differenziale; sia $H^{\bullet}(f)$ la corrispondente coomologia.
- (ii) Dimostra che esiste una successione esatta lunga

$$\cdots \longrightarrow H^{q-1}(S) \xrightarrow{\alpha^*} H^q(f) \xrightarrow{\beta^*} H^q(M) \xrightarrow{f^*} H^q(S) \longrightarrow \cdots$$

dove $\alpha: A^{q-1}(S) \to A^q(f)$ è data da $\alpha(\theta) = (O, \theta)$ e $\beta: A^q(f) \to A^q(M)$ è data da $\beta(\omega, \theta) = \omega$, e $f^*: H^q(M) \to H^q(S)$ è indotta dall'usuale pullback di forme.